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Introduction

Over the last five decades, beautiful results have been proved in the subject
of Teichmüller theory. Recently this area has been influenced by the spirit
of analytic and algebraic geometry as well as complex differential geometry.
Deformation theory of compact complex manifolds was created in a seemingly
independent way. Its methods are significantly different and, as opposed to its
classical counterpart, deformation theory only provides a local solution of the
classification problem. A (coarse) moduli space, i.e. a global parameter space
for complex structures exists only under certain assumptions. The aim of this
article is to discuss some aspects of Teichmüller theory and their relationships
to recent results on moduli of compact complex manifolds.

In his paper of 1857 ”Theorie der Abel’schen Functionen” Riemann
counted the number of parameters of isomorphism classes of algebraic equations
in two variables i.e. classes of compact Riemann surfaces up to biholomorphic
equivalence.

Some eighty years later Teichmüller realized that these parameters are
real coordinates on a cell. Its points are quadratic holomorphic differentials
on a surface which has been choosen: chosen as base point. The distinguished
surface is related to the other points of the Teichmüller space by quasiconformal
mappings. This relationship yielded a natural metric on the parameter space of
Teichmüller. His last paper in this area was devoted to the complex structure
of this space. The foundation of modern Teichmüller theory is due to Ahlfors
and Bers. In particular they endowed the Teichmüller space with a complex
structure and constructed a universal holomorphic family of Riemann surfaces.

The Teichmüller metric can be understood from the complex point of view
from Royden’s result which shows that it is the hyperbolic metric. Royden also
uses this result to prove that the group of biholomorphic mappings of the
Teichmüller space is just the Teichmüller modular group.

André Weil examined the Teichmüller family from the point of view of
deformation theory. He proposed a certain metric on the moduli space and
conjectured it to be Kähler. Petersson had already considered the correspond-
ing inner product in the context of automorphic forms. In the hindsight this
Petersson-Weil metric seems to have been the turning point, namely for the
introduction of methods of complex differential geometry into the study of
moduli space of compact Riemann surfaces. After proving the Kähler property,
Ahlfors showed in 1961 that the holomorphic sectional and Ricci curvatures
were negative. In 1974 Royden conjectured a precise upper bound for the holo-
morphic sectional curvatures of the Petersson-Weil metric. This, along with the
negativity of the sectional curvature was established independently by Wolpert
and Tromba in 1986. Its strong negativity in the sense of Siu was proved in
[SCH 1986].

Another characterization of the Teichmüller space is the space of metrics
of constant curvature −1 modulo diffeomorphisms. This led to an approach
based on harmonic maps. It was initiated by Gerstenhaber and Rauch with
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more recent developments due to Fischer, Tromba, M. Wolf, and Jost. One of
the main results is that the energy functional on a space of harmonic maps
yields a potential for the Petersson-Weil metric.

If one is willing to disregard questions involving universal families, then one
may consider the space of isomorphism classes of compact Riemann surfaces,
i.e. the quotient of the Teichmüller space by the Teichmüller modular group.
This is referred to as the moduli space. It carries an additional structure of a
quasi-projective variety.

The compactification of the moduli space can be looked upon from different
viewpoints: one is the algebraic viewpoint due to Mumford, another analytic
approach is by Kleinian groups. Both involve deformations of singular and
punctured Riemann surfaces. It turns out that the completion of the moduli
space with respect to the Petersson-Weil metric is its (usual) compactification.
This followed from estimates proven by H. Mazur. Estimates for the curvature
tensor near the compactifying divisor are contained in [SCH 1986].

In terms of Fenchel-Nielsen coordinates, the Petersson-Weil form has the
surprisingly simple shape of the standard symplectic form — a result shown
by Wolpert in 1985. Comparing the different differentiable structures on the
compactified moduli space which are induced by the usual holomorphic and
the Fenchel-Nielsen coordinates, Wolpert proved that the Petersson-Weil class
can be extended to the compactification. In fact, the Petersson-Weil form pos-
sesses local continuous potentials near the boundary. An essential result in this
regard is a fiber-integral formula for the Petersson-Weil form. His result that
the Petersson-Weil class on the compactified moduli space is (up to a numerical
constant) the Chern class of an ample line bundle unifies the approach from
algebraic geometry and Kähler geometry. This ample line bundle is closely re-
lated to the bundle that arises as the determinant of a certain direct image
sheaf (the Knudsen-Mumford approach).

Based upon the powerful methods of deformation theory one can construct
even in the case of non-algebraic Kähler manifolds a moduli space. For this,
the notion of a polarization of a projective variety, which is closely related to
its realization as a submanifold of some projective space, had to be replaced by
the assignment of a Kähler class. In higher dimensions there occur additional
complications. In the first place there no longer exists a global family. Even if
the base space of a holomorphic family is treated as an analytic space-germ,
there is in general no natural action of the automorphism group of the dis-
tinguished fiber on the base. This is contrary to the classical situation, where
the Teichmüller modular group (more precisely the isotropy group of a point)
comes from the automorphism group of the corresponding Riemann surface.
Here the Teichmüller family yields a local universal deformation, and locally
the moduli space is the quotient of this group. A general compact complex
manifold only possesses a ”versal” rather than universal deformation. This fact
is related to the occurence :occurrence of locally analytic subsets of the base,
where all fibers are isomorphic. An identification of such points always yields
a non-hausdorff topology. In fact there exist very simple examples of this kind.
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Even if the manifolds in question possess universal deformations, this is not
sufficient for the existence of a moduli space.

A construction of the moduli space of polarized Kähler manifolds of a cer-
tain type or with additional structure can often be based on a simple criterion:
Assuming the existence of versal deformations which is an obvious necessary
prerequesit: prerequesite a coarse moduli space exists, if roughly speaking given
any two families of complex manifolds and given any two sequences of pairwise
isomorphic fibers there are subsequences of isomorphisms which converge to
an isomorphism of the limit fibers [SCH 1983/1984]. The assumptions of the
criterion were first verified in a situation which is closely related to the clas-
sical one, where biholomorphic mappings of compact Riemann surfaces are
exactly the (orientation-preserving) isometries with respect to metrics of con-
stant curvature. If in general the polarization can be realized by a distinguished
Kähler metric with the above relationship between isomorphisms in the ana-
lytic category and isometries, the assumptions are automatically satisfied. In
this way a moduli space for polarized Kähler manifolds with vanishing first
real Chern class was constructed [SCH 1983]. This uses the unique Ricci-flat
metrics according to Yau’s solution of the Calabi problem. More generally, later
the moduli space of polarized non-uniruled Kähler manifolds was constructed
by Fujiki in [FU 1984] and in [SCH 1984].

For Riemann surfaces the Petersson inner product for quadratic holomor-
phic differentials yields an inner product on the cotangent space of the Teich-
müller space. In the general setting by means of the Kodaira-Spencer map, this
product on the tangent space is just the L2-inner product of harmonic represen-
tatives of first cohomology classes with values in the tangent sheaf. According
to Koiso, one may treat canonically polarized manifolds and compact polarized
Kähler manifolds with vanishing first real Chern class in an analogous way by
using Kähler-Einstein metrics. The variation of such metrics in a family gives
in fact rise to a Kähler metric on the smooth part of the base.

Work on moduli spaces in higher dimensions uncovered a number of natural
questions. First, could the generalized Petersson-Weil form be represented as
a fiber integral? This would yield the Kähler property even at singular points,
and also the existence of a Kähler potential (a consequence of a theorem of
Varouchas). Second, can one find a hermitian line bundle on the moduli space of
canonically polarized manifolds say, with curvature equal to the Petersson-Weil
metric? Third, is there a natural Kähler metric on the moduli space of compact
polarized Kähler manifolds? These questions were treated in [F-S 1988], where
for example a fiber integral formula was proved. To obtain the hermitian line
bundle on the moduli space of canonically polarized manifolds the direct images
of powers of the relative canonical bundles had to be replaced by determinant
bundles of certain virtual bundles related to the canonical one equipped with
the Quillen metric. Its curvature is the Petersson-Weil form. The link with the
fiber-integral formula for the generalized Petersson-Weil form was furnished by
the generalized Riemann-Roch formula (for Chern forms rather than classes)
by Bismut, Gilet and Soulé which also holds for singular base spaces.
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The third question is treated in the following manner: Equip a compact
polarized Kähler manifold with an extremal Kähler form (which represents
the polarization). The general framework for such considerations is given by
the above existence theorem for a moduli space of compact polarized Kähler
manifolds which are not uni-ruled. The latter condition guarantees that in
particular the components of the automorphism groups are compact. On such
manifolds, extremal metrics are just those of constant scalar curvature. The
general criterion for the existence of a moduli space applies.

However, in the case of moduli spaces of extremal Kähler manifolds the
L2-inner product of harmonic representatives of Kodaira-Spencer classes does
not give rise to a Kähler metric on the moduli space (at least this is very
unlikely). What one needs is a close relationship between the variation of the
complex structures in a family of compact Kähler manifolds on one hand (i.e.
a representative of the Kodaira-Spencer class), and on the other hand the
variation of the distinguished Kähler metrics on these fibers which is described
by a certain symmetric tensor). The key for the solution lies in the Berger-Ebin
formula for the variation of the metric tensor in a family of Riemannian metrics
with constant scalar curvature and Calabi’s investigations. In the Kähler case
all terms except for: except one of this expression vanish. This yields a forth
order elliptic equation. This equation generalizes and replaces harmonicity.

The generalized Petersson-Weil metric is now defined through the L2-inner
product of such ”harmonic” representatives of Kodaira-Spencer classes. The
Kähler property can be directly verified, and just as in the Kähler-Einstein case
a fiber-integral formula yields the Kähler property even at singular points of
the moduli space. One should mention that computations are done with respect
to the base of a universal deformation: the moduli space is locally the quotient
of such by a finite group of automorphisms. The Petersson-Weil form descends
to the quotient, but its potential may only be continuous. For integer-valued
polarizations the moduli space is equipped with a hermitian line bundle whose
curvature is the Petersson-Weil form. This is achieved in the following way:
(1) classify extremal manifolds with isomorphism classes of ample line bundles,
(2) construct a hermitian bundle and a Petersson-Weil form on the respective
moduli space, (3) descend to the desired moduli space by fiber integration and
determinant bundle.

A consequence is that all (connected) compact complex subspaces of the
moduli space of rationally polarized, extremal Kähler manifolds (including the
cases of canonically polarized manifolds and of Kähler-Einstein manifolds with
positive curvature) are projective.
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Teichmüller Theory

1. Teichmüller’s Approach

Oswald Teichmüller’s most influential article ”Extremale quasikonforme Ab-
bildungen” [TE 1939] contains essentially what nowadays is called ”Teichmül-
ler-theory”— the classification of Riemann surfaces by means of a parameter
space.

He chose a somehow indirect approach: The classification of Riemann sur-
faces up to biholomorphic maps leads to the so-called ”(coarse) moduli space”
which turned out to contain singularities. He introduced a refined equivalence
relation instead. First a Riemann surface X0 had to be fixed. Variable sur-
faces X had to be equipped with an orientation-preserving homeomorphism f
from X0 to X1. Two such ”marked” surfaces are identified, if a biholomorphic
map from X1 to X2 takes such a homeomorphism f1 to a homoeomorphism:
homeomorphism homotopic to f2.

He was able to show that the set of such equivalence classes carries the
differentiable structure of a cell contained in a euklidean: euclidean space, whose
dimension had already been computed by Riemann in 1857. From the beginning
of his construction this set was equipped with an intrinsic metric which he also
related to a Finsler metric. Both the space and the metric bear his name. The
Teichmüller space of compact Riemann surfaces of genus p is denoted by Tp.

At the end the moduli space of Riemann surfaces was determined as the
quotient of the Teichmüller space by a discrete group of automorphisms, the
Teichmüller modular group.

Teichmüller reduced the classification problem to constructing a distin-
guished homeomorphism from the reference surface to a given one — this home-
omorphism was to be the so-called extremal quasiconformal map. Considering
a complex structure on a Riemann surface as arising from a Riemannian metric
with an arbitrary scalar factor, he introduced quadratic differentials as links
between extremal quasiconformal maps and conformal structures.

In ”Veränderliche Riemannsche Flächen” [TE 1944] Teichmüller developed
ideas to equip the Teichmüller-space with a complex structure and a holomor-
phic family of Riemann surfaces.

One should mention that he also regarded at the same time non-orientable
surfaces for which certain results also hold.
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1.1 Quasiconformal Mappings

Until Teichmüller realized the power of the notion of quasiconformal mappings,
these had been more of a side-issue of geometric function theory, a generaliza-
tion of holomorphic functions. At some place in [TE 1939] he shortly reviews
the known aspects. He remarks that quasiconformal mappings should be used
to study holomorphic mappings between Riemann surfaces A and B, but not
like approximating these by quasiconformal ones. One should rather consider
quasiconformal maps from a fixed surface C to these.

Notion of Quasiconformal Mappings and the Problem of Grötzsch. Quasicon-
formal mappings had been introduced by Grötzsch in 1928. He showed a Picard
type theorem but also solved an elementary problem about extremal mappings
which ultimately lead to the Teichmüller theorems.

For any differentiable map f : G → G′, w = f(z) its dilatation at a point
z is defined as

(1.1) Kf (z) =
|fz(z)|+ |fz̄(z)|
|fz(z)| − |fz̄(z)|

and plainly its dilatation

(1.2) K[f ] = sup Kf (z).

Grötzsch showed that for any diffeomorphism f of rectangles in the com-
plex plane, taking vertices to vertices in a fixed order, the dilatation K[f ] is
bounded from below by a positive constant K0 which is only attained for affine
maps which are the extremal quasiconformal maps for this problem.

The idea of his proof is now mostly called ”length-area” argument. He
considers the image of a horizontal line from one edge to the other. Its length,
as a function of the vertical coordinate, is integrated. This integral satisfies an
obvious inequality in terms of the lenghts: lengths of the edges. On the other
hand this area integral can be estimated from above by an integral involving
the jacobian and the dilatation.

Differentiable orientation preserving homeomorphisms w = f(z) of do-
mains in the complex plane or between Riemann surfaces with bounded di-
latation are called quasiconformal, and, more generally, if absolutely continous:
continuous on lines and differentiable almost everywhere (with bounded dilata-
tion).

Teichmüller allowed bordered Riemann surfaces with boundary curves and
isolated boundary points (”Hauptbereiche”) — we will restrict ourselves later
to the case, where no boundary curves, just punctures, are present. The non-
oriented case will be disregarded here.

Examples of Extremal Quasiconformal Mappings. Before his article [TE 1939]
appeared, extremal quasiconformal mappings had been determined in some par-
ticular cases. Teichmüller considered the analogue of the problem of Grötzsch
for annuli in the complex plane and arrived at a similar result: The lower bound
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for the dilatation of a map between annuli is the quotient of the respective mod-
uli and attained for an affine map. (Here the modulus of {z ∈ C; r < |z| < R} is
by definition M = log(R/r), which is the conformal invariant of the annulus).

As for compact Riemann surfaces, he looked at quasiconformal mappings
of compact tori. The classifying space of marked compex: complex tori was
known to be the upper half plane H: Any quasiconformal map from a torus
with modulus ω ∈ H to a torus with period ω′ ∈ H has a dilatation bounded
from below by =(ω′)/=(ω). Provided the real parts of ω and ω′ are equal, this
number is the dilatation of an affine map. (In general the lowest dilatation is
different but the extremal maps are in any case affine.)

As an example of a punctured Riemann surface he considered surfaces X
of genus zero with four points removed. Because of the marking these points
are ordered and can be chosen as 0, 1, ∞ and λ. Any such X is related to a
two-sheeted covering of IP1 by an elliptic curve with these points as branch
points. One can directly establish a biholomorphic mapping from C \ {0, 1}
to the upper half plane sending λ to an appropriately chosen modulus of the
elliptic curve. In terms of the elliptic curves extremal quasiconformal mappings
are induced by affine mappings of the complex plane.

In all of these examples the dilatation of an extremal quasiconformal map-
ping in the sense of (1.1) is constant.
The Teichmüller Metric. The analysis of the above (and more) examples seems
to be the cause for Teichmüller to define a metric on the Teichmüller space.
He poses the following question: Given a fixed Riemann surface and an upper
bound C for the dilatation which are the quasiconformal maps, i.e. marked
Riemann surface to lie within that bound?

Remarkable is the discussion of the torus case. If the period of the reference
surface is ω, the estimate (1/C)=(ω) ≤ =(ω′) ≤ C=(ω) yields that the range
for ω′ is an intersection of domains, whose boundary consists of two circular
arcs. It is computed to be the non-euklidean: non-euclidean disc with center ω
and radius log C.

