Fachbereich Mathematik und Informatik

Prof. Dr. B. Schmitt, D. Lellek

7. Aufgabenblatt zur Mathematik II

Aufgabe 26 (Stellen der Stetigkeit)

(4)

Als Definitionsbereich der beiden folgenden Funktionen f,g wird $D:=(0,\infty)$ festgelegt. Gib für f und g jeweils alle Punkte $x\in D$ an, in denen die Funktion stetig ist:

(a)
$$f(x) := \begin{cases} x^2 - 2, & \text{falls } x \le 2, \\ \frac{2}{x^2} + \frac{3}{2}, & \text{sonst.} \end{cases}$$

(b)
$$g(x) := entier(\frac{entier(x)}{2}) = \lfloor \frac{\lfloor x \rfloor}{2} \rfloor$$
.

Aufgabe 27 (Grenzwerte bei Funktionen)

(4)

Es sei $a \in \mathbb{R}$, $a \neq 0$, ein fest gewählter Parameter.

(a) Für welche Werte von a existiert der Grenzwert

$$\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{a}{2 - x - x^2} \right) ?$$

(b) Wie lauten die Grenzwerte $\lim_{x\to\infty}\frac{x}{\sqrt{a^2+x^2}}$ und $\lim_{x\to-\infty}\frac{x}{\sqrt{a^2+x^2}}$?

Aufgabe 28 (Gerade und ungerade Funktionen)

(3)

Mit b > 0 sei D := [-b, b]. Eine Funktion $f : D \to D$ heißt gerade (bzw. ungerade), wenn $f(-x) = f(x) \, \forall x \in D$ gilt (bzw. $f(-x) = -f(x) \, \forall x \in D$). Zeige, dass wenn eine solche Funktion f auf [0, b] stetig ist, dann ist sie stetig auf ganz D = [-b, b].

Aufgabe 29 (Stetigkeit von Polynomen)

(4)

Polynome sind stetige Funktionen. Zeige dazu mit Satz 1.2.4 direkt, dass für $n \in \mathbb{N}$ die Funktion $f(x) := x^n$ in jedem Punkt $a \in [-b, b], b > 0$, stetig ist und gib dazu im Sinn von Satz 3.1.5 zu beliebigem $\varepsilon > 0$ explizit ein dazu passendes $\delta > 0$ an, welches auch von n und b abhängt.

Abgabe: Freitag, 12.06.15, vor der Vorlesung.