Fachbereich Mathematik

Prof. Dr. B. Schmitt, A. Görlich

Übungen zur Vorlesung NUMERISCHE BASISVERFAHREN 7. Aufgabenblatt

Aufgabe 24 (6)

Die Funktion

$$f(x) = \begin{cases} \frac{\cos(x) - 1}{x^2} &, & x \neq 0 \\ -\frac{1}{2} &, & x = 0 \end{cases}$$

soll in der Umgebung des Nullpunkts ausgewertet werden.

- (i) Zeigen Sie, dass $f \in \mathcal{C}^1(\mathbb{R})$ gilt und berechnen Sie die Konditionszahl κ_x von f für $x \to 0$.
- (ii) Zerlegen Sie f in Teilabbildungen gemäß $f = \varphi^{[4]} \circ \varphi^{[3]} \circ \varphi^{[2]} \circ \varphi^{[1]}$, wobei $\varphi^{[2]}, \varphi^{[3]} : \mathbb{R}^2 \to \mathbb{R}^2$ gelte. Berechnen Sie anschließend die Konditionszahlen der Restabbildungen $\varphi^{[4]} \circ \cdots \circ \varphi^{[i]}$, i = 2, 3, 4, im Punkt $\varphi^{[i-1]} \circ \cdots \circ \varphi^{[1]}(x)$ für $x \to 0$.
- (iii) Geben Sie eine äquivalente Darstellung von f an, bei der für $|x| \ll 1$ alle Teiloperationen gut konditioniert sind.

Aufgabe 25 (4)

Gegeben sei das Problem der Auswertung der Funktion $f(x) = 1 - \frac{1}{1+x^2}, x \in \mathbb{R}$.

- (i) Bestimmen Sie die Kondition des Problems für alle $x \in \mathbb{R} \setminus \{0\}$ und begründen Sie, für welche x es gut bzw. schlecht konditioniert ist.
- (ii) Der Eingabewert x sei mit einem relativen Fehler von 5% behaftet. Welcher relative Fehler ist bei exakter Rechnung in erster Ordnung in der Ausgabe zu erwarten?
- (iii) Welches Problem tritt bei der Auswertung von f in Maschinenzahlen für $x \approx 0$ auf? Finde für diese Eingabewerte eine günstigere Darstellung von f.

Aufgabe
$$26$$
 (4)

Für eine Matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ sei $|A| := (|a_{ij}|)$. Beweisen Sie:

(i) Für $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times r}$ gilt (komponentenweise) $|AB| \leq |A| \cdot |B|$ mit Gleichheit z.B. im Fall $A = \operatorname{diag}(a_{ii}) \in \mathbb{R}^{n \times n}$.

- (ii) Für reguläres $D = \operatorname{diag}(d_{ii}) \in \mathbb{R}^{n \times n}$ ist auch |D| regulär mit $|D|^{-1} = |D^{-1}|$.
- (iii) Für $A \in \mathbb{R}^{m \times n}$ gilt $||A||_{\infty} = |||A|||_{\infty} = |||A| \cdot \mathbb{1}||_{\infty}$ und $||A||_{1} = |||A|||_{1} = |||A||^{T} \mathbb{1}||_{\infty}$, $\mathbb{1} := (1, \dots, 1)^{T}$.
- (iv) Für $A, B \in \mathbb{R}^{m \times n}$ sind die Matrix-Normen $\|\cdot\|_p$, $p \in \{1, \infty\}$, monoton, d.h. aus $|A| \leq |B|$ folgt schon $\|A\|_p \leq \|B\|_p$.

Aufgabe
$$27$$
 (4)

Zu einer Matrix $A \in \mathbb{R}^{n \times n}$ sei die Gesamtnorm definiert durch

$$||A||_G := n \cdot \max_{i,j=1}^n |a_{ij}|.$$

- (i) Zeigen Sie, dass $||AB||_G \le ||A||_G \cdot ||B||_G$ gilt.
- (ii) Zeigen Sie, dass $\|\cdot\|_G$ verträglich ist mit allen Hölder-Vektornormen $\|\cdot\|_p$, $p \ge 1$. Hinweis: Für $x,y \in \mathbb{R}^n$ gilt die Hölderungleichung $|y^Tx| \le \|y\|_q \cdot \|x\|_p$, wobei $\frac{1}{p} + \frac{1}{q} = 1$.

Abgabe: Mittwoch, 14.06.17, vor der Vorlesung.