The Teichmüller distance of two marked Riemann surfaces is in fact defined
in terms of the logarithm of the dilatation.

(1.3) τ(P, Q) = (1/2) log inf{K[f ]; f : P → Q quasiconformal}
From this formula and the above discussion it follows immediately that the
Teichmüller metric on the space of marked elliptic curves is equal to the hy-
perbolic metric on the upper half plane.

This principle proved even sound in the case of annuli, where the classifying
space consists of all positive real numbers. The Teichmüller distance of two
moduli M and N is here

τ(M,N) = | log M − log N |.
For IP1 with four punctures the Teichmüller space had been related to

C \ {0, 1}. Teichmüller showed, using the result about tori that the above ex-
pression (1.3) gives the metric of constant curvature −1 on C \ {0, 1}. In all of
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these examples the construction implies that (1.3) actually defines a distance
function.

1.2 Teichmüller Deformations

Teichmüller was able to put his hands on the desired extremal quasiconformal
mappings. In this way he could identify the Teichmüller space with the open
unit ball in the space of quadratic holomorphic differentials with respect to a
suitable norm.

Conformal Structures Induced by Holomorphic Quadratic Differentials. A qua-
siconformal map can be visualized locally by the associated horizontal and
vertical foliations — the images of the lines <(z) = const and =(z) = const.
Teichmüller observed that any quasiconformal map can be recovered up to a
conformal map from these foliations and the dilatation. He first argued heuris-
tically that an extremal quasiconformal map ought to have constant dilatation.
On the other hand he explicitly constructed extremal mappings from quadratic
differentials and prescribed dilatation K > 1.

Let φ(z)dz2 be a holomorphic quadratic differential given in local coordi-
nates and p0 a point. Then

(1.4) ζ =
∫ p

p0

√
φdz2

defines a local coordinate about p0 if φ(p0) 6= 0 and the sets
ζ−1{z;=(z) = const}, ζ−1{z;<(z) = const}

are horizontal and vertical foliations. At zeroes of φdz2 a certain number
of horizontal and vertical leaves resp. emanate from the singularity.

So far, the complex structure has not been changed — for a given constant
K > 1 with respect to these coordinates an affine transformation is performed
with constant dilatation K: On the complement of the zeroes of φdz2 one
defines

(1.5) ζ ′ = K · <(ζ) + i · =(ζ)

This is in fact a complex structure of a Riemann surface with isolated
points removed — a function is by definition holomorphic, provided its deriva-
tive with respect to ζ ′ vanishes. Thus the zeroes of φ are neglible and can
be inserted. The existence of these points is a reason why mappings must be
allowed which are not everywhere differentiable.

This construction looks like a very local argument. However, the conformal
structure arises from a Riemannian metric which is of interest only up to a
scalar factor. The corresponding line element is say |dζ ′|2, in Teichmüller’s
notation

(1.6) ds2 = λ(|dζ2|+ c · <(dζ2))
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where λ = (K2 + 1)/2 and c = (K2 − 1)/(K2 + 1). By definition dζ2 is the
given holomorphic differential.

An equivalent version of (1.6) is

(1.7) ds2 = λ′|dζ + kdζ|2

where k = (K − 1)/(K + 1) and λ′ = (K + 1)/2. The latter equation yields

(1.8) ds2 = λ′|φ|1/2

∣∣∣∣dz + k
φ̄

|φ|dz

∣∣∣∣
2

.

The conformal structure associated to a holomorphic quadratic differential φ =
φ(z) dz2 and a number k, 0 < k < 1 is called a Teichmüller deformation. The
corresponding quasiconformal map is set-theoretically the identity which also
defines the marking.

Now the space of quadratic differentials is equipped with a norm e.g.
‖φ‖ =

∫ |φ| |dz|2. For any φ one sets k := ‖φ‖. Then the set of all Teich-
müller deformations can be identified with the open unit ball in the space of
quadratic differentials. It turned out that this is exactly the Teichmüller space.
Apparently it is a cell. The Teichmüller space of closed Riemann surfaces of
genus p is denoted by Tp.

Teichmüller’s theorems. Let X0 the Riemann surface chosen as reference point,
k a number between 0 and 1, and φ dz2 a holomorphic quadratic differential
on X0. Denote by X1 the associated Teichmüller deformation. The Teichmül-
ler uniqueness theorem states that the identity from X0 to X1 is an extremal
quasiconformal map: Any diffeomorphism f : X0 → X1 which is homotopic to
the identity with K[f ] < ∞ satisfies K[f ] ≥ K = (1 + k)/(1 − k). Moreover
equality holds only if f is the identity.

The core of Teichmüller’s and any other proof is the length-area principle
of Grötzsch. However, it required an investigation of the metric induced by
|φ| |dz|2, in particular the existence of geodesics.

For closed Riemann surfaces Teichmüller actually showed in [TE 1943]

Theorem. (Teichmüller’s existence theorem) Any complex structure on a com-
pact Riemann surface, viewed upon as a marked Riemann surface, is a Teich-
müller deformation.

The theorem means that for any fixed Riemann surface X0 and any dif-
feomorphism g from X0 to a surface X1 there exists a Teichmüller deformation
of X0 together with a biholomorphic map to X1 which is homotopic to g.

Teichmüller’s considerations included an analysis of the topology of Tp

related to the representation of closed Riemann surfaces in terms of Fuchsian
groups.

A proof of the existence theorem is nowadays mostly worded in terms of
Beltrami differentials. These are implicitely: implicitly contained in (1.8). The
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conformal structure of a Teichmüller deformation is defined by |dz + k φ̄
|φ|dz|2

and

k
φ

|φ|
dz

dz

is called Teichmüller differential.
This is a particular case of a Beltrami differential µ dz

dz (cf. sect. 2). A
solution of the Beltrami equation fz̄ = µfz is a quasiconformal map, provided
µ is bounded. The Beltrami equation was studied extensively by Ahlfors and
Bers. In a sense it can be used as a hinge of Teichmüller theory.

Teichmüller’s theorems state that extremal quasiconformal maps always
exist and correspond exactly to Teichmüller differentials.

The Moduli Space. Once the Teichmüller space is constructed the moduli space
is easy to identify: Let P and Q be points representing marked Riemann surfaces
Xj equipped with homeomorphisms fj : X0 → Xj , j = 1, 2. Denote by p the
genus of X0. Any isomorphism of X1 and X2 (in the abstract sense) certainly
defines a homotopy class of a homoeomorphism: homeomorphism of X0. The
group Γp of such homotopy classes is called Teichmüller modular group Γp. It
can essentially be identified with the group Sp(2p, ZZ) of homomorphisms of
H1(X0, ZZ) which are compatible with the intersection pairing (cf. [GR 1961]).
It acts now on Tp in a way that its orbits consist exactly of the equivalence
classes of marked Riemann surfaces in the above sense, because it just operates
on the markings. The quotient Tp/Γp is the moduli space Mp. Once the Teich-
müller space is equipped with a complex structure and a holomorphic family of
compact Riemann surfaces, it will be clear that the action of Γp is holomorphic
(cf. sect. 2). A similar notion is used in the case of punctured Riemann surfaces.

2. The Analytic Structure on the Teichmüller Space

We already mentioned that in one of his last papers [TE 1944] Teichmüller
considered the problem of imposing a natural complex structure on Tp. He in-
troduced the notion of an analytic family of compact Riemann surfaces (”ana-
lytische Schar Riemannscher Flächen”) given by a holomorphic map of complex
manifolds. He remarks that different so far not related approaches yielded the
same result for the dimension of Tp seemingly by miracle — his aim was to
put rather an intrinsic structure on it. He gave a description of the total space
in terms of branched coverings with analytic dependence of the branch points
using the Riemann-Roch theorem.

Rigorous proofs were later given by Ahlfors [AH 1960/61a] and Bers [BE
1960]. At the end one was able to understand the relationship between holo-
morphic families (defined by smooth, proper holomorphic maps), real analytic
families of Fuchsian groups, and the space of Teichmüller differentials.

For any holomorphic family of Riemann surfaces it was natural to use
the period map from the base to the generalized Siegel upper half-plane as
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essential means to introduce a complex structure on the Teichmüller space,
with underlying metric and in particular topological structure being already
fixed (cf. [AH 1960]).

The subsequent development was influenced by deformation theory. A.
Weil had pointed out in [WE 1958] the strong relationship of Teichmüller theory
and the theory of deformations of compact complex manifolds in the sense
of Kodaira and Spencer. The variation of solutions of the Beltrami equation
related to infinitesimal deformations provided new aspects.

2.1 Real Analytic Theory
Fricke Coordinates. The basic idea originating from Fricke [F-K 1926] was to
represent Riemann surfaces of genus p > 1 as quotients of the upper half
plane by a discrete sub-group: subgroup of the Möbius group PSL(2, IR) =
SL(2, IR)/{±1} and to pick a set of generators, whose entries can serve as real
coordinates. It was used in [AH 1960] and further developed by Keen [KE 1971].
In particular, the Teichmüller space is provided with a real analytic structure
(cf. [AB 1980]).

Let X be a compact Riemann surface and α1, . . . , α2p a fixed set of gen-
erators of the fundamental group π1(X) with relations being generated by

(2.1)
∏

i odd

[αi, αi+1] = 1,

where [ , ] denotes the commutator. The geometric intersection number for
i ≤ j is

(2.2) (αi, αj) =
{

δi+1,j for i odd
0 for i even

Such a set of generators defines in this context a marking, and the set of
isomorphism classes of compact, marked Riemann surfaces of genus p is called
the Fricke space Fp.

Theorem. The Fricke space Fp can be identified with an open subset of IR6g−g.
The natural map from the Teichmüller space Tp to Fp is a homeomorphism —
in particular Tp carries the structure of a real analytic manifold.

In order to establish such a relationship, one assigns to the marked Rie-
mann surface a representation ρ : π1(X) → Aut(H) ' PSL(2, IR), where H
denotes the upper half plane. The representation becomes unique under nor-
malization. One can choose from different normalizations. One is A1(1) = 1,
A2(−1) = −1 and A2(

√−1) =
√−1 for Aj = ρ(αj) (cf. [AH 1960]); another

choice is A2p with 0 as a repelling fixed point, ∞ as an attractive fixed point
and A2p−1(1) = 1 (cf. [AB 1980]). For those Aj(z) = (ajz + bj)/(cjz + dj) not
affected by the normalizing conditions one sets ajdj−bjcj = 1, and aj ≥ 0, and
bj > 0 if aj = 0. This yields the 6g−6 real so-called Fricke coordinates which are
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with respect to the latter normalization just (a1, b1, c1, . . . , a2p−2, b2p−2, c2p−2).
In fact, the equation (2.1) in terms of matrices together with the determinant
condition yield the components for j = 2g − 1 and j = 2g. Thus the Fricke
coordinates provide an injection of the Teichmüller space into IR6p−6. By a
description of transition functions a real analytic structure is imposed on Tp in
[AH 1960] based upon the former, slightly different normalization. Moreover, a
Fricke space of punctured Riemann surfaces can also be constructed.

The fact that the topologies of the Teichmüller and Fricke spaces match
is a consequence of the Teichmüller existence theorem (with parameters) (cf.
[AB 1980]).

In a direct way the introduction of a complex structure on Fp was accom-
plished by Kyoji Saito in [SAI 1988].
Fenchel-Nielsen Coordinates. Natural invariants of a marked Riemann surface
are the lengths of closed geodesics. Also punctured Riemann surfaces are al-
lowed. (As usual the Riemann sphere with fewer than three punctures and
closed tori have to be excluded). The genus p of a punctured Riemann surface
is by definition the genus of its closure.

The idea is to pick sufficiently many elements αi of the homotopy group,
represent these by closed geodesics and consider the lengths `(αi) with respect
to the hyperbolic metric. On the other hand any such α corresponds to an
element γ of the Möbius group, and the quotient of the upper half plane by
the cyclic group generated by γ is an annulus or punctured disk so that `(α)
can be expressed in terms of γ as a real analytic function. L. Keen showed in
[KE 1971] that a set of 6p−6+n of such geodesic length functions provide real
analytic coordinates on the Fricke space, i.e. these are real analytic coordinates
on Tp.

The approach of Fenchel and Nielsen [F-N] is different although it also
relies in a very explicit way on the hyperbolic structure of a compact Riemann
surface X. A surface X of genus p with n punctures is cut along a simple
geodesic loop α. A sequence of such cuts along closed geodesics αj which do not
intersect, decomposes X into building blocks which are conformally equivalent
to so-called ”pants”. These are disks with two disjoint disks removed. The
removed disks may also degenerate to points in order to: to allow punctures.
The number of these pants is 2p − 2 + n. As a matter of fact the conformal
structure of the pants is determined by three non-negative numbers namely the
geodesic lengths `(αj) of the boundary components. The `(αj) different from
zero yield in all 3p− 3 + n invariants.

Conversely, given a set of pants fitting in the above combinatorial pattern
with (non-complete) hyperbolic metrics and matching geodesic lengths of the
boundaries, the identification of boundaries turns the union into a Riemann sur-
face X̃. The ambiguity of its complex structure is due to a possible displacement
δi of the endpoints of the αi. This gives rise to another set of 3p−3+p real num-
bers θi = 2πδi/`(αi). In terms of the complex structure on the Riemann surface
the θi are unique up to multiples of 2π. The angles θi together with the inverse
numbers `(αj)−1 define a map Tp → (S1)3p−3+n × (IR+)3p−3+n which is real
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analytic by a similar argument as above. Its lift Tp → IR3p−3+n × (IR+)3p−3+n

is a real analytic diffeomorphism whose components are called Fenchel-Nielsen
coordinates. These have an obvious description in terms of quasiconformal map-
pings. The gluing with respect to an angle different from a multiple of 2π, carries
geodesics transversal to a cut to broken geodesics. Multiples of 2π induce iso-
morphic complex structures, i.e. elements of the modular group. The related
mappings of the Riemann surface are called Dehn twists.

2.2 The Tangent Space of Tg and its Complex Structure

We follow Ahlfors’ arguments and use his notations (cf. [AH 1961a,b]). Let
X = H/Γ be a compact Riemann surface of genus p > 1 say and µ a Beltrami
differential on H which is Γ -invariant, i.e. a complex measurable function on
H

(2.3) (µ ◦A) ·A′ = µ ·A′

for all A ∈ Γ with ‖µ‖∞ < 1. The space of Γ -invariant differentials in L∞(H)
is denoted by B(Γ ) and the open unit ball in it by B(Γ )1.

For µ ∈ B(Γ )1, the normalized solution fµ(z) of the Beltrami-equation

(2.4) ∂̄f(z) = µ(z)∂f(z)

satisfies by definition fµ(0) = 0, fµ(1), and fµ(∞) = ∞.
The Γ -invariance of the Beltrami differential yields a transformation for-

mula

(2.5) fµ ◦A = Aµ ◦ fµ,

where Aµ ∈ PSL(2, IR) can be associated to A in a natural way — it yields
a group Γµ related to the complex structure on X induced by µ — a link
with Fricke’s approach. From the group-theoretic description in section 2.1
the Teichmüller space could be considered as the quotient B1(Γ )/R, where
the equivalence relation R identifies Beltrami differentials µ1 and µ2, provided
Aµ1 = Aµ2 for all A ∈ Γ .

The Tangent Space of Tg. In order to introduce local parameters on Tg in a
neighborhood of the reference point µ, it is sufficient to consider real analytic
Beltrami differentials which are real analytic with respect to parameters. It
is convenient to set f(ν) = fν . Given fixed Beltrami differentials ν1, . . . , νk,
for small real t1, . . . , tk the function f(µ + t1ν1 + . . . + tkνk) is differentiable,
even real analytic, with respect to these parameters: The induced natural map
which assigns to (t1, . . . , tk) the corresponding point in the Fricke space Fp

is in fact real analytic. How could one recover the tangent space? Certainly
it is necessary to introduce partial derivatives in the direction of a Beltrami
differential:

(2.6) ḟµ[ν] :=
∂

∂t
f(µ + tν)

∣∣∣
t=0
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One may assume now that the reference structure on X is the given one, i.e.
µ = 0. Then the normalization of f and (2.4) imply

(2.7) ∂̄ḟ [ν] = ν

It is obvious how to replace the real parameters by complex ones s1, . . . , sk and
obtain from (2.7) for complex s

(2.8) ∂̄(
∂

∂s
f(sν)

∣∣∣
s=0

) = ν

and

(2.9) ∂̄(
∂

∂s̄
f(sν)

∣∣∣
s=0

) = 0

This equation tells us that Φ[ν] := ( ∂
∂s̄f(sν)

∣∣
s=0

) is holomorphic. It turned
out from explicit integral representations that the range of all such Φ con-
sists of all holomorphic functions with a certain growth condition, namely
Φ(z) = O((1 − |z|2)−2) (with normalization Φ(1) = 0, Φ(−1) = 0, and
Φ(
√−1) = 0). Turning to Γ -invariant Beltrami differentials, one observes that

the third derivatives of such functions φ[ν] = Φ[ν]′′′ in fact give rise to quadratic
holomorphic differentials on the Riemann surface X chosen as reference point.
Such holomorphic functions Φ are referred to as generalized abelian integrals.
On the other hand given a quadratic holomorphic differential on X with pull-
back φ to the unit disk U , the growth condition follows from the invariance
under Γ . Iterated integration yields a unique function Φ, vanishing at 1, −1
and

√−1 which satisfies Φ′′′ = φ. On the other hand any quadratic Γ -invariant
holomorphic differential φ gives rise to an invariant Beltrami differential

(2.10) ν = −1
4
(1− |z|2)2φ(z)

from which one can recover φ as Φ[ν]′′′. This means that the space Q(Γ ) of
invariant quadratic differentials can be identified with the quotient B(Γ ) of all
invariant Beltrami differentials (which are say differentiable) by the subspace
N ⊂ B(Γ ) of those, for which Φ vanishes. Its complex dimension n = 3p− 3 is
well known.

