
Manual for explicit parallel peer code EPPEER

Bernhard A. Schmitt (Univ. Marburg, Germany)∗

Rüdiger Weiner (Univ. Halle, Germany)†

August 24, 2012

eppeer is a FORTRAN95 code with OpenMP parallelization solving non-stiff
initial value problems of ODEs

y′(t) = f
(
t, y(t)

)
, t ∈ [t0, tend], y(t0) = y0 ∈ Rn, (1)

with explicit peer two-step methods of orders 3 . . . 9 with parallelism across the
method. It uses automatic stepsize control and provides continuous output of
full order. The current version is intended for small-scale parallelism as on
current desktop PCs with 2 . . . 8 cores, no parallelization of the call to the right-
hand side f is required. It is available at
www.mathematik.uni-marburg.de/~schmitt/peer and
numerik.mathematik.uni-halle.de/forschung/software/

1 Peer methods

Peer two-step methods solve the initial value problem through time steps from
tm to tm+1 = tm + hm, m ≥ 0. In each step they employ s stages Ym,i,
i = 1, . . . , s which have all the same accuracy and stability properties. The
class of peer methods has been introduced by Schmitt and Weiner 2004 in [1].
The explicit methods used in EPPEER are given by the time step

Ym,i =

s∑
j=1

bijYm−1,j + hm

s∑
j=1

aijf(tm−1,j , Ym−1,j), i = 1, . . . , s. (2)

These steps are parallel since on the right-hand side only information from the
previous time step is used, at tm−1,j = tm−1 + hm−1cj , j = 1, . . . , s. The last
step offset is cs = 1 providing reference solutions at tm, tm+1. Still, the global
error is O(hs

m) for all stages. The methods in eppeer with s = 4, 6, 8 stages
are from [3] and may use up to s = 4, 6, 8 cores parallel. The methods with
s = 3, 5, 7, 9 stage are FSAL methods, see [4] and use s − 1 = 2, 4, 6, 8 parallel
cores. However, due to some overhead in (2) one observes speed-ups near the

∗schmitt@mathematik.uni-marburg.de
†ruediger.weiner@mathematik.uni-halle.de

1

number of cores only for rather expensive right-hand sides f . Dense output
by interpolation has order O(hs) for all methods. However, only for the FSAL
methods with odd stage numbers 3,5,7,9 it is also continuous due to the property
Ym−1,s = Ym1.

The authors acknowledge helpful contributions from the coauthors Katja
Biermann, Stefan Jebens, Helmut Podhaisky and from Matthias Korch.

2 Module structure

IVPEPP Contains the subroutine eppeer and supporting subroutines in the
file ivpepp.f90. All variables in this module are private, some may be
accessed by supporting routines.

IVPRKP Using two-step peer methods the code needs a starting procedure
for Y0,i, i = 1, . . . , s. Here the Runge-Kutta method DOPRI5 is used
contained in the file ivprkp.f90.

ODEPROB It is convenient if the description of the initial value problem (1)
is also contained in an own module with the problem size, start and end
times and a subroutine fcn implementing the right-hand side f . More
details in Section 3.2. Examples for this module are contained in the files
bruss2h.f90 with a 2D-reaction diffusion equation with the Brusselator
(small diffusion constant), and the file mbod4h.f90 with a multi-body
problem for 400 masses. Only for the expensive problem mbod4h.f90

speed-ups near the number of cores may be expected.

3 Calling sequences

The peer methods rely on the method coefficients aij , bij from (2), among others.
In order to save the effort for their computation on multiple calls to EPPEER
an initialization and deallocation of these data is required.

3.1 Minimal calling sequence

The minimal calling sequence is

call ppsetcoeff(mnr,stages,mthn) ! initializes method

!! define (repeatedly) initial values tm,te,ym and call:

call eppeer(fcn,tm,te,ym,cpar) ! call to integrator

irep = ppreport(.true.) ! prints error message

call ppfreecoeff ! release memory

This sequence computes the numerical solution with automatic stepsize control
with absolute and relative tolerances atol = rtol = 1D−5 and no dense output.

