Philipps-Universität Marburg

Sommer-Semester 2014

Fachbereich Mathematik und Informatik

Prof. Dr. B. Schmitt, D. Lellek

Übungen zu Dynamische Systeme 4. Aufgabenblatt

Aufgabe 12 (Dynamik bei konstanten Koeffizienten)

(4)

Betrachte das homogene System mit konstanten Koeffizienten y'(t) = Ay(t) mit

$$A := \begin{pmatrix} 3 & 2 \\ -2 & -2 \end{pmatrix}$$

Es soll jeweils das Verhalten der Lösung beim Gleichgewichtspunkt null untersucht werden. Bestimme die Eigenwerte λ_1, λ_2 von A. Welcher der in der Vorlesung behandelten Fälle liegt hier vor? Bestimme dann die allgemeine Lösung y(t) in der Form (2.3.12) und skizziere im Bereich $[-6, 6]^2$ die Trajektorien $\varphi(t; x), t \in \mathbb{R}$ des Startpunktes

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}, \begin{pmatrix} -1/2 \\ 1/2 \end{pmatrix}, \begin{pmatrix} 3/2 \\ 3/2 \end{pmatrix}, \begin{pmatrix} -3/2 \\ -3/2 \end{pmatrix} \right\}.$$

Aufgabe 13 (Modifiziertes Lotka-Volterra-Modell)

(5)

Man kann das Lotka-Volterra-Modell modifizieren, indem man zusätzlich eine interne Konkurrenz in jeder Spezies berücksichtigt. Wenn man dabei die meisten Konstanten festlegt, ergibt sich das Modell

$$y'_1 = (2 - y_2 - \lambda y_1)y_1 =: f_1(y),$$

 $y'_2 = (y_1 - 1 - y_2)y_2 =: f_2(y),$

mit dem einzigen Parameter $\lambda > 0$.

- (i) Skizziere die Nullklinen des Systems und bestimme in Abhängigkeit von λ alle Gleichgewichtspunkte im positiven Quadranten einschließlich Rand.
- (ii) Klassifiziere die Stabilität dieser Gleichgewichte für die Werte $\lambda = 1/2$ und $\lambda = 2$. Interpretiere die Ergebnisse im Hinblick auf das Modell.

Aufgabe 14 (Lyapunov-Funktionen für lineare Systeme) (6) Sei $A \in \mathbb{R}^{n \times n}$ mit $\alpha(A) < 0$. Wir wollen zeigen, dass das System y' = Ay dann eine quadratische Lyaponov-Funktion besitzt. Gehe dazu wie folgt vor.

- (i) Betrachte die Gleichung $A^{\top}P + PA = -Q$ mit beliebiger symmetrisch positiv definiter Matrix $Q \in \mathbb{R}^{n \times n}$. Zeige mihilfe der Jordan-Normalform von A, dass diese Gleichung eine eindeutige Lösung besitzt.
- (ii) Zeige, dass das unter (i) gefundene P positiv definit ist. Hierfür kann man Satz 2.3.4 nutzen.
- (iii) Folgere, dass $V(x) := x^\top P x$ eine quadratische Lyapunov-Funktion für das System ist mit einer Konstante $\gamma > 0$.

Hinweis: Für symmetrische Matrizen $B \in \mathbb{R}^{n \times n}$ gilt:

$$\lambda_{\min}(B) \|x\|_2^2 \le x^{\top} Bx \le \lambda_{\max}(B) \|x\|_2^2.$$

Abgabe: 24.06.2014, vor der Vorlesung.