Now the tangent space can be identified with Q(Γ ): Let a set of Beltrami
differentials ν1, . . . , νn correspond to a basis of Q(Γ ) over C. For s ∈ Cn close
to the origin the f(ν), ν = s1ν1+. . .+snνn yield generators Aj ∈ Aut(H) of Γ ν

which depend on the parameter s (cf. section 2.1). These are directly related
with the Fricke coordinates. It is explicitly shown that the partial derivative of
all Aj in a direction ν only vanishes, if ḟ [ν] = 0. But this means together with
the above facts that the tangent map at the origin is an IR-linear isomorphism.
With respect to the obvious structures of complex vector spaces it is anti-linear.

Lemma. [AH 1961a] The tangent space of the Teichmüller space at the refer-
ence point can be identified with B(Γ )/N . The latter carries a natural complex
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structure and is C-anti-linear isomorphic to the space of holomorphic quadratic
differentials.

The Complex Structure on Tp and the Universal Family. The above local, com-
plex coordinate functions s1, . . . , sn are referred to as Bers coordinates. Bers
showed in [BE 1960] starting from (2.5) that the choice of different reference
points yields holomorphic transition functions. Bers coordinates play an es-
sential role in geometric investigations. A main result is the existence of a
holomorphic fiber space Xp → Tp whose fibers are the Riemann surfaces deter-
mined by the Teichmüller points. The complex structure on Tp was inherited
from the (infinite dimensional) complex vector space B(Γ ) — the natural map
from B1(Γ ) to the Teichmüller space shall be denoted by µ 7→ θµ with reference
point θ = θ0. Now the product U×Tp is equipped with a holomorphic structure
as follows: A complex function F on a neighborhood of a point (z0, θ) is by def-
inition holomorphic, if F (θµ, fµ(z0)) is holomorphic for all µ in a neighborhood
of zero in B(Γ ), a condition which descends to the quotient structure and is
invariant under the choice of the reference point.

The family X = Xp → Tp of marked Riemann surfaces has the following
universal property: For any family Y → S of marked Riemann surfaces (with
the same topological type) the (unique) map φ : S → Tp such that the fibers of s
and φ(s) are isomorphic marked Riemann surfaces is holomorphic. Moreover it
can be lifted to a map Φ : Y → Tp, whose restrictions to fibers are isomorphisms.

Action of the Modular Group. In the first section we have already seen that
a change of markings yields a homeomorphism of the Teichmüller space. For
γ ∈ Γ and t ∈ Tp, the point t′ = γ(t) represents the Riemann surface Xt with
marking induced by γ. Thus γ induces an isomorphism φγ of Tp which sends t to
t′ and lifts to an isomorphism of total spaces. In particular, the isotropy group
Γt of t say acts holomorphically on the Riemann surface Xt corresponding to t.
On the other hand automorphisms of Riemann surfaces change the marking —
the natural representation of Aut(Xt) has Γt as image. It is injective for p > 2
and has kernel ZZ2 for p = 2. The moduli space Mp now carries the structure of
a normal complex space, since locally it can be identified with an open subset
of C3p−3 divided by the finite group of automorphisms Γp.

A Deformation Theoretic Viewpoint. In which way does this set-up: setup fit
into deformation theory? One may observe that the notion ν is just a short-
hand: shorthand term for

ν = ν(z)
∂

∂z
dz,

a (∂̄-closed) (0, 1)-form with values in the holomorphic tangent bundle of the
upper half-plane. The transformation law (2.3) just means that ν descends to
the Riemann surface X (with respect to its complex structure). So it determines
by Dolbeault cohomology a class in H1(X,ΘX), where ΘX denotes the sheaf
of holomorphic vector fields. For such a cohomology class represented by a Bel-
trami differential ν, and a solution f of the Beltrami-equation, (2.8) and (2.9)
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mean that ν represents the Kodaira-Spencer class ρ(∂/∂s) associated to the
complex tangent vector ∂

∂s . The corresponding map ρ : T0(Tp) → H1(X, ΘX)
is called Kodaira-Spencer map. Now a Hodge theoretic point of view immedi-
ately implies:

Lemma. Let X = D/Γ be a Riemann surface of genus p > 1 equipped with the
hyperbolic metric g = (1− |z|2)−2|dz|2. Then the harmonic representative of a
Kodaira-Spencer class is of the form

ν(z)
∂

∂z
dz =

φ̄

g

∂

∂z
dz,

where φ(z)dz2 is a quadratic holomorphic differential.

Conceptually the above explicit C-anti-linear map from the tangent space
of Tp to the space of holomorphic quadratic differentials may be replaced by a
duality of complex vector spaces:

For µ ∂
∂z dz and φdz2, the natural pairing is

(2.11) (µ
∂

∂z
dz, φdz2) 7→

∫

X

µφdzdz.

One can verify directly that the pairing vanishes identically for all Beltrami
differentials which are ∂̄-coboundaries and that it yields a duality

(2.12) H1(X, ΘX)× Γ (X,Ω⊗2
X ) → C

We have seen that the harmonic representative of the Kodaira-Spencer
class can be computed from the solution of the Beltrami equation.

Another approach is by the variation of the hyperbolic metrics. This is a
general phenomenon for families of Kähler-Einstein manifolds, which we discuss
in section 9.1 in more detail. Here we give the result which follows from [F-S
1988]:

Proposition. Let X → S be a family of compact Riemann surfaces, and
g(z, s)dzdz the family of hyperbolic metrics (of constant curvature −1). Let
∂/∂s be a tangent vector of S at a point s0 ∈ S. Then the harmonic represen-
tative of ρ(∂/∂s) is

(2.13)
[
− ∂

∂z̄

(
∂2 log g

∂s∂z̄
/2g

)]
∂

∂z
dz.

The Cotangent Space of Tg. A remarkable property of the duality (2.12) is its
relation with the period map Tp → Hp, where Hp denotes the Siegel upper
half plane. The second symmetric power S2(H0(X, Ω)) is the space of those
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quadratic differentials which come from products of differentials of the first
kind on X. There is a natural homomorphism

(2.14) H1(X0, ΘX) → H0(X,Ω⊗2)∗ → S2(H0(X0, Ω))∗.

According to [WE 1958] this composite map is exactly the derivative of
the period map at the point X.

3. Hyperbolicity of the Teichmüller Space

A natural problem was to determine the automorphisms of the Teichmüller
space. It was settled by the work of Royden in [RO 1971] using geometric
methods for the space of closed Riemann surfaces. The result was extended by
Earle and Kra to the Teichmüller space of punctured surfaces in [E-K 1974].

The main idea consisted in a characterization of biholomorphic mappings
as isometries with respect to suitable metrics. It led to a comparison of the
Kobayashi and Teichmüller metrics.

In section 1.1 the Teichmüller metric was defined as logarithm of the max-
imal dilatation of quasiconformal maps between the resp. marked Riemann
surfaces. Since by Teichmüller’s theorems extremal quasiconformal maps from
the reference structure X0 say to any other surface X are induced by a Teich-
müller differential µ = kη̄/|η| for a holomorphic quadratic differential η on X0

and some 0 < k < 1, the maximal dilatation is just (1 + k)/(1− k) and

(3.1). τ(X0, X) = (1/2) log
1 + k

1− k

This is for small k up to second order just k. At least at the reference point
the (real) tangent space of the Teichmüller space can be determined in terms
of differentials k′η̄/|η|, where k′ is some non-negative real number. A norm of
such a Beltrami differential is just the number k′.

What is the induced norm on the (complex) cotangent space of Tp, if one
assumes the natural pairing (µ, φ) =

∫
X0

µφdzdz for Beltrami differentials µ
and holomorphic quadratic differentials φ on X0 ?

The result is

(3.2) ‖φ‖T =
∫

X0

|φ|dzdz

(cf. [RO 1971]).

Lemma. The above norm ‖ ‖T on the holomorphic cotangent space of the
Teichmüller space is the infinitesimal form of the Teichmüller metric which is
thus a Finsler metric.
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It turns out that there is more than a formal analogy of the Teichmüller
distance function in terms of the excentricity k to the formula for the distance
of two points in the unit disk with respect to the Poincaré metric.

Given a differential η̄/|η|, where η is a quadratic differential as above, one
may consider the differentiable map F : D → Tg from the unit disk to the
Teichmüller space, defined by F (ζ) := [Xζ·µ]. Obviously the pull-back of the
Teichmüller metric under F equals the Poincaré metric ρ, and F is a geodesic
embedding.

This is in fact an extreme situation.

Theorem. (Royden [RO 1971]) The Teichmüller metric τ is characterized by

τ(P, Q) = inf ρ(a, b)

where the infimum is taken over all holomorphic maps φ : D → Tg with φ(a) =
P, φ(b) = Q. In particular it coincides with the Kobayashi metric.

Because of the preceding discussion it has to be shown that for any holo-
morphic map F̃ from the unit disk to Tg the pull-back F̃ ∗(d) is dominated by
ρ.

In order to show this by Ahlfors’ version of the Schwarz-Pick lemma one
has to construct supporting metrics of curvature at most −4 in a neighborhood
of any point p ∈ D with F̃ ′(p) 6= 0.

One may assume p = 0 and set η̄/|η| := F̃ ′(p). To the Beltrami differential
η̄/|η| a map F can be associated according to the above construction. Then
the metric F ∗τ is up to a term o(|ζ|2) supporting.

We have seen that the Teichmüller modular group Γg acts on Tg as a group
of isometries. Conversely one has the following result:

Theorem. (Royden [RO 1971]) Any biholomorphic map between domains in Tg

which is an isometry with respect to τ is induced by an element of Γg.

Since any biholomorphic map of Tg is certainly an isometry with respect
to the Kobayashi metric, this implies:

Corollary. Any biholomorphic map of the Teichmüller space to itself is induced
by an element of the modular group Γg. For g > 2 the groups Aut(Tg) and Γg

can be identified, and Aut(T2) is the quotient of Γ2 by the group ZZ2.

The theorem is of purely local nature: For any two Riemann surfaces, and
any C-linear isometry of the spaces of quadratic differentials with respect to
the above norm, the Riemann surfaces are isomorphic. The proof depends on
a characterization of quadratic differentials η with a zero of order 3g− 4 by an
estimate of the function t 7→ ‖η + tη1‖T ; t ∈ IR. Such differentials (if g > 2)
exist for any point and are unique up to a constant factor. Now, under the the:
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the 2-canonical embedding, these define the osculating hyperplanes. The given
isometry of the spaces of quadratic differentials preserves this situation, and
these geometric data are sufficient to show that the corresponding Riemann
surfaces are isomorphic.

We add a further consequence which seems not to be contained in the
literature:

Proposition. [SCH 1990][1992] Let p > 2. Then the automorphism group of the
moduli space Mp consists only of the identity.

For p = 2 the statement does not hold, since M2 = C3/ZZ5 has many
automorphisms.

In the view of Royden’s theorem it is sufficient to show that any automor-
phism of Mp lifts to the Teichmüller space, if p > 2. This fact follows directly
from the following lemma, since the Teichmüller space is a cell and the set of
singular points of Mp is of codimension greater or equal to two.

Lemma. Let p > 2. Then the branch locus of the map Tp →Mp equals the set
of singularities of Mp.

According to classical theorems of Chevalley, Gottschling and Prill we
have to show that the modular group contains no generalized reflections. An
automorphism of a complex manifold is called a generalized reflection at one of
its fixed points, if its linearization has exactly one root of unity as eigenvalue
with all other eigenvalues being equal to 1.

The existence of generalized reflections in the modular group is exluded:
excluded roughly as follows.

Assume that ψ ∈ Γp is such an automorphism with respect to a fixed
point given by some marked Riemann surface X. The linearized action of ψ at
this point is given by the action of the corresponding automorphism φ of X
on the space of quadratic holomorphic differentials. Consider the 2-canonical
embedding of X into some projective space IP2p−3. The map φ extends to
some automorphism Φ of the projective space whose fixed point set consist of
an isolated point x and a hyperplane H where Φ is a generalized reflection. The
point x may or may not be contained in X, and the intersection number of X
and H is the degree of the 2-canonical divisor. The hyperplane H intersects X
transversally since Φ is a reflection at these points. Now one considers the map
from X to its quotient by the group generated by φ. A contradiction follows
from the Riemann-Hurwitz formula.

4. The Petersson-Weil Metric
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4.1 Basic Properties

The Petersson Scalar Product. In [PE 1949] H. Petersson had defined a scalar
product for automorphic forms. For holomorphic quadratic differentials on a
compact Riemann surface X with hyperbolic metric gdzdz this is

(4.1) (φdz2, ψdz2)P =
∫

X

φψ̄

g2
gdzdz.

The induced norm of an element of the tangent space H1(X, ΘX) of the Teich-
müller space with respect to the duality (2.12) can be easily computed: Let
µ ∂

∂z dz be a Beltrami differential on X. Then the norm of its cohomology class
is the supremum of |(µ, ψ)|/‖ψ‖P , where ψ runs through all non-zero holo-
morphic quadratic differentials. It is convenient to evaluate (2.11) using the
representative µ = φ̄/g, where φ is a quadratic holomorphic differential in
order to arrive at:

(4.2) ‖µ‖2 =
∫

X

|φ|2
g

dzdz.

This equation should be interpreted as follows: The Petersson inner prod-
uct induces on H1(X, ΘX) the L2-norm of harmonic representatives. This is the
infimum of the L2-norms over all representatives. The corresponding hermitian
inner product ( , )PW on the tangent space of Tp is called the Petersson-Weil
inner product. It depends differentiably on the paramenter: parameter

Kähler Property of the Petersson-Weil Metric. In 1958 André Weil suggested
the investigation of this hermitian metric on the Teichmüller space and posed
the problem of its Kähler property. It was established by Ahlfors [AH 1961]
using Bers coordinates (cf. section 2).

Theorem. On the Teichmüller space Tp, p > 1 Bers’ coordinates are geodesic
for the Petersson-Weil metric at the reference point. In particular this metric
is Kähler.

We denote by ωPW = gi̄dsids̄ the induced Kähler form on Tp which is
called Petersson-Weil form.

Royden’s infinitesimal description (cf. section 4) implies according to [RO
1974] a comparison of the Teichmüller metric with the Petersson-Weil metric:
For any quadratic holomorphic differential φdz2 the following inequality holds

(4.3)
∫

X

|φ|dzdz ≤ (volX)1/2 · ‖φ‖P

This means for the corresponding Finsler metrics on the Teichmüller space that

(4.4) dsPW ≤ [4π(p− 1)]1/2dτ,

where dτ is the line element of the Teichmüller metric. (It is remarkable that
an analogous inequality to (4.4) also holds on a bounded symmetric domain
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for the invariant Kähler metric and the infinitesimal Kobayashi metric on it.)
The period map Tp → Hp is certainly distance decreasing with respect to the
Kobayashi metric, a fact which can also be established on the infinitesimal
level starting from (2.13). Moreover the period map is distance decreasing (up
to a numerical factor) with respect to the distinguished Kähler metrics (i.e. the
Petersson-Weil metric on Tp and the Bergman metric on Hp.