The declarations of the subroutines in use are

ppsetcoeff Allocates memory and computes method coefficients, declaration:

2

subroutine ppsetcoeff(mnr,pstage,methname)

integer, intent(in) :: mnr

integer, intent(out) :: pstage

character(len=16), intent(out) :: methname

Parameters:

mnr in chooses method, available mnr ∈ {3, 4, 5, 6, 7, 8, 9}.
pstage out stage number s of the method, pstage < 0 indicates

wrong value of mnr
methname out the name of the chosen method, it has the form

eppsxx, where s is the number of stages. It may be
used for naming output files as in ivp_pmain.f90.

eppeer performs time integration, declaration:

subroutine eppeer(fcn,t,tend,y,cpar,solout)

interface

pure subroutine fcn(t,u,udot,par)

real(8), intent(in) :: t

real(8), dimension(:), intent(in) :: u

real(8), dimension(:), intent(out) :: udot

real(8), dimension(:), intent(in) :: par

end subroutine fcn

subroutine solout(n,ts,tnew)

integer, intent(in) :: n

real(8) :: ts

real(8), intent(in) :: tnew

end subroutine solout

end interface

optional solout

real(8) :: t,tend

real(8), dimension(:) :: y

real(8), dimension(:), intent(in) :: cpar

Parameters:

3

fcn sub this is a subroutine implementing the right-hand side
f from (1), where t is the time, u is the input vec-
tor, and udot = f(t, u). It is declared as a pure For-
tran95 subroutine with no side effects and no internal
parallelism. The vector par may contain additional pa-
rameters passed by the argument cpar from the calling
program through eppeer.

t in/out contains start time t0 from (1) on call, and end time on
return

tend in end time tend of integration
y in/out contains initial value y0 from (1) on call, and numerical

solution y(tend) on return. The length n = size(y)
of this vector is considered to be the dimension of the
ODE problem

cpar in dummy variable, vector of parameters passed to fcn in
every call

solout sub optional, subroutine for dense output, see description
of subroutine ppcont in the next subsection.

ppreport function returns exit status of call to eppeer, computation success-
ful for ppreport()=0.

function ppreport(prterr)

logical, intent(in), optional :: prterr

integer :: ppreport

If the optional argument is given with prterr = .true., error messages are
printed to the console. The error codes are:

−1 error: missing initialization with ppsetparam
1 failure, step size too small, hs < hmin = 1D − 10
2 failure, too many steps, nsteps > maxsteps = 106.

ppfreecoeff deallocates all matrices declared by ppsetcoeff.

The additional parameters cpar and par are presently not used by eppeer but
are introduced for convenience and for upward compatibility to a later version
computing also solution sensitivities, see a forthcoming paper of Schmitt and
Kostina in SINUM.

3.2 Information supplied by user

On calling eppeer the user has to supply all information on the initial value
problem (1), i.e. start and end times and initial value y0 in y with size(y) = n,
as explained in Section 3.1. The subroutine fcn for the function f(t, u) has to
be declared with the header

4

pure subroutine fcn(t,u,udot,par)

real(8), intent(in) :: t

real(8), dimension(:), intent(in) :: u

real(8), dimension(:), intent(out) :: udot

real(8), dimension(:), intent(in) :: par

The attribute ”pure” simplifies parallelization for the compiler and means that
the subroutine has no side effects like common blocks. For convenience the
example files bruss2h.f90, mbod4h.f90 from the package both define such a
module ODEPROB and provide additional information used by the driver main
program ivp_pmain.f90. These informations (not directly used by EPPEER)
are

nprob integer problem dimension, it is passed to eppeer through
size(y).

nparm integer dimension of parameter array par in fcn
odename char name of the example problem (used for naming output

files)
exsol logical .true. if exact solution at tend is known
inivals sub call inivals(t0, te, u, par) provides the data t0 = t0,

tend = te and y0 = u
solution sub call solution(t, u, par) provides the exact solution

y(t) if exsol = .true..

3.3 Control inputs and additional subroutines

The operation of eppeer may be influenced by additional subroutines contained
in the module ivpepp.f90. Some provide also additional information about
its performance and the solution. The subroutines ppsetacc and ppsetjob
must be called after the initialization by ppsetcoeff and before eppeer, the
subroutine ppgetstats after eppeer.

ppsetjob Sets control switches

subroutine ppsetjob(stepcon, contout)

logical, intent(in), optional :: stepcon, contout

stepcon in switches stepsize control on/off, default is on, stepcon =
.true.

contout in switches dense output on/off, default is off, contout =
.false.. Dense output calls the optional subroutine
solout. If it is missing in the call to eppeer no out-
put is called. More details are given below with the
subroutine ppcont.

ppsetacc Set accuracy of numerical solution

5

subroutine ppsetacc(atol,rtol,hstep)

real(8), intent(in) :: atol, rtol

real(8), intent(in), optional :: hstep

The parameters are

atol in sets absolute tolerance for error control
rtol in sets relative tolerance; the error estimate erri of the

numerical solution will satisfy |erri|/(atol+rtol|yi|) ≤ 1
in every component i if stepcon = .true.

hstep in optional, initial stepsize if stepcon = .true., or
fixed stepsize for integration without stepsize control,
stepcon = .false.. For hstep ≤ 0 step control is used,
anyway.

ppgetstats returns integrator statistics

subroutine ppgetstats(nsteps,nrej,nfcn)

integer, intent(out) :: nsteps, nrej, nfcn

where

nsteps out total number of time steps (including rejected steps)
nrej out number of rejected steps (contained in nsteps)
nfcn out total number of calls to fcn (including Runge-Kutta

startup)

ppcont Computes dense output by Lagrangian interpolation of the most recent
stages Ym,i, i = 1, . . . , s.

subroutine ppcont(tsol,tnew,ycon)

real(8), intent(in) :: tsol,tnew

real(8), dimension(:), intent(out) :: ycon

Parameters:

tsol in point where solution is to be evaluated: y(tsol). The
point tsol should lie in the interval [tm, tm+1] of the
current time step

tnew in end point tm+1 of current time step, the start point tm
is known to ppcont through a private variable

ycon out receives the solution approximation for y(tsol)

Usage: ppcont may be called by the user-supplied subroutine solout
from the parameter list of eppeer. eppeer initializes a variable tsol = t0
and, if pcout = .true., calls solout after every successful time step with
the parameter list solout(size(y), tsol, t + hs), where t + hs = tm+1.

6

On each call solout may repeatedly compute solution values by call-
ing ppcont(tsol, tnew, ycon) and increasing tsol until tsol > tnew. An
example of such a subroutine is given by

subroutine psolout(n,tsol,tnew)

use ivpepp

implicit none

integer, intent(in) :: n

real(8) :: tsol

real(8), intent(in) :: tnew

real(8), dimension(n) :: ycon

do while (tsol<=tnew)

call ppcont(tsol,tnew,ycon)

write(4,"(F12.3,2E14.5)") tsol,ycon(1),ycon(2)

tsol = tsol+0.05D0

end do

end subroutine psolout

This subroutine is contained in ivp_pmain.f90, it computes the solution
at equidistant points 0.05i, i ≥ 0, and writes its first two components
to a text file. The while loop insures that the calls to ppcont stop if
tsol > tnew = tm+1.

4 GFortran compiler and OpenMP

Parallelization is obtained with OpenMP (see www.openmp.org) by invoking
the -fopenmp switch in Fortran compilers supporting OpenMP. The package
has been tested with the free GNU gfortran compiler (see gcc.gnu.org/fortran/)
under Windows 7. A simple commando sequence to start the driver program
ivp_pmain.f90 with the multi-body example mbod4h.f90 is

gfortran -c mbod4h.f90

gfortran -c ivprkp.f90

gfortran -c -fopenmp ivpepp.f90

gfortran -fopenmp ivprkp.o ivpepp.o mbod4h.o ivp_pmain.f90

a

The first command compiles the specific example of the module ODEPROB and
generates the Fortran module file odeprob.mod and the object file mbod4h.o.
Note, that only the integrator module ivpepp.f90 with the eppeer subroutine
and the main program ivp_pmain.f90 use OpenMP parallelization.

4.1 Performance

All seven peer methods provided by eppeer have been tested on a PC with In-
tel i7-860 Quadcore (with hyperthreading) with 2.8 GHz. The driver program

7

ivp_pmain.f90 computes solutions for one chosen peer method with tolerances
atol = rtol = 10−2, 10−3, . . . , 10−12 and writes accuracies and computing times
to a log file with a name combined from the number of threads, odename (§3.2)
and methname (§3.1). The following Gnuplot diagrams depict the efficiency
of these methods by showing the computing times (OpenMP thread times) in
relation to the achieved accuracies (exact errors) at tend.

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

1 10 100 1000

E
R

R

time(sec)

epp3f4
epp4y3
epp5f3
epp6j1
epp7f4
epp8d

epp9f2

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

1 10 100

E
R

R

time(sec)

epp3f4
epp4y3
epp5f3
epp6j1
epp7f4
epp8d

epp9f2

all peer methods on MBOD4h all peer methods on BRUSS2h

Notes: MBOD4h is a difficult problem with expensive calls to fcn, all methods
miss the tolerances quite far. Still, the efficiency obviously improves with in-
creasing stage numbers and orders of the methods.
BRUS2h is a mildly stiff problem and only for sharp tolerances higher order
pays off.

Parallel performance of eppeer is best for problems with expensive function
call fcn as it is the case for example MBOD4h. For this problem the next dia-
grams compare the parallel run times of individual methods with the sequential
runtime of the same method (no -fopenmp switch) and the sequential runtime
of the Runge-Kutta code DOPRI5 of Dormand/Prince.

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

1 10 100 1000

lg
(E

R
R

)

time(sec)

epp5f3/s
epp5f3
dopri5

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

1 10 100 1000

E
R

R

time(sec)

epp7f4/s
epp7f4
dopri5

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

1 10 100 1000

E
R

R

time(sec)

epp9f2/s
epp9f2
dopri5

epp5f3 and dopri5 epp7f3 and dopri5 epp9f2 and dopri5

Speed-up for epp5f3 is up to 3.1, for epp7f3 it is between 3 and 3.3 and for epp9f2
it reaches 4.

5 Files in the EPPEER package

The archive eppeer.zip contains the following files.

8

ivpepp.f90 • Module IVPEPP with integrator eppeer
ivprkp.f90 • Module IVPRKP, used by eppeer
mbod4h.f90 ◦ Multi-body problem example for module ODEPROB
bruss2h.f90 ◦ Brusselator example for module ODEPROB
ivp_pmain.f90 ◦ Main program computing the numerical solution for dif-

ferent tolerances by calls to eppeer, writes log files with
errors and computing times. Log files may be used to
produce efficiency diagrams with Gnuplot.

man_epp.pdf This documentation
mbod.plt Gnuplot command file producing an efficiency diagram

for the multi-body example
brus.plt Gnuplot command file producing an efficiency diagram

for the Brusselator example

Bullets indicate that the file is required in the form provided, circles mean that
the user should replace the file with an own one.

References

[1] B.A. Schmitt, and R. Weiner, Parallel two-step W-methods with peer vari-
ables, SIAM J. Numer. Anal. 42 (2004), 265-282.

[2] R. Weiner, K. Biermann, B.A. Schmitt, and H. Podhaisky, Explicit two-step
peer methods, Comput. Math. Appl., 55 (2008), 609-619.

[3] B.A. Schmitt, R. Weiner, and S. Jebens, Parameter optimization for explicit
parallel peer two-step methods, Appl. Numer. Math., 59 (2009), 769-782.

[4] B.A. Schmitt, R. Weiner, and St. Beck, Two-step peer methods with
continuous output, Bericht 2012-02, FB Mathematik u. Informatik, Univ.
Marburg, see
www.uni-marburg.de/fb12/forschung/berichte/berichtemathe/
pdfbfm/bfm12-02.pdf

9