The Petersson Weil Metric on the Moduli Space. We have seen that the
Petersson-Weil metric is defined by intrinsic properties. Consider the univer-
sal family Xp → Tp and an arbitrary family Y → S of Riemann surfaces of
genus p > 1 (provided with a marking such that it is induced by a unique
holomorphic map φ : S → Tp). Denote by Φ : Y → Tp the lift of φ — its restric-
tions to fibers are isomorphisms: On the level of the first cohomology groups
with values in the tangent bundle the pull-backs of harmonic representatives
are harmonic. Thus there is a natural hermitian form (not necessarily positive
definite) on S which is just the pull-back of the Petersson-Weil metric. In the
situation, where Y → S is the Teichmüller family and φ comes from an ele-
ment of the Teichmüller modular group Γp, this means that the Petersson-Weil
form ωPW is invariant under φ. The Petersson-Weil hermitian inner product
descends to the moduli space Mp = Tp/Γp. On a neighborhood of any point
x ∈ Tp a ∂∂̄-potential of ωPW can be made invariant under the isotropy group
of x. However, the local potential descends to a function which may only be
continuous. In this sense the Petersson-Weil form is defined on Mp.

4.2 The Petersson-Weil Metric for Families of Singular Riemann
Surfaces

In [BE 1974] Bers considered families of compact hyperbolic Riemann surfaces
which degenerate to curves with ordinary double points. The connected compo-
nents of the singular fibers, with singularities removed are called parts, and one
assumes that these are all hyperbolic. Bers observed that the Poincaré metrics
on the singular fibers converge in any Ck-topology to the Poincaré metrics on
the parts. However, these families of metrics do not depend differentiably on
the parameter. The question of the degeneracy of the Petersson-Weil metric
was settled by H. Mazur in [MA 1976].

Singular Families. From the topological viewpoint a degeneration of a Riemann
surface of genus p consists of a contraction of closed geodesics. There are two
types of such contractions — one increases the number of parts by one and
leaves the sum of the genera over all parts fixed — the other decreases the
genus of the corresponding part but leaves the number of parts fixed. (The
genus of a part is by definition the genus of its closure).

In both cases the contraction of a cycle can be performed with a com-
plex parameter and is compatible with the holomorphic structure. It yields
a compact Riemann surface with an ordinary double point. On its (smooth)
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normalization one can distinguish the inverse image of the singularity. A com-
pact Riemann surface together with a set of distinguished points is called a
punctured Riemann surface.

The complex structure of an ordinary double point is as follows: The sin-
gularity is in terms of local coordinates (z, w) with |z| < 1, |w| < 1 given by
the equation z · w = 0, and a universal deformation of this singularity with a
complex parameter t, |t| < 1 is just z ·w = t. For any compact Riemann surface
with an ordinary double point, this gives rise to a one-dimensional holomorphic
family of compact Riemann surfaces such that the fiber over the origin is the
only singular one: It is sufficient to remove a neighborhood of the double point
and insert the above one-dimensional family (with biholomorphic transition
functions on two pairs of annuli). On the other hand one can use Teichmüller
theory of punctured Riemann surfaces. From the deformation theoretic view-
point local families of punctured Riemann surfaces, called ”stacks” in algebraic
geometry, correspond to families of mappings of a finite set of say n points (all
equipped with the sheaf C) to compact Riemann surfaces with variable com-
plex structure. The dimension of a universal family equals 3p− 3 + n, also for
genus zero or one, where n must be larger than 3 or 0 resp.

A compact Riemann surface X with at most ordinary double points such
that its parts are hyperbolic is also called a stable curve. Its canonical sheaf can
be described as follows: A section of this sheaf, pulled back to the normalization
can be identified with a holomorphic 1-form on the normalization which has at
most simple poles at the distinguished points and opposite residues at points
which are identified under the normalization map.

A local family which is universal can be constructed as follows: The parts
induce Riemann surfaces Xi of genus pi with a number of ni punctures. These
possess in particular local universal families over smooth base spaces Si of
dimension di = 3pi−3+ni: families Xi → Si together with sections σi : Si → Xi.
Set S =

∏
i Si and extend all families over S. The surface X is the union of

all Xi with transversal intersections. The identification of punctures is then
extended along the sections induced by σi. Finally at all singularities one applies
the above insertion procedure (”opening up of nodes”) relative S which yields
another set of q local parameters, where q is the number of double points. The
dimension of the base is

r∑

i=1

(3pi − 3 + ni) + q.

It follows from general theory that such a family is universal for all neighboring
fibers, in particular for the smooth general fiber. In fact, let a number of q
contractions be carried out resulting in r parts Xi. Then the genus of X is

p =
r∑

i=1

pi + q + 1− r

so that the dimension of the base of this family f : X → S is exactly 3p− 3.
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One may denote the coordinates which describe the deformations of singu-
larities by tj , j = 1, . . . , q and those which come from deformations of punctured
surfaces by τk, k = q + 1, . . . , 3p− 3.

Theorem. (H. Mazur [MA 1976]) Let S = {(t, τ)} and X → S be a family of
Riemann surfaces with ordinary double points for tj = 0 for at least one j and
hyperbolic parts as above. Then the following estimates for the components gi̄

of the Petersson-Weil metric tensor hold:

(i) There exist constants 0 < a < A and a neighborhood of (0, 0), where

−a

|ti|2(log |ti|)3 ≤ giı̄ ≤ −A

|ti|2(log |ti|)3 for i ≤ q

(ii)

|gi̄(t, τ)| = O(
1

|ti||tj |(log |ti|)3(log |tj |)3 )

as (t, τ) → (0, 0) for i, j ≤ q, i 6= j

(iii)
lim

(t,τ)→(0,0)
gi̄(t, τ) = gi̄(0, 0) if i, j > q,

(iv)

|gi̄(t, τ)| = O(
−1

|ti|(log |ti|)3 ) as (t, τ) → (0, 0) if i ≤ q, j > q.

These estimates have several consequences. The Petersson-Weil metric is
not complete. In transversal direction to the divisor t1 ·. . .·tq = 0 it degenerates,
whereas restricted to the ”parallel” direction it converges to the Petersson-Weil
metric on families of punctured Riemann surfaces. Moreover, one can read off
the equations that the volume of the moduli space Mp is finite.

In fact Mazur treats components

(4.5) gi̄ =
∫

φi(t, τ)φj(t, τ)g(t, τ)dzdz̄

first, where the φi are holomorphic sections of the relative 2-canonical bundles
Ω⊗2
X/S which are dual to the holomorphic vector fields ∂/∂ti and ∂/∂τj on S.

The sections φi originate from a basis of ΩX/S(S), where the first q sections
related to ∂/∂ti contain the factor ti.

The specific estimates of (4.5) are due to the degeneration of both the
family of hyperbolic metrics and of these sections. These relative quadratic
differentials are meromorphic with at most double poles in the zi-direction
(in terms of local coordinates (zi, wi, ti) near the singularities). These coor-
dinates are sometimes called ”pinching coordinates”. The relative metric ten-
sor g(t, τ) can be estimated using the embedding of the annuli {(zi, ti); |ti| <
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|zi| < 1} equipped with hyperbolic metrics as follows: For small |ti|, the an-
nuli {(zi, ti); |ti| < |zi| < 1} are holomorphically embedded into the fibers of
the family X → S. This means that the hyperbolic metrics h(zi, ti) dominate
the restrictions of the Poincaré metrics g(z, t, τ) of the fibers. Furthermore the
maximum principle for elliptic differential equations yields that the supremum
of h/g for fixed parameters is attained on the boundary of the respective disks.
For |zi| = δ < 1 or |wi| = δ < 1 by Bers’ result one has uniform convergence
of the metric tensors g to the hyperbolic metric on the respective parts in all
Ck-topologies.

An alternative approach can be based solely on estimates of the metric
tensor, since by (2.13) the tensor of the Petersson-Weil metric can be computed
in terms of the variation of the hyperbolic metric on the family.

5. The Curvature of the Petersson-Weil Metric

5.1 Ahlfors’ Results

Shortly after the Kähler property of the Petersson-Weil metric was established,
Ahlfors showed in [AH 1961b]

Theorem. The Ricci curvature, the holomorphic sectional curvature and the
scalar curvature of the Petersson-Weil metric are negative.

His proof is a continuation of the computations leading to the Kähler
property involving an integral formula for the curvature tensor.

5.2 Bounds of the Curvature

Two questions remained open for more than ten years: The negativity of the
sectional curvature and the existence of a negative upper bound for the holo-
morphic sectional curvature.

In [RO 1974] Royden conjectured a precise such upper bound. It was es-
tablished by Wolpert in [WO 1986] and Tromba [TR 1986]:

Theorem.
(i) The holomorphic sectional and Ricci curvatures of ωPW on Tp for p > 1

are bounded from above by −1
2π(p−1) .

(ii) The sectional curvature of ωPW is negative.

In [WO 1986] such results are also attributed independently to Royden.
This theorem is a direct consequence of an explicit formula for the curvature
tensor. We refer here to Wolpert’s approach. Let X be a compact Riemann
surface of genus p > 1. Denote by {µα;α = 1, . . . , 3p− 3} a basis of the vector
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space of harmonic Beltrami differentials on X corresponding to a set of tangent
vectors {∂/∂sα; α = 1, . . . , 3p − 3}. The product of such a differential with a
conjugate one is a differentiable function, and we have seen that the components
of the Petersson-Weil form

ωPW =
√−1gα,β̄dzα ∧ dzβ̄

are in terms of the basis

(5.1) gαβ̄ =
∫

X

µαµβgdzdz̄

Denote by D the real laplacian on L2-functions on X (with non-positive spec-
trum). Then the inverse (D − 2)−1 exists and is a compact integral operator.

Theorem. (Wolpert [WO 1986], Tromba [TR 1986]) The curvature tensor of
the Petersson-Weil metric equals

Rαβ̄γδ̄ = −2
∫

X

(D − 2)−1(µαµβ)(µγµδ)dzdz̄(5.2)

− 2
∫

X

(D − 2)−1(µαµδ)(µγµβ)gdzdz̄.

We indicate, how to derive the various estimates of the curvatures of ωPW

from (5.2): One sets ∆ = −2(D − 2)−1. This is an integral operator with
a positive kernel, a fact which implies that for all L2-functions φ and ψ the
inequality

(5.3) |∆(φψ)| ≤ |∆φ2|1/2|∆ψ2|1/2

holds. The negativity of the sectional curvature follows from the explicit formula
(5.2) by means of (5.3) and the Hölder inequality.

Given an L2-function φ on X, an eigenfunction expansion of φ with respect
to the laplacian D implies:

(5.4)
∫

X

∆(φ)φ̄ g dzdz̄ ≥
∣∣∣∣
∫

X

φ g dzdz̄

∣∣∣∣
2

/

∫

X

g dzdz̄

The estimates of the holomorphic sectional and Ricci curvatures are based
on (5.2) and (5.4).

The following condition goes beyond negative sectional curvature.

Definition. A Kähler manifold is of strongly negative curvature in the sense of
Siu, if its Riemann tensor satisfies

(5.5) Rαβ̄γδ̄(A
αBβ − CαDβ)(AδBγ − CδDγ) ≥ 0
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for all complex vectors Aα, Bβ , Cγ , Dδ, and if equality holds only for AαBβ =
CαDβ for all α and β.

Proposition. [SCH 1986] The Petersson-Weil metric on Tp for p > 1 has
strongly negative curvature in the sense of Siu.

We note that this condition is not satisfied for the invariant metric on
bounded symmetric domains (cf. [SI 1986]).

5.3 The Curvature of the Petersson-Weil Metric for Singular
Families

In section 5.2 we discussed the asymptotics of the Petersson-Weil metric for
families with singular fibers. We assume again that the parts of the singular
fibers are hyperbolic and use the above notations.

Theorem. [SCH 1986] Let S = {(t, τ)} and X → S be a family of Riemann
surfaces with ordinary double points and hyperbolic parts. Then

(i) The absolute values of the sectional, Ricci-: Ricci and scalar curvature
are of type O(−∑q

i=1 log |ti|).
(ii) the Ricci tensor of the Petersson-Weil metric satisfies

|Ri,̄| =





O( 1
|ti|·log |ti|·|tj |·log |tj | ·min( 1

log2 |ti| ,
1

log2 |tj)| ) if i, j ≤ q and i 6= j

O( 1
|ti|2·log2 |ti| ) if i = j ≤ q

O( 1
|ti|2·log3 |ti| ) if i ≤ q and j > q

O(1) if i, j > q

In [SCH 1986] also estimates for the Christoffel symbols and the curvature
tensor of the Petersson-Weil metric are given.

In order to prove such estimates, one considers partial derivatives of gi̄

according to (4.5) using the setup of section 4.2. The holomorphic vector fields
∂/∂ti and ∂/∂τk are lifted to C∞ vector fields vi on X which are with respect
to pinching coordinates around the singularties: singularities of the form ∂/∂ti
and ∂/∂τk resp. Thus it is sufficient to estimate the respective Lie derivatives
of the tensors, which occur inside the integral (4.5). The holomorphic quadratic
differentials φi, whose poles are exactly known don’t cause any difficulty. The
main point is to estimate the derivatives of the metric tensor g.

Lemma.

|Lvi(g)|/g = O(
−1

|ti| log |ti| ), i = 1, . . . , q

|Lv̄Lvi(g)|/g = O(
1

|ti||tj | log |ti| log |tj | ); i, j = 1, . . . q
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Here we need a global argument. One intruduces: introduces an auxiliary
metric h(z, ti τk) which is around the singularities related to the hyperbolic
metric on annuli and punctured discs resp. The term log(g/h) and its deriva-
tives with respect to the vector fields vi satisfy global elliptic equations, from
which the lemma follows.

These methods are sufficient for the estimates of the curvature tensor of the
Petersson-Weil metric except for: except Riı̄iı̄. One observes that the harmonic
Beltrami differentials µi corresponding to ∂/∂ti and ∂/∂τk can be expressed in
terms of the dual basis {φi} and the Petersson-Weil metric by µi =

∑
j gi̄·φj/g.

Thus (4.2) can be used to show

|Riı̄iı̄| = O(
−1

|ti| log5 |ti|
) for i ≤ q.

This method yields weaker estimates for the other terms.
A consequence of the above estimates is that

−
∫

Mp

Ric(ωPW ) ∧ ω3p−4
PW < ∞.

6. Harmonic Maps and Teichmüller Space

Description of Tp in Terms of Hyperbolic Metrics. Another way how to phrase
the classification problem of complex structures on a compact surface X of
genus p > 1 is to consider all Riemannian metrics of constant negative cur-
vature −1 say up to diffeomorphisms. This is due to the fact that any such
complex structure gives rise to a unique hyperbolic metric on one hand and
that on the other hand any Riemannian metric determines a conformal i.e.
complex structure. If (for fixed genus) M−1 denotes the space of such met-
rics and D0 the group of diffeomorphisms homotopic to the identity, then the
quotient space M−1/D0 can be identified with the Teichmüller space Tp. Here
we do not specify the analytic structure on M−1 and D0 resp. — one may
consider C∞-metrics and -diffeomorphisms or Sobolev spaces of Hk-metrics
and Hk+1-diffeomorphisms. Such quotients have been considered for Rieman-
nian manifolds of arbitrary dimension by Berger and Ebin, who prove a slice
theorem in [B-E 1969], and by Fischer and Tromba in [F-T 1984].

Harmonic Maps of Riemann Surfaces. The idea of using harmonic maps to
investigate Teichmüller space originates from Gerstenhaber and Rauch (cf. [G-
R 1954] and [RE 1985]). We refer here to the approach by Fischer-Tromba
[F-T 1984a,b], Tromba [1986/7], Wolf [W 1989], and Jost [JO 1989][1990]. Ac-
cording to a theorem of Schoen and Yau [S-Y 1978] for any two metrics g and
γ in M−1 there exists a unique harmonic map v : (X, g) → (X, γ) which is
homotopic to the identity. This fact also allows the following interpretation: For
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a fixed hyperbolic (reference) metric g on X one can choose in any D0-orbit a
unique hyperbolic metric γ̃ such that the identity (X, g) → (X, γ̃) is harmonic.

The link between classical Teichmüller theory and the approach via har-
monic maps is that harmonic maps are closely related to quadratic holomorphic
differentials. Let g and γ be Riemannian metrics on X of constant negative
curvature −1, and z, w holomorphic coordinate functions on X related to the
metrics g and γ — by abuse of notation we write g(z)dzdz and γ(w)dwdw. The
energy density of such a mapping z 7→ w(z) of class C1 say is

(6.1) e(w) = H+ L,

where
H = γ(w(z))|wz|2/g(z) and L = γ(w(z))|wz̄|2/g(z).

The engergy: energy functional on the space of such mappings w is

(6.2) E(w) =
∫

X

e(z)g(z)dzdz.

It only depends on the conformal structure of the domain, as well as the
Euler-Lagrange equation for its critical points, the harmonic maps:

(6.3) wzz̄ + (
γw

γ
◦ w) · wzwz̄ = 0

An immediate consequence of (6.2) is the following characterization of the
decomposition of the pull back of the metric tensor γ under w:

(6.4) w∗(γ)dwdw = φdz2 + e(w) · g dzdz + φ dz
2

where the quadratic differential

φ dz2 := gwzw̄zdz2

is holomorphic.
Fixing the hyperbolic metric g on the domain (and its complex structure),

one has altogether: all together a natural map from the Teichmüller space to
the space of holomorphic quadratic differentials:

(6.4) Φ : Tg → H(X, Ω⊗2
X )

In fact the map Φ provides global coordinates on the Teichmüller space.

Theorem.

(i) (Sampson [SA 1978]): The map Φ is injective.
(ii) (M. Wolf [W 1989]): The map Φ is surjective.

Since logH satisfies an elliptic equation, the injectivity of Φ is reduced to
the maximum principle, and since Φ is continous: continuous due to regularity
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theorems, the surjectivity follows from the properness of Φ which is ultimately
the properness of the energy functional.

What is the relation with classical Teichmüller theory, in particular Bers
coordinates? We do not expect to find in this way global holomorphic coordi-
nates on the Teichmüller space, but the statement of the theorem suggests to
identify: identifying maybe the holomorphic tangent space of Tp.

The theorem implies that for a basis φ1, . . . , φ3p−3, t = (t1, . . . .t3p−3) ∈
C3p−3 and φ(t) =

∑
j tjφj there exist hyperbolic metrics γ(t) and harmonic

maps z 7→ w(z, t), satisfying (6.4). Since w(z, 0) = z, one can easily compute
the derivative with respect a the complex parameter tj of the (0,2)-component
of w∗(γ) at t = 0. On one hand it is certainly φj , on the other hand must equal:
it must equal g · (∂2w/∂tj∂z̄)|t=0: The derivative of the associated Beltrami
differential (with respect to the complex parameter tj) is just φj/g. This means
that the map Φ of the above theorem supplies an identification of the complex
tangent space of Tp at the reference point given by (X, g) with the space of
quadratic holomorphic differentials. When restricted to the first infinitesimal
neighborhood of the distinguished fiber the induced differentiable family of
compact Riemann surfaces over H0(X,Ω⊗2

X ) can in fact be identified with to
the Teichmüller family equipped with the local holomorphic Bers coordinates.

The Petersson-Weil Metric. In the above approach of Wolf, the hyperbolic
metric on the domain is fixed — previously Tromba had used the opposite
standpoint to describe the Petersson-Weil metric by means of harmonic maps.
In both set-ups: setups the total energy of harmonic maps gives rise to a real
function on the Teichmüller space.

Theorem. (Tromba [TR 1987]) The energy function on Tp is a ∂∂̄-potential for
the Petersson-Weil metric at the reference point.

A further application is the computation of the curvature of the Petersson-
Weil metric (cf. section 5).

Rigidity of Mp. Based on the classical theory of harmonic maps in Riemannian
geometry and a ∂∂̄-Bochner-type formula Siu showed in [SI 1980] a strong rigid-
ity theorem for compact Kähler manifolds M of strongly negative curvature. It
states that any compact Kähler manifold of the same homotopy type must be
either biholomorphic or conjugate biholomorphic to M . The strong negativity
of the Petersson-Weil metric was verified in [SCH 1986] and under restrictions,
related to the branching of the action of the Teichmüller modular group any
harmonic map from Mp to itself is either holomorphic or antiholomorphic. A
strong rigidity theorem for Mp was shown by Jost and Yau in [J-Y 1987].
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7. The Compactified Moduli Space

7.1 Properties of Mp

Local Description. The quasi-projectivity of Mp was established by different
methods. Baily [BA 1962] used the Jacobi-map: Jacobi map, and Θ-series.
Baily and Borel constructed a compactification M̃p by means of the period
map related to the compactification of the moduli space of polarized abelian
varieties in [B-B 1966]. Here the complement of the moduli space in M̃p is of
codimension two. Another approach in terms of Kleinian groups and horocyclic
coordinates is described in Kra’s article [KR 1989][1990]).

Although a compactification Mp is a priori not uniquely defined, there is
a natural choice, where the compactifying divisor Mp \ Mp has a geometric
interpretation. We shall refer here to the method due to Mumford [MU 1977]
and Knudsen [KN 1983b], who construct Mp as a compact projective variety
with at most quotient singularities. In section 4.2 we essentially discussed Mp

from the analytic viewpoint, namely local universal families of compact (con-
nected) Riemann surfaces with at most ordinary double points, whose parts
are hyperbolic, i.e. stable curves.

The stability condition guarantees that only a finite number of cycles may
be contracted yielding terminal singularities. These correspond to points, where
the largest possible number of locally irreducible components of the compacti-
fying divisor intersect. Moreover there exist only finitely many choices of con-
tractions which lead to terminal singularities. In terms of Fenchel-Nielsen co-
ordinates (cf. section 2.1) one can see that for geodesic length functions `(α)
tending to zero, one arrives at an ordinary double point. This description sug-
gests that the divisor D = Mp \ Mp is a union D = D0 ∪ . . .D[p/2], where
the components Dj can be described as follows: The generic points of D0 cor-
respond to complex curves of genus p − 1 and 2 punctures, and for Dj ; j > 0
these are curves consisting of two components of genus j and p− j resp. with
one puncture each.

As for the intersection of components of D one may consider now a (local,
universal) family C → S of stable curves, where S ⊂ C3p−3 like in section
5.2 and 5.3 and p > 1 is the genus of the general fiber. Let tj be coordinate
functions on the base such that the divisor of singular fibers equals V (t1 ·. . .·tq).
We have seen that over the sets V (tj1 , . . . , tjr )\

⋃
k 6=ji

V (tk) the curve C induces
a locally universal family of Riemann surfaces with r punctures. The subset of
Mp corresponding to S can be identified with the quotient of S by a finite
group of automorphisms.

Ample Line Bundles onMp. In [MU 1977], Mumford gives explicitely: explicitly
an ample line bundle on Mp. The sheaf of relative holomorphic 1-forms Ω1

X/S

on a family of stable curves has been defined in section 5.2. For the local
description one may consider a one-dimensional family f : C → T given locally
by V (z · w − t) → T ; (z, w, t) 7→ t. Then the relative dualizing sheaf ωC/T is
the invertible sheaf generated by a differential ζ which equals dz/z for z 6= 0
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and −dw/w for w 6= 0. Let m0 ⊂ OT be the maximal ideal sheaf for 0 ∈ T .
Then the sheaf Ω1

C/T can be identified with the subsheaf m0 ·ωC/T . Like in the
non-singular case sections of ω⊗e

C for e ≥ 3 provide an embedding of a stable
curve into a projective space of dimension ν−1 = (2e−1)(p−1)−1, where the
degree of the image is d = 2e(p−1). The Hilbert polynomial P (n) = χ(C,ω⊗n

C )
equals dn−(g−1). The space of all such e-canonical curves embedded as above
is parametrized by a locally closed, smooth subscheme H of the Hilbert scheme
HilbP

ν−1, i.e we are given a family of embedded curves

X ↪→ H × IPν−1

π ↘ ↓
H

Any isomorphism of stable curves is induced by a linear map of the ambient
space, and this means a natural action of G = PGL(ν − 1,C) on H. The term
”stable” refers to this group action — it means that all orbits are closed and
all stabilizer groups Gx are finite. Geometric invariant theory provides the
existence of Mp in the sense described so far.

The main point is now to associate to a given relatively ample line bundle
L on X a line bundle on the base H which is close to ample. At least generically
the direct images of L⊗n are locally free and the highest exterior powers (on the
base H) are natural candidates. Moreover, for a construction based on intrinsic
objects everything should descend to Mp, yielding ultimately an ample line
bundle on the compactified moduli space.

We give a few details, since the construction makes an impact on the the:
the theory of moduli of higher dimensional manifolds. The natural choice for
L is ωX/H . Its powers give rise to the direct image sheaves π∗(ω⊗n

X/H). The first
direct images vanish except for n = 1, where the result is the structure sheaf
of H. Thus the first images are locally free (by the comparison theorem). One
denotes

(7.1) λn = Λmax(π∗ω⊗n
X/H) = det(R•π∗(ω⊗n

X/H)) ; λ := λ1.

It turns out that the choice of the power n is immaterial. The line
bundles λn can be gotten hold of by computing their Chern classes. Let
π! : K(X ) → K(H) denote the morphism of Grothendieck groups of coher-
ent analytic sheaves, then c1(λn) = c1(π! ω

⊗n
X/H) more or less by definition. The

latter term is accessible from the generalized Riemann-Roch formula — it is
just the degree 2 component of the direct image of the product of the character
of the relative dualizing sheaf and the Todd character of the sheaf of regular
relative 1-forms:

(7.2) c1(λn) =
[
π∗

(
Ch(ω⊗n

X/H) · Td(Ω1
X/H)

)]
2

This expression is expanded as usual. At this place the above relationship
between Ω1

X/H and ωX/H implies that the quotient of these is the structure
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sheaf OSing(C) of the singular locus. Its first Chern class vanishes, and the
second is represented by the associated 2-codimansional cycle [Sing(C)]. The
evaluation of the right-hand side of (7.2) yields the the: the following theorem,
since the Picard group of Mp is torsion free.

Theorem. (Mumford [MU 1977])

(i)

(7.3) λn = λ⊗(6n2−6n+1) ⊗ (δ−1)⊗
n(n−1)

2 ,

where δ = [D].
(ii) The bundles λn descend to the compactified moduli space Mp.
(iii) The bundle

λ⊗b ⊗ (δ−1)⊗a

is ample on Mp if a > 0 and b > 11.2a, and not ample if a ≤ 0 or b ≤ 11a.

The last statement contains the fact that λ2 = det(π∗(ω⊗2
X/H)) = λ⊗12⊗δ−1

is ample.
There is a relation with Baily’s result. Let Ap,1 the moduli space of

principally polarized abelian varieties of dimension p and J : Mp → Ap,1

the map which sends a compact Riemann surface to its Jacobian. Denote by
Θ : Ap,1 → IPN the realization via Θ-functions. Then

Theorem. (Mumford [MU 1977]) The map J ◦ Θ extends to θ : Mp → IPN so
that for some m,

θ∗(OIPN (1)) = λm.

Again using the generalized Riemann-Roch formula, Harris and Mumford
computed in [H-M 1982] the canonical class of the compactified moduli space:

KMp
≡ 13λ− 2δ0 − 3δ1 − 2δ2 − . . .− 2δ[ p

2 ]

where the δj correspond to the components of the compactifiying divisor.

Theorem. (Harris-Mumford [H-M 1982], Harris [HA 1985]) The moduli space
Mp is of general type, if the genus is odd and at least 25, or if the genus is
even and at least 40.
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7.2 The Petersson-Weil Class on Mp as Chern Class of a Positive
Line Bundle

The unification of algebraic geometry and the analytic approach to Teichmüller
theory was achieved by Wolpert’s work.

In his results the Petersson-Weil form plays a central role. Its class in
H2(Mp, IR) generates this space and (1/2π2)[ωPW ] is rational and extends
to an element of H2(Mp, Q). It corresponds essentially to a line bundle, and
the Petersson-Weil form extends as a (1,1)-current which is the Chern form of
a continuous hermitian metric on this bundle which is known from algebraic
geometry. A smoothing of the metric shows the positivity of this line bundle
on Mp.

A link with Mumford’s results is the following fiber-integral formula. One
considers the Teichmüller family where the fibers are equipped with the hyper-
bolic metrics. These turn the relative anti-canonical bundle into a hermitian line
bundle. Denote by c1(Xp/Tp, g) its Chern form. Its second power is a (2,2)-form
whose fiber integral is a (1,1)-form on the Teichmüller space. (By functoriality
the construction is compatible with base change and everything descends to
the moduli space).

Theorem. (Wolpert [WO 1986])

1
2π2

ωPW =
∫

Xp/Tp

c1(Xp/Tp, g)2

This formula can be viewed upon as an extension of (7.2) to Chern forms
rather than classes emphasizing the importance of the Petersson-Weil form.

In the sequel we shall describe the results mentioned above in more detail.

Extension of the Petersson-Weil Class to the Compactified Moduli Space. The
device, how to construct an extension [ωPW ] ∈ H2(Mp, IR) is to change the
differentiable structure near the compactifying divisorD . The symplectic struc-
ture on the Teichmüller space can be expressed in an amazingly simple way in
terms of Fenchel-Nielsen coordinates:

Theorem. (Wolpert [WO 1985a]) Let 0 < `j < ∞ and −∞ < tj < ∞ for
j = 1, . . . , 3p−3 be Fenchel-Nielsen coordinates on Tp. The the: The Petersson-
Weil form equals:

(7.3) ωPW = −
∑

j

dτj ∧ d`j

The proof of the duality formula ωPW (∂/∂τα, ) = −d`α is based on
a very detailed investigation of Fenchel-Nielssen vector fields and hyperbolic
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geometry, in particular relations for the ”twist derivatives” (∂/∂τα)(`β) and
(∂2/∂τα∂τβ)(`γ) using Petersson series.

A rather direct consequence of (7.3) is that the Petersson-Weil form
(pushed down to the moduli space) possesses a differentiable extension ωFN

(in the sense of V-manifolds) to Mp.
On the other hand, the Petersson-Weil form is singular near the compact-

ifying divisor with respect to the complex structure of the moduli space. The
exact estimates are quoted in section 5.2. These imply immediately that ωPW

is of class L2 – the extension of ωPW to Mp as a (1,1)-current with respect
to the complex structure is denoted by ωC . Moreover Mazur’s estimates im-
ply that the integral of the product of ωPW with the exterior derivative of a
differentiable (6p − 9)-form with compact support in a neighborhood of some
point of D vanishes. In particular (by de Rham cohomology on V-manifolds)
it induces a linear functional on H6p−8(Mp, IR), by Poincaré duality this gives
an element of H2(Mp, IR).

Theorem. (Wolpert [WO 1985a]) The cohomology classes of ωFN and ωC in
H2(Mp, IR) are equal.

The proof of this fact requires certain prerequesits: prerequesites: One is
a combination of Čech-: Čech and Dolbeault cohomology theory. The other is
the fact that the identity i : MFN

p → MC

p of the compactified moduli space
equipped with the Fenchel-Nielsen and complex structures resp. is Lipschitz
continuous (as opposed to i−1 which is not even Hölder continuous). The Lip-
schitz condition is finally reduced to the boundedness of the Fenchel-Nielsen
coordinate vector fields with respect to L2- and L1-norms and estimates of
‖dsk‖, where sk are holomorphic coordinate functions near the compactifying
divisor.

Rationality of the Petersson-Weil Class. Now two methods became available for
investigating the Petersson-Weil class. The smooth 2-form may be integrated
over 2-cycles or paired with (n − 2)-forms; the Kähler form ωC reflects the
complex geometry of Mp, ωC is positive on all complex tangent planes.

The rationality of (1/π2)[ωPW ] (on the compactified moduli space) is based
on a computation of the rational homology of Mp. According to a result of
Harer [HA 1983] the group H2(Mp, Q) is of rank one for p > 2. Wolpert con-
siders in [WO 1983] the components D0, . . . ,D[p/2] of the compactifying divisor
D. He can show that the real first cohomology classes [ωPW ] ∈ H6p−8(Mp, IR)
and those induced by D0, . . . ,D[p/2] constitute a basis by considerations of
the intersection pairing — the rank of H2(Mp,Q) is 2 + [p/2]. The compo-
nents of D together with the line bundle λ are known to form a set of gener-
ators of Pic(Mp)⊗Q. A computation of the intersection pairing implies that
(1/π2)[ωPW ] is in fact rational — it replaces the class of the Hodge line bundle
in the above basis of H2(Mp,Q). Here the Fenchel-Nielsen description (6.1)
of the extended Petersson-Weil class is essential. In particular [ωPW ] is the
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Chern class of a line bundle. The final step of this program is to show that the
Petersson-Weil form is induced by a hermitian metric on an ample line bundle
which is continuous over Mp and of class C∞ over MP .

A Local Continuous Kähler Potential for ωPW . As above we use the setup of
section 5.2. A local Kähler potential F is a solution of the equation

√−1∂∂̄H =
ωPW .

The estimates of the Petersson-Weil metric on the cotangent bundle, in
particular its boundedness, guarantee that gi̄ possesses a smooth Hermitian
metric as minorant. Thus the associated (1,1)-current [ωPW ] on Mp is positive.
The ∂∂̄-Poincaré lemma yields locally a strictly plurisubharmonic potential P
in the sense of currents.

Any potential H satisfies ∆H = Trace(
√−1∂∂̄H) = Trace(ωPW ) =: h,

where h is comparable to |t1|−2(log 1/|t1|)−3 + . . . + |tq|−2(log 1/|tq|)−3.
A (weak) solution H of the Laplace equation ∆H = h is a convolution

with the Green’s function G. It can be verified, using the asymptotics of h and
G that H is continuous, and from the regularity theorem for solutions of the
homogeneous equation it follows that the distribution P can be represented by
a contionous: continuous plurisubharmonic function.

A Continuous Hermitian Metric. So far all computations are related to local
families of compact Riemann surfaces (with singularities). The base of such a
family yields a coordinate neighborhood for the V-structure ofMp. The notions
of hermitian metrics and Chern forms are carried over to to: to V-manifolds.
Let λ be a holomorphic line bundle on Mp, whose real Chern class is an integer
multiple of (1/π2)[ωPW ]. The local continuous Kähler potentials give rise to a
continuous hermitian metric on λ with the prescribed curvature form.

Smoothing of the Kähler Current and Projective Embedding of Mp. Although
the Petersson-Weil class on the compactified moduli space is related to a posi-
tive current and up to a numerical factor to the Chern class of a line bundle λ,
this bundle need not be a priori positive. This is accomplished by Richberg’s
theorem. His result is applied to show the following general fact: Let L be a
line bundle on a complex manifold an h a continuous hermitian metric which
is locally given by strongly plurisuperharmonic functions. Then there exists a
hermitian metric of class C∞ and strictly positive Chern form which is coho-
mologous to the Chern form of f as current. In particular, L is a positive line
bundle.

In this way λ becomes a positive holomorphic line bundle on the V-
manifold Mp, i.e. with respect to local uniformizing systems the hermitian
metric is smooth with positive curvature. Since positive line bundles on V-
manifolds yield embeddings into projective spaces (cf. [BA 1957]), the compact-
ified moduli space Mp has a projective embedding determined by the positive
line bundle associated to the Petersson-Weil current (1/π2)ωPW .



Chapter B

Moduli Spaces of Compact Kähler Manifolds

8. Existence Theorems for Moduli Spaces of Polarized
Kähler Manifolds

Notions. What is the proper analogue of the Teichmüller space and the moduli
space of compact Riemann surfaces for compact complex manifolds of arbitrary
dimension?

A moduli space also called ”coarse moduli space” is a complex space which
classifies compact complex manifolds up to isomorphism. Its points correspond
to such isomorphism classes and its complex structure reflects the variation
of the complex structure on a fixed differentiable manifold in a holomorphic
family. This idea will be made more precise. (As it stands, it gives the notion
of a moduli space in the reduced category, but at the little expense of technical
extensions everything can be generalized to the non-reduced case).

Set-theoretically the points of a moduli space M consist of isomorphism
classes [X] of compact complex manifolds X. A holomorphic family of compact
complex manifolds Xs; s ∈ S, parametrized by a (reduced) complex space S,
is given by a proper, smooth, holomorphic map f : X → S of complex spaces
with connected fibers, such that Xs = f−1(s) for all s. Thus one can assign to
any such family f the natural map

φf : S →M
which relates a point s ∈ S to the isomorphism class [Xs] of its fiber.

The above set of isomorphism classes is called a moduli space, if it carries
the structure of a complex space such that all maps of the type φf are holomor-
phic. (For non-reduced moduli spaces one has simply to require the existence
of such maps, compatible with base change, whose reduction has the above
property). This condition determines the holomorphic structure of a moduli
space uniquely. The general problem is not well-posed: There exist families f
of compact manifolds over a one-dimensional base, such that all fibers but one
are isomorphic to each other — the map φf has to be constant, unless one
introduces non-hausdorff moduli spaces. Certain families of Hopf surfaces or
Hirzebruch surfaces have this property. The former may stand for non-kähler
manifolds, the latter for ruled manifolds. Furthermore one knows from the
moduli theory of abelian varieties that one has to assign a polarization.
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The notion of a polarization deserves a short discussion: In the algebraic
situation it is related to a model i.e. a realization of variety X in a projective
space. The embedding is defined by a couple of sections of a line bundle L on
X, in fact, L is just the restriction of the hyperplane section bundle of the
respective projective space. A polarization in the algebraic sense is induced by
a line bundle, a power of which has this property. For Riemann surfaces of
genus larger than one or manifolds with negative first Chern class it is given
in an implicit way: These are called canonically polarized, since the canonical
bundle, i.e. the bundle of holomorphic differential forms of highest degree, yields
a polarization.

The interpretation of a polarization as an integer-valued Kähler class sup-
poses the correct notion — a polarized Kähler manifold (X,λX) is by definition
equipped with a Kähler class λ ∈ H2(X, IR), and an isomorphism of polarized
manifolds by definition is a biholomorphic map which carries one polarization
to the other.

Moduli of abelian varieties, the period map and the Riemann relations
initiated the theory of variations of Hodge stucture with implications for the
theory of moduli of K3-surfaces, symplectic and unitary manifolds (cf. [TO
1988]).

Our aim here is to develop a general theory of moduli spaces of Kähler
manifolds, based on deformation theory.
Methods. We shortly review basic notions of deformation theory.

Definition. Let X be a compact complex manifold and (S, s0) a complex space
with a distinguished point s0.

A deformation of X over (S, s0) consists of a family X → S of compact
complex manifolds together with an isomorphism X

∼→Xs0 .
A holomorphic map (R, r0) → (S, s0) induces a deformation of X over R

which is defined by the family XR := X ×S R → R together with the induced
isomorphism between X and the fiber of r0. This is called base-change.

An isomorphism of deformations is an isomorphism of families which in-
duces the identity on X.

A deformation of a manifold X is called complete, if it generates all de-
formations by means of base-change up to isomorphism after replacing the base
spaces by neighborhoods of the distinguished points, if necessary.

A deformation is called effective if the derivative of a base change in the
sense above at the distinguished point is uniquely determined — complete and
effective deformations are called versal.

A a: A universal deformation is a complete deformation, where the above
base-change itself is uniquely determined.

The main theorem of deformation theory states the existence of versal
deformations of compact complex spaces.

In the sense of a general theory of moduli spaces based on deformation
theory an initial result for polarized Kähler manifolds was:
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Theorem. [SCH 1983b] There exists the moduli space of polarized Kähler man-
ifolds with vanishing first real Chern class.

In order to construct a moduli space for manifolds of a certain type or
with additional structure one has to perform the following steps which shall be
explained below more precisely:

• construction of versal (complete and effective) deformations (of polarized
manifolds)

• union of quotients with identification of those points which correspond to
isomorphic fibers

At this stage the set of isomorphism classes carries a natural topology. For
a complex structure the following is essential:

• universality of versal deformations of manifolds of the type under consid-
eration.

• action of the automorphism group of the central fiber on base such that
the orbits consist of exactly the equivalent points.

The automorphism group of a polarized manifold (X, λX) is a complex Lie
group which contains the identity component Aut0(X), since the action of this
group on H2(X, IR) is trivial.

The notion of a family of polarized Kähler manifolds is very natural. The
Kodaira-Spencer stability theorem means that neighboring fibers of a Kähler
manifold are again Kähler — however, the Kähler class only depends differen-
tiably on the parameter. Thus it is reasonable to define a polarization of a family
f : X → S as a (holomorphic) section λX/S of the direct image R1f∗ΩX/S ,
whose restrictions λs := λ|Xs are polarizations of the fibers. Heuristically such
a real-valued holomorphic function ought to be constant: in fact it determines
a section of the locally constant sheaf R2f∗IR, whose restrictions to arbitrary
fibers are Kähler classes. The converse is also true (up to some extra condition
for non-reduced bases spaces).

On the other hand there is the notion of a Kähler morphism f : X → S
which is by definition a proper smooth map of complex spaces equipped with a
locally ∂∂̄-exact real (1,1)-form, whose restriction to any fiber is a Kähler form.
(It comes from a Čech-1-cochain of differentiable functions which induces a 2-
cocycle with values in the sheaf of pluri-harmonic functions H on X .

It may be remarkable that any family f of polarized Kähler manifolds
is a Kähler morphism, even if S is singular. This follows from a very simple
argument, whereas the Kodaira-Spencer stability theorem involves forth order
elliptic equations.1

1 Consider on X the short exact sequence 0 → IR → O → H → 0, where H denotes
the sheaf of pluri-harmonic functions. Assume S to be Stein and reduced such that
R2f∗IR is constant over S. The polarization determines an element of H2(X , IR),
whose image in H2(X ,H) vanishes, since all restrictions to fibers do, (R2f∗O is
locally free). Thus the polarization comes from a 1-cocycle in H which can be
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The introduction of polarized families suggests that the corresponding de-
formation theory makes sense; with respect to any holomorphic map R → S
the pull-back XR = X ×S R → R carries a natural polarization. On the other
hand, for any proper, smooth morphism f̃ : X̃ → S̃ and a polarization on a
distinguished fiber Xs0 , there is a maximal subgerm of (S, s0) over which the
polarization can be extended (uniquely). In such a way the following existence
theorem can be proved (cf. [SCH 1983a,1984]):

Proposition. Let (X, λX) be a polarized Kähler manifold. Then there exists a
versal deformation.

This first step in the necessary program for the construction of a moduli
space could be done with no further assumption. It ensures that M carries a
natural topology.

In order to get hold of isomorphic fibers in a family one may look out for
a classifying space for isomorphisms between two given families and their pull-
back with respect to a base change: Let (X → S, λX/S) and (Y → S, λY/S) be
such families. The relevant theorem also exists in the polarized case (cf. [SCH
1984] also [SCH1983b]):

Proposition. There exists a holomorphic map I → S and a universal isomor-
phism Φ : XI → YI over I of polarized families. One sets I = Isomλ

S(X ,Y).

The fibers Is of I = Isomλ
S(X ,Y) → S can be identified with the sets

of isomorphisms between Xs and Ys; thus these are, if not empty, isomorphic
to the groups of automorphisms of such a fiber — in particular the fibers are
smooth.

We have the following general criterion for the existence of a moduli space.

Theorem. [SCH 1983b, 1984] Let K be a collection of compact polarized mani-
folds which possess versal deformations (in K). Then there exists a moduli space
for K, if for any two families (X → S, λX/S) and (Y → S, λY/S) of polarized
manifolds the morphism I = Isomλ

S(X ,Y) → S is proper.

The properness of the above holomorphic map just means that for any
sequence sν in S converging to some s0 ∈ S and any isomorphisms φν of
the polarized fibers Xsν and Ysν there exists a sub-sequence converging to an
isomorphism of the fibers of s0.

As it stands the criterion is just the condition for the topological space M
to be hausdorff. However, it automatically guarantees that the further analytic
steps can be performed.

written as the coboundary of differentiable functions giving rise to an exact (1, 1)-
form. This differs from a given Kähler form on a distinguished fiber by ∂∂̄ of a
differentiable function which can be extended to all of X .
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Its proof is based on purely deformation theoretic arguments — the only
assumptions are the existence of versal deformations, the existence of a classify-
ing space of isomorphisms of holomorphic families, and the above properness.2

In this situation we have the following lemma:
Let (X, λX) be a polarized Kähler manifold in K and S the base of its

versal deformation. Denote by ∼ the equivalence relation on S induced by the
isomorphy of fibers.

Lemma. [SCH 1983b, 1984] Under the assumption of the theorem, any versal
deformation of X is universal.

After replacing S by a neighborhood of the distinguished point the finite
group G = Autλ(X)/Aut0(X) acts on S, and the quotient S/ ∼ can be naturally
identified with S/G.

We indicate very shortly the method of the proof : Let the versal deforma-
tion of X be noted in terms of a cartesian diagram:

X
i

↪→X
↓ ↓
0

ι
↪→S

One can check directly that the graph Γ ⊂ S × S of ∼ is the image of
the (proper) canonical map κ : I = Isomλ

S×S(X × S, S × X ) → S × S. Any
φ ∈ Autλ(X) gives rise to another deformation of X. By the versality of the
given deformation there exists a cartesian diagram

X
φ→ X

i
↪→X A→X

↓ ↓ ↓
0 −→ S

α→S

where A ◦ i ◦ φ = i. We assign to any φ such a base change morphism
α = α(φ) which is a priori not uniquely determined by φ and the diagram.

The map (α, id) : S → S×S has values in Γ , and from the versality of the
given deformation one can derive that the projection from S×S onto the second
component, restricted to Γ is finite around (s0, s0), where s0 = ι(0). In partic-
ular, there exist only finitely many choices for α. The assumption implies that
Autλ(X) is compact, in particular abelian. Let Autε(X) ⊂ Autλ(X) denote the
subgroup of automorphisms which are extendable to the whole family over some

2 The general version is as follows: Let As and Ag be the categories of complex
spaces and germs of complex spaces resp. Let p : F → An be a fibered groupoid
and q : G → Ag the induced groupoid. Assume that any object a0 of G such that
q(a0) is the reduced point posseses: possesses a versal deformation a and that
versality is an open condition. Then there exists a moduli space for p : F → Ag
under the condition: For any complex space S and any b, c in F with p(b) = p(c) = S
the functor Isom(b, c) : As → Sets is representable by a space ι : I → S , where ι
is proper.
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neighborhood of s0. Let φ, ψ ∈ Autλ(X). Then α(φ) = α(ψ) implies that the de-
formations induced by φ and ψ are isomorphic, i.e. φ ◦ ψ−1 ∈ Autε(X). Thus:
Thus, the quotient set Autλ(X)/Autε(X) is finite. In particular Autε(X) ⊂
Autλ(X) which implies Aut0(X) ⊂ Autε(X), i.e. the dimension of the auto-
morphism groups Aut(Xs) is constant: we are dealing in fact with a universal
deformation. Now the assignment α 7→ φ is unique and gives rise to a repre-
sentation ρ : G = Autλ(X)/Autε(X) → Aut(S, s0). If we let act G on S × S
trivially on the first component and by ρ on the second, then we can see that
the orbits of points (s, s) are contained in Γ .

We claim that on the other hand, the irreducible components Γj of Γ
through (s0, s0) are of the form {(s, g·s); s ∈ S} for some g ∈ G: The embedding
of a component Γj into S × S followed by either projection yields two families
with isomorphic fibers, i.e. the image of I → S × S contains Γj , and since
this map is proper with smooth fibers, it possesses a section over Γj — both
families over Γj are isomorphic. The existence of the desired group element
g ∈ G follows from deformation theory.

Altogether: All together, both quotients S/ ∼ and S/G are homeomorphic
and one can see that the complex structure on the quotient, induced by the
finite group G, has the necessary properties.

Remark. The universality of the versal deformation follows already from the
compactness of Aut0(X).

To see this, we need Aut0(X) ⊂ Autε(X) in the above argument: The
compactness of Aut0(X) implies that a neighborhood of the ”point” φ ∈ I in
I is mapped in a proper way to a neighborhood of (s0, s0) ∈ S × S (cf. [F-S
1988b]).

Results. How could one verify the assumptions of the criterion? The follow-
ing idea proved crucial: represent the polarization by a distinguished Kähler
form such that any biholomorphic map between polarized manifolds exactly
corresponds to an isometry. This is already sufficient — the properness of the
classifying space of isomorphisms over the base follows now from the classical
theorems of van Dantzig-van der Waerden and Myers-Steenrod.

In order to apply this argument to prove an existence theorem for the
moduli space of polarized manifolds with vanishing first Chern class, one can
take the unique Ricci flat metrics (representing the polarization) according
to Yau’s solution of the Calabi problem as such distinguished metrics. This
method using Kähler-Einstein metrics also yields an analytic approach to the
moduli space of canonically polarized manifolds. Furthermore one can combine
it with the proof of the Matsusaka-Mumford theorem to show the existence of
the moduli space of those polarized Kähler manifolds, for which some power of
the canonincal bundle is generated by global sections (cf. [SCH 1984]).

Based upon the methods in [SCH 1983b], using the Kähler analogue of the
Matsusaka-Mumford theorem in [FU 1981] the general theorem was proved:
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Theorem. [FU 1984, SCH 1984] There exists the moduli space of polarized non-
uniruled Kähler manifolds.

(Uniruled manifolds possess many rational curves — by definition these
manifolds are the images of IP1-bundle spaces under meromorphic maps which
are not constant on the fibers of the bundle).

One may note that the topology of the moduli space is countable, if the
underlying differentiable manifold M say is fixed and equipped with a class
λ ∈ H2(M, IR) (cf. [F-S 1988a]).

Another situation, where the criterion is applicable, are polarized Hodge
manifolds. These are compact complex manifolds together with the isomor-
phism class of an ample line bundle3 (cf. [F-S 1988b]). The result is the exis-
tence theorem of the moduli space of non-uniruled Hodge manifolds.4

9. Moduli Spaces of Kähler-Einstein Manifolds

9.1 The Generalized Petersson-Weil Metric
Definitions. So far, we already emphasized the close relationship between com-
plex and metric structure on Kähler manifolds as related to the existence of a
moduli space.

Let X be a complex Kähler manifold with Kähler form ωX and Ricci form
Ric(ωX). The Kähler form is called Kähler-Einstein, if

(9.1) Ric(ωX) = k · ωX

for some real number k which can be normalized to −1, 0 or 1. (The first Chern
form equals (1/2π)Ric(ωX)).

In terms of local holomorphic coordinates (z1, . . . , zn) we have

ωX =
√−1gα,β̄dzα ∧ dzβ̄ ,

where gα,β̄ denotes the metric tensor. One denotes g = det gα,β̄ so that the
induced volume form equals (ωX)n = 2nn!gdv, dv the euklidian: euclidean volume

element. Then Ric(ωX) = −√−1∂∂̄ log g which equals
√−1Rα,β̄dzα ∧ dzβ̄ in terms

of the Ricci tensor Rαβ̄ .

In order to describe the generalized Petersson-Weil metric we have to de-
fine the corresponding hermitian form on the tangent spaces of universal defor-
mations. This form is compatible with base-change so that it descends to the
moduli space. Let (X, gαβ̄) be a compact Kähler-Einstein manifold of constant

3 It is convenient to use isomorphism classes in order to avoid C∗-parts in the iso-
morphism space.

4 A further generalization is the existence of the moduli space of non-uniruled man-
ifolds X with refined Kähler class (these are elements of H1(X,H), induced by
Kähler forms).
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(non-positive) curvature. Let (S, s0) be the base of a universal deformation. By
means of the Kodaira-Spencer map ρ, the tangent space of S at s0 is identified
with H1(X, ΘX).

This cohomology group is just the space of obstructions against a holomorphic
lift of a tangent vector of the base to the total space (to be precise: to a holomorphic
vector field on the infinitesimal neighborhood of the fiber which projects to the given
tangent vector). Thus: Thus, in terms of Dolbeault cohomology ρ is defined in
the following way: let (z1, . . . , zn) be local holomorphic coordinates of the fiber and
(s1, . . . , sk) holomorphic coordinates of S with respect to a smooth ambient space
such that (z, s) can be taken as local coordinates on X . A tangent vector on S at s0

different from zero is the of: of the form ∂/∂s for some coordinate function s. Now

take a differentiable lift of the form bα(z)∂/∂zα + ∂/∂s. Then Bα
β̄

∂
∂zα dzβ̄ represents

the Kodaira-Spencer class, where Bα
β̄ = ∂bα/∂zβ̄ .

Let u ∈ Ts0(S) be a tangent vector and

η = Aα
β̄

∂

∂zα
dzβ̄

be the harmonic representative of ρ(u) with respect to the Kähler metric gαβ̄

in terms of local holomorphic coordinates (z1, . . . , zn).

Definition. The Petersson-Weil inner product on Ts0 is given by the following
norm

(9.2) ‖u‖2PW :=
∫

X

|η|2gdv =
∫

X

Aα
β̄Āδ̄

γgαδ̄gγβ̄ gdv,

where gdv denotes the volume element with respect to the given metric.

The harmonicity of η is just the following equation:

(9.3) 0 = ∂̄∗η = gβ̄γAα
β̄;γ

∂

∂zα
.

(The semi-colon: semicolon denotes covariant derivatives).
First the Kähler property of the generalized Petersson-Weil metric on non-

singular base spaces was introduced by Koiso in [KO 1983] starting from the
point of Riemannian geometry and Einstein manifolds. A technical assumption
for the case of Ricci-flat metrics could be replaced by the assumption of a
polarized family (for this observation cf. [SCH 1985]).

Siu computed explicitely: explicitly the curvature of the generalized Petersson-
Weil metric in [SI 1986].

The verification of the Kähler property heavily depended on the fact that
the above harmonic representatives of the Kodaira Spencer classes give rise to
symmetric 2-tensors:

(9.4) Aβ̄δ̄ = Aδ̄β̄

where Aβ̄δ̄ = gαβ̄Aα
δ̄
.
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The tensor Aβ̄δ̄ describes in fact the variation of the Kähler-Einstein met-
rics on the fibers of our universal family in the direction of the tangent vector
u. This shall be made more precise below.

Some results of [F-S 1988b] shall now be displayed.

A Fiber-Integral Formula. Wolpert’s formula for the classical Petersson-Weil
metric on the Teichmüller space of Riemann surfaces of genus larger than one
can be generalized:

Let f : X → S be a family of Kähler manifolds with negative first Chern
class over a (reduced) space S. According to the Calabi-Yau theorem there
exist unique Kähler metrics ωXs

, s ∈ S with some fixed k < 0, say k = −1.
The relative volume forms g(s) consitute: constitute a hermitian metric on the
relative anti-canonical bundle K−1

X/S . The (2π/k)-fold of the Chern form now is
a real, locally ∂∂̄-exact (1, 1)-form ωX of class C∞ on X .5 The Kähler-Einstein
condition implies that all restrictions ωX |Xs equal ωXs .

Observe that this construction also works for universal families of Kähler-
Einstein manifolds with positive curvature. (For existence theorems cf. [TI 1987]
and [T-Y 1987]).

Although the form ωX is only positive definite, when restricted to fibers, it
can serve to define horizontal lifts of tanget: tangent vectors of the base. Such
horizontal lifts give now rise to distinguished representatives of the Kodaira-
Spencer classes.

We have ωX = −(1/k)
√−1∂∂̄ log g(z, s).

The horizontal lift of ∂/∂s is just

aα(z)∂/∂zα + ∂/∂s,

where

aβ̄ =
1

k

∂2 log g

∂zβ̄∂s
.

(We use covariant derivatives as well as raising and lowering of indices with respect
to our metrics on the fibers, e.g. aβ̄ = gαβ̄aα). Now (4) is automatic and (3) follows
from a direct computation.

We remark that horizontal lifts in fact coincide with canonical lifts of
tangent vectors in the sense of Siu [SI 1986].

Let n be the dimension of the fibers of our family. The fiber-integral of
the (n + 1)-fold power of the Chern form of the relative anti-canonical bundle
equipped with our metric g is a real (1, 1)-form.

5 The strategy, how to get differentiability for singular spaces S is as follows: Given
a holomorphic family of compact complex manifolds Xs, fix the underlying differ-
entiable structure and embed S locally in some smooth space. The corresponding
family of holomorphic structures can be extended to a differentiable family of al-
most complex structures. Now all relevant differential operators on the fibers can
be extended differentiably to the ambient space. For the differentiability of the
Kähler-Einstein metrics with respect to the parameter refer to the next part.
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Theorem. The generalized Petersson-Weil form on the base of a universal fam-
ily of Kähler-Einstein manifolds of Ricci curvature k 6= 0 can be represented as
a fiber-integral:

(9.5) ωPW = αn

∫

X/S

cn+1
1 (X/S, g)

where

αn = − 2πn+1

kn(n + 1)!

In particular ωPW possesses locally (also around singular points) a ∂∂̄-
potential of class C∞.

For n = 1 (9.5) is exactly Wolpert’s formula.
The existence of a differentiable Kähler potential of ωPW follows from the

integral formula by means of a result of Varouchas [VA 1989] since the Chern
form has this property.

We indicate, how to prove (9.5): Both sides of the equation define hermitian
forms, hence one has to compare the induced (semi-)norms of any tangent vector
∂/∂s ∈ Ts0(S). Therefore it is sufficient to restrict the map f to the subspace of the
first infinitesimal neighborhood of s0 ∈ S which is defined by ∂/∂s and its preimage
under the map f whose reduction equals the fiber X. We can assume that S is already
of this kind.

Now the right hand side of (9.5) equals

(−√−1)n+1

(2k)n

(∫

X

φ dz1 ∧ dz1 ∧ . . . ∧ dzn̄

)
ds ∧ ds̄

where φ is the determinant of the complex Hessian of log g with respect to the coor-
dinates (z1, . . . , zn, s). The Kähler-Einstein condition

∂2 log g

∂zα∂zβ̄
= −k gαβ̄

yields

φ = (−k)n

(
∂2 log g

∂s∂s̄
+ k āαaβ̄gαβ̄

)

The partial derivative with respect to s and s̄ can be eliminated using:

1

(−k)ng
(φ +

1

k
utφ) = Aα

β̄Āδ̄
γgαδ̄gγβ̄ ,

from which (9.4) follows finally.
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9.2 A Positive Line Bundle on the Moduli Space of Canonically
Polarized Manifolds and the Petersson-Weil Metric
Determinant Line Bundles. Let f : X → S be a universal family of canonically
polarized manifolds. As for the construction of a positive line bundle on S, one
can certainly not expect an entire analogy to the one-dimsional situation. The
determinants of the sheaves f∗(K⊗k

X/S) may not be positive and proportional for
k ∈ IN. The problem is to find a suitable substitute for such a bundle. Donaldson
[DO 1987] uses in a somewhat different situation virtual vector bundles — an
approach which works also in a more general way.

Let f : X → S be for the moment any family of compact complex manifolds
and F a coherent sheaf on X . Then the theory of Knudsen-Mumford [K-M
1976] associates to the direct image R •f∗F an invertible OS-module called the
determinant of R •f∗F . 6 One uses the notation λ(F) := (detR•f∗F)−1. Let
F be locally free and let the corresponding vector bundle be equipped with a
hermitian metric hF . Assume that the fibers Xs carry a differentiable family of
Kähler metrics. Then there exists on the determinant bundle a distinguished
hermitian metric kF , the Quillen metric.

Chern Forms of Determinant Bundles. The theorem of Bismut, Gillet and
Soulé [B-G-S 1987] states that the Chern form of the determinant bundle can
be evaluated as a fiber integral:

(9.6) c1 (λ(F , kF )) = −
[∫

X/S

td(X/S, g)ch(F , hF )

]

2

where [ ]2 denotes the component of degree 2, ch(F , hF ) and td(X/S, g) the
Chern and Todd character forms resp.

The formula should be considered a generalization of the Grothendieck
Riemann-Roch theorem to Chern forms rather than classes.

On may remark that by checking details of the proof and using the methods
of [A-G 1962], [F-K 1972] and [S 1972] concerning relative analytic spaces, the
theorem of Bismut, Gillet and Soulé can be extended to the case, where S is
singular.

We call an expression of the form E = F −G, where F ,G are holomorphic
vector bundles on X , a virtual vector bundle and define λ(E) := λ(F)⊗λ(G)−1.
Its Quillen metric is kE := kF · k−1

G . The construction of both the determinant
bundle and the Quillen metric is compatible with base change. If hF and hG
are hermitian metrics, then the Chern character form of the virtual bundle is
defined by ch(E , hE) := ch(F , hF ) − ch(G, hG). Since both sides of (9.6) are
additive, the formula holds also for virtual bundles.

An essential device consists in evaluating the Chern character form for
virtual bundles of degree zero, like

6 The direct image of F equals in the derived category locally with respect to S a
bounded complex of free sheaves of finite type on S, for which the determinant
sheaf is defined in the obvious way as product of determiniants: determiniants
with alternating exponents ±1.
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E =
(L − L−1

)⊗n ⊗
(
KX/S −K−1

X/S

)

F = L ⊗ (L − L−1
)⊗n

,

where L is a hermitian line bundle on X .
For these, the lowest terms of the Chern character forms are in degree

(n + 1, n + 1) and (n, n) resp.

Proposition. Let E and F be the above virtual line bundles. Then

(9.7) c1 (λ(E , kE)) = −2n+1

∫

X/S

c1(L, h)nc1(X/S, g)

and

(9.8) c1 (λ(F , kF )) = 2n−1

∫

X/S

c1(L, h)nc1(X/S, g)− 2n

∫

X/S

c1(L, h)n+1

Construction of the Line Bundle. For L = KX/S our fiber-integral formula (9.5)
and formula (9.7) yield:

Theorem. Let X → S, ωX/S be a universal family of Kähler-Einstein manifolds
of non-zero curvature k. Then there exists a natural hermitian line bundle on
S, whose Chern form is up to a numerical constant the Petersson-Weil form.
Namely

(9.9) ωPW = βn c1

(
λ((KX/S −K−1

X/S)n+1), k̃
)

,

where

βn =
(−π)n

2nkn(n + 1)!
,

(the Quillen metric on the respective line bundle being denoted by k̃).
This line bundle descends to the moduli space of canonically polarized va-

rieties. Its hermitian metric also descends (to a continous: continuous metric).

As mentioned before, the moduli space is locally the quotient of the base
spaces of versal deformations by finite groups of automorphisms — it may
be called a V-space in an analogous way to a V-manifold. The generalized
Petersson-Weil metric on S satisfies the strongest possible condition on dif-
ferentiability on S — its ∂∂̄-potential on the quotient may just be continous:
continuous though.
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10. Moduli Spaces of Extremal Kähler Manifolds

10.1 Construction of the Moduli Space
Extremal Kähler Metrics. Let (X, λX) be a polarized Kähler manifold. Accord-
ing to Calabi [CA 1979, 1985] one considers on the space U of all Kähler forms
ω on X which represent the polarization, the following functional Φ defined by

(10.1), Φ(ω) :=
∫

X

R2(ω) ωn, ω ∈ U, n = dim X

where R denotes the scalar curvature R = gαβ̄Rαβ̄ of ω.

Definition. A critical point of the functional Φ is called an extremal Kähler
form on X.

The Euler-Lagrange equation of φ is (cf. [CA 1982])

(10.2) R;β̄δ̄ = 0.

Remark. The Euler-Lagrange equation just means that the scalar curvature as
a differentiable function gives rise to a holmorphic: holomorphic vector field,
since (10.2) is equivalent to

∂̄

(
gαβ̄R;β̄

∂

∂zα

)
= 0

or in the notation of [CA 1982]
√−1∂̄ ↑g ∂̄R = 0.

One can see that any Kähler manifold of constant scalar curvature, in
particular any Kähler-Einstein manifold, is extremal.

Let J : Aut0(X) → Alb(X) be the Jacobi map of an arbitrary polarized
manifold. Then the Lie algebra a(X) of its kernel consists of those holomorphic
vector fields which are orthogonal to holomorphic one-forms with respect to
the natural pairing and thus coincides with the set of holomorhic; holomorphic
vector fields originating from covariant derivatives of complex-valued differen-
tiable functions by ”pulling up indices”. Note that kerJ is a linear algebraic
group by a theorem of Fujiki [FU 1978].

Thus the compactness of Aut0(X) is equivalent to

a(X) = 0

We call this condition (A).
Under this condition, any versal deformation is universal (cf. section 8).
By a theorem of Matsushima [MA 1957], Lichnerowitz [LI 1959] and Calabi

[CA 1979] on an extremal Kähler manifold the Lie algebra of holomorphic vector



50 ChapterB. Moduli Spaces of Compact Kähler Manifolds

fields is the direct sum of the ideal a(X) and the algebra of parallel holomorphic
vector fields.

In particular, on an extremal Kähler manifold (X,ωX) with compact
Aut0(X) any biholomorphic map in this group is an isometry. Moreover, any
extremal Kähler manifold with a(X) = 0) is obviously of constant scalar curva-
ture; although we will allways: always have to assume (A) from now on, we will
keep the notion of extremal manifolds. (If we waive this condition, holomorphic
families of extremal Kähler manifolds are hard to define).

Deformations of Extremal Manifolds. In our situation, all versal deformations
of a manifold X with condition (A) are universal (cf. section 8), we may expect
that the combination of extremality and compactness of Aut0(X) yields the
assumptions of our criterion for the existence of a moduli space.

What is the correct definition of a family of extremal Kähler manifolds?
In any case, it should induce a polarized family.

Definition. A family X e of extremal Kähler manifolds is a family of compact
manifolds f : X → S together with a C∞-family of extremal Kähler metrics
ω̃ = {ωs} on the fibers Xs, s ∈ S which represent a polarization.

This becomes a reasonable definition from the analytic viewpoint because
of the following

Theorem. Let (f : X → S, λX/S) be a family of polarized Kähler manifolds
with condition (A) and (X,λX) the fiber of a point s0 ∈ S. Let ωX be an
extremal Kähler form which represents the polarization. Then ωX possesses an
extension to a C∞-family of extremal Kähler metrics on the neighboring fibers
which represents the polarization, uniquely.

As usual, the notion of a ”holomorphic familiy: family” generates the no-
tion of a deformation:

Corollary. Any compact extremal Kähler manifold X with compact Aut0(X)
posseses a universal deformation.

Such universal deformations are just universal deformations of the un-
derlying polarized families with extremal metrics extended according to the
theorem.

We indicate the proof of the theorem: As observed in section 8, we can extend
ωX to a loacally ∂∂̄-exact (1, 1)-form ω̃X of class C∞ (even if S is singular). Our
approach is to set

ωX = ω̃X +
√−1∂∂̄Φ,

where Φ is a real-valued function, uniquely determined by ωX up to a function on
S which can be normalized. Using a differentiable trivialization of the underlying
holomorphic family, one considers Φ as a map from the base with values in a Sobolev
space Hk(X) of normalized differentiable functions on the fiber X.(Constant functions
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are zero). Any s ∈ S and function ψ ∈ Hk(X) close to s0 and zero resp. determine
a Kähler form on the respective fiber. Denote by R(ψ, s) the scalar curvature of the
Kähler form corresponding to ψ and s. Then R(ψ, s) can be considered as a map with
values in Hk−4(X) up to some error term which is due to the fact that the integral of
the scalar curvature over a fiber is no longer a constant, if we use a trivialization and a
fixed volume form. We want to solve the equation R(s, ψ(s)) = const. by means of the
generalized implicit function theorem. The partial derivative L : Hk(X) → Hk−4(X)
of this function with respect to the second derivative at (s0, 0) is

L(φ) = gαβ̄gγδ̄
(
φ;αβ̄γδ̄ + Rβ̄γφ;αδ̄

)
,

in terms of the metric and Ricci tensor on the central fiber X. A direct computation,
based upon R =const. on X, shows that

L(φ) = gαβ̄gγδ̄φ;β̄δ̄αγ .

In this setting, the assumption a(X) = 0 is applicable; one can see that the
elliptic operator L has a bounded inverse. The claim follows from classical regularity
theorems.

Remark. Although the extremal metrics on the neighboring fibers are uniquely
determined, uniqueness does in general not hold for the inducing locally ∂∂̄-
exact (1, 1)-form ωX unless the first Betti number of the fibers vanishes.

Another consequence of the theorem concerns isomorphisms of families of
extremal manifolds:

Let X e = (X → S, ω̃) and Ye = (Y → S, ω̃′) be families of extremal Kähler
manifolds with (A), and X , Y the underlying families of polarized manifolds.

Proposition. The isomorphism functor of extremal families is representable by
a a: a complex space Ie = IsomS(X e,Ye) → S such that the natural map
from Ie to the classifying space I of isomorphisms between X and Y is locally
biholomorphic. The map Ie → S is proper.

The first claim follows from the theorem. Since we only know that extremal
metrics are Aut0(X)-invariant (under condition (A)), and no general unique-
ness or existence theorem is known, one cannot say more. The classifying space
of isomorphisms carries the topology of compact convergence. As isomorphisms
of extremal Kähler manifolds are isometries, the properness follows from clas-
sical theorems mentioned in the beginning of our discussion.

All of the preceeding: preceding considerations can be realized for extremal
Hodge manifolds, i.e. for Hodge manifolds (X, L) equipped with an extremal
Kähler form which represents the Chern class of L.

We are now able to apply our criterion:

Theorem. There exist the moduli spaces Me and MH,e resp. of extremal Kähler
and extremal Hodge manifolds resp. for which the identity components of the
automorphism groups are compact.
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Remark. The above theorem includes also the existence of the moduli space of
Kähler-Einstein manifolds of positive curvature with compact automorphism
groups.

10.2 The Generalized Petersson-Weil Metric

It was impossible to generalize directly the Petersson-Weil metric to the case
of extremal Kähler manifolds. The approach to use harmonic representatives
of Kodaira-Spencer classes failed. Any proof of the Kähler property had to
depend upon a close relationship with certain symmetric tensors — like the
infinitesimal deformations of the metric tensor of a Kähler-Einstein metric. The
answer is based upon a formula of Berger and Ebin [B-E 1969] for the derivative
of the scalar curvature with respect to some parameter an: and a decomposition
theorem for symmetric tensors in the same article. The proper distinguished
representatives satisfy a forth order elliptic equation, and from the definition,
it is possible to verify the Kähler condition by a lengthy computation — at
least when the base is smooth. Here we shall present a fiber integral formula
and an approach to the Petersson-Weil metric which proved to be very natural
— a posteriori.

Infinitesimal Deformations of Polarized Manifolds. For a family f : X → S
of complex manifolds (always assume (A)) and a polarization λX of a fiber
X, the obstructions against its extension consisted in a holomorphic section
of R2f∗OX (cf. section 8). Infinitesimally the assignment of a tangent vec-
tor of S to its obstruction is (via the Kodaira-Spencer map) just the map
∪λX : H1(X,ΘX) → H2(X,OX), induced by the cup-product. Its kernel
H1(X, ΘX)λX

is the space of infinitesimal deformations of (X, λX). With re-
spect to the canonical isomorphism H1(X, ΘX)∼→Ext1(X,OX) the given po-
larization λX corresponds to the isomorphism class of an extension

(10.3) 0 → OX → ΣX → ΘX → 0

If the polarization is the Chern class of an element L ∈ Pic(X) the sequence
(10.3) is just the Atiyah-sequence, and H1(X, ΣX) is the space of infinitesimal
deformations of the Hodge manifold7 (X,L), and H0(X, ΣX) is the space of
infinitesimal automorphisms of (X, L).

The induced cohomology sequence may give some more insight. We assume
a(X) = 0, then the following is exact.
(10.4)
0 → H0(X,ΘX) δ0→H1(X,OX) → H1(X,ΣX) → H1(X, ΘX) δ1→H2(X,OX) . . .

The edge-homomorphisms δ0 and δ1 are just given by the cup product with the
polarization. The map δ0 is induced by the infinitesimal action of Aut0(X) on
Pic(X).

7 In the general case it corresponds to infinitesimal deformations of the manifold X
equipped with a refined Kähler class.
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The Generalized Petersson-Weil Metric. Let (X → S,L, ω̃) be a family of
polarized, extremal Hodge manifolds — L is a section of the relative Picard
group and ω̃ a family of extremal Kähler metrics. Let L be represented by an
actual line bundle denoted by the same letter. It is desirable to construct a
hermitian metric h on L such that ωX := 2πc1(L, h) induces on all fibers the
given extremal metrics. Starting from an arbitrary metric on L the method
described in section 10.1 works - and in a sense the ambiguity is taken from h
and ωX . These are now unique up to a factor and summand resp. which depend
only on the parameter s ∈ S. 8

Now as in the Kähler-Einstein case (cf. section 9.1), we take horizontal
lifts of tangent vectors ∂/∂s of the base of the family which give rise to cer-
tain representatives η = Bα

β̄
∂/∂zαdzβ̄ of the associated Kodaira-Spencer class

on the fiber X. A computation like in the Kähler-Einstein case furnishes the
following equations:

(10.5)(a) Bβ̄δ̄ = Bδ̄β̄

(10.5)(b) gβ̄αgδ̄γBβ̄δ̄;αγ = 0

(10.5)(c) Bβ̄δ̄;τ̄ = Bβ̄τ̄ ;δ̄

Equation (a) is the relationship of η with the first derivative of the met-
ric tensor, and (c) is the ∂̄-closedness of η, or the infinitesimal integrability
condition of the almost complex structure Bα

β̄
.

The second formula (b) can be recognized easily as the equation for the
constancy of the scalar curvature (cf. [B-E 1969]), where all terms but one
vanish on a Kähler manifold. It is related to decomposition theorems of spaces
of symmetric tensors with respect to certain elliptic operators in the same
article. (A more general construction related to an elliptic complex is due to
Calabi [CA 1960]). It just says that Bβ̄δ̄ is orthogonal with respect to the
L2-inner product to the space of tensors of the form

f;β̄δ̄

where f is a C∞-function. One can check in different ways that (10.5)(a)− (c)
define distinguished representatives of classes in H1(X, ΣX). The image of Bβ̄δ̄

in H1(X, ΘX) is the class of η. Given a harmonic (0, 1)-form uβ̄dzβ̄ on X, its
image in H1(X, ΣX) equals uβ̄;δ̄dzβ̄ ∧ dzδ̄ Thus, one can identify the kernel
of δ1, i.e. the space of infinitesimal deformations of the underlying polarized
manifold with the space of tensors Aβ̄δ̄ which satisfy the additional condition

(10.5)(d)
∫

X

Aβ̄δ̄vα;γgβ̄αgδ̄γgdv = 0, for all holomorphic 1-forms vαdzα.

8 The analogous construction works for manifolds with refined Kähler classes. So it
can also be applied in the Kähler case.
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Definition. Let a universal family of extremal, polarized Kähler or Hodge
manifolds be given. Associate to any Kodaira-Spencer class the distinguished
representative satisfying (10.5)(a)-(d) or (a)-(c) resp. Then the generalized
Petersson-Weil metric on the base of such a family is defined by the L2-inner
product (cf. (9.2)) of these tensors. We denote the corresponding differential
form on S by ω̂PW .

Remark. There is a natural map from the moduli space of (extremal) polarized
Hodge manifolds to the moduli space of polarized Kähler manifolds. This map
is also defined on the level of universal families. The fibers are smooth related to
the quotients of the form H1(X,OX)/H0(X, ΘX). One can read of the formula
of the Petersson-Weil metric that it is flat, when restricted to the fibers.

A Fiber-Integral Formula. Our general situation can be characterized as follows:
We are given a family f : X → S of compact complex manifolds over a complex
space S (which need not be even reduced at this place), and a (1, 1)-form ωX
on X which has locally a real ∂∂̄-potential of class C∞ and induces on all fibers
Kähler metrics. Then horizontal lifts of tangent vectors of the base are well-
defined, (even if ωX is only fixed up to some form f∗(ωS), where ωS is a locally
∂∂̄-exact (1, 1)-form on S). Such a differential form may be called admissible.

As discussed above the horizontal lift of tangent vectors furnishes repre-
sentatives of the Kodaira-Spencer classes related to symmetric 2-tensors, and
the L2-inner product of such constitutes a hermitian form on the tangent space
of S at the respective point. The form is positive definite, provided the family
is versal. Denote by ΩS the corresponding (1, 1)-form on S.9

An admissible form ωX induces a hermitian metric g on the relative anti-
canonical bundle.

Theorem. Let X → S, ωX be as above. Then

(10.6) ΩS = −
∫

X/S

(
2πc1(X/S, g)

ωn

n!
−R

ωn+1

(n + 1)!

)

(Here R is the differentiable function, whose restriction to a fiber is the
respective scalar curvature of ωX |Xs).

In particular, the real form ΩS possesses locally a ∂∂̄-potential of class
C∞.

The proof depends on the methods used in the Kähler-Einstein case (cf.
section 9.1).

Let (X → S,L, ω̃) be a family of extremal polarized Hodge manifolds with
a hermitian metric h and global (1, 1)-form ωX = 2πc1(L, h) arranged like in

9 Although the dimension of the tangent space need not be constant, differentiability
with respect to the parameter is not a problem (cf. footnote 5).



10. Moduli Spaces of Extremal Kähler Manifolds 55

the preceding section. The general theorem above now yields a fiber-integral
formula for the Petersson-Weil form:

Corollary. The Petersson-Weil form on the base of a universal family of ex-
tremal Hodge manifolds equals

(10.7) ω̂PW = −(2π)n+1

(∫

X/S

c1(X/S, g)
c1(L, h)n

n!
−R

∫

X/S

c1(L, h)n+1

(n + 1)!

)

in particular, ω̂PW is a Kähler form which possesses locally a Kähler potential.10

The value of the scalar curvature is in terms of the cohomology classes

R = c1(Xs) · c1(Ls)n−1/cn
1 (L)n

which does not depend on the parameter s.

The contribution from the second term in (10.7) can be cancelled: canceled
in the following way: If

∫
ωn+1
X = η , replace ωX by ωX − α−1f∗η, where α =

(n + 1)
∫
X/S

ωn
X is up to a factor just the (constant) volume of the fibers. This does

not affect horizontal lifts neither the metrics on the fibers.: This affects
neither the horizontal lift nor a metric on the fibers. This adjustment can be
raised locally with respect to S to the level of hermitian metrics on L, since η has a
∂∂̄-potential. One may call such admissible forms and hermitian metrics normalized
and make up a deformation theory in this way. However, the hermitian metric on L is
only unique up to a constant, a fact which caused a problem, when putting a positive
bundle on the moduli space.

Corollary. The Petersson-Weil form on the base of a universal family of ex-
tremal Kähler manifolds possesses locally a Kähler potential of class C∞.

If the first Betti number of the fiber vanishes, or more generally, if b1

equals the dimension of Aut(X), the corollary follows immediately from (10.7).
Otherwise: Otherwise, one has to use the remark in section 10.2. For details cf.
[F-S 1988b]).

10.3 Positive Line Bundles

We indicate how to construct a positve: positive line bundle on the mod-
uli spaces of extremal Hodge manifolds and extremal Kähler manifolds (with
integer-valued or rational) polarization, whose curvature is up to some numer-
ical constant the Petersson-Weil form ω̂PW or ωPW .

Local Construction. Let (f : X → S,L, ω̃) be a family of extremal Hodge
manifolds. The idea is to combine the formulas (9.7) and (9.8) for the Chern
forms of the determinat: determinant bundles arising from the virtual bundles

10 Again there is an analogous theorem for families of extremal Kähler manifolds with
refined Kähler classes.
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E = (L − L−1)⊗n ⊗ (KX/S − K−1
X/S) and F = L ⊗ (L − L−1)⊗n resp. with

the fiber-integral expression (10.7) for ω̂PW . This can be realized by a suitable
linear combination of these bundles:

Denote by a = c1(Xs) · c1(Ls)n−1 and b = c1(Ls)n natural numbers (not
depending on s) with R = na/b and set G = E⊕(na−2(n+1)b) ⊕F⊕4na.

Theorem. The Petersson-Weil form on the base of a universal deformation of
extremal Hodge manifolds equals up to a numerical constant the Chern form of
the determinant bundle of a virtual vector bundle on the total space, equipped
with the Quillen metric:

Namely

(10.8) ω̂PW =
−(π/2)n+1

n!
c1(λ(G, kG)).

For any universal deformation of an extremal Hodge manifold (X, L, ωX)
the action of the automorphism group of the fiber on the base (S, s0) descends
to the determinant bundle λ(G, k) by functoriality of the construction. Denote
by G ⊂ Aut(S, s0) the associated finite group. Then G acts trivially on some
power λ(G, k)m (e.g. take as m the order of G). In such a situation the power of
determinant bundle descends to a determinant bundle on S/G and the Quillen
metric descends to a continuous metric on the push-down. One may call this
a hermitian line bundle with respect to the V-structure or V-hermitian line
bundle.

Global Construction on the Moduli Space of Extremal Hodge Manifolds. First,
we can decompose MH,e into a disjoint union (of open and closed) subspaces
MP

H,e corresponding to isomorphism classes of (X, L, ωX), where P is the
Hilbert polynomial of L. We consider such a component. We fix a uniform
exponent such that all powers of the line bundles L in question are very ample.
Then one can show that such a MP

H,e is essentially a quotient of an open subset
U in the corresponding Hilbert scheme. The main point is that one can con-
struct a global family of extremal Hodge manifolds with a global G-invariant
hermitian metric on the line bundle. Now the method explained in 10.1 yields
globally a hermitian metric, whose Chern form is admissible for the family of
extremal manifolds, i.e. its restriction to the fibers yields the extremal metrics.
The construction of the determinant bundle as well as (10.8) can be globalized:
A power of the determinant bundle, equipped with the Quillen metric exists
globally on MP

e and yields the Petersson-Weil metric. This is the content of
the following

Theorem. The moduli space MH,e of extremal polarized Hodge manifolds pos-
sesses a V-hermitian line bundle whose Chern form equals up to a numerical
constant the Petersson-Weil form ω̂PW .
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Denote by M′
e ⊂Me the space of extremal Kähler manifolds with integer-

valued polarization and by p : MH,e → M′
e the natural projection which as-

signs to an extremal Hodge manifold the underlying polarized Kähler manifold.
Then p is proper, its fibers are essentially the quotients of the Picard groups
by the automorphism groups of the corresponding manifolds. We have seen in
the remark following (10.5) that ω̂PW is flat, when restricted to the fibers of p.
In particular on respective connected components of the moduli spaces (which
we denote by the same letter)

(10.8) ωPW = const.
∫

MH,e/M′
e

ω̂m+1
PW ,

where m is the dimension of the fibers of p.
On the other hand, let (G, k) be the determinant bundle on MH,e which

induces ω̂PW . Then like in section 9.2 we get

(10.9) c1((G − G−1)⊗m+1) = 2m+1

∫

MH,e/M′
e

c1(G, k)m+1.

Thus: Thus,

Theorem. The moduli space of M′
e of extremal Kähler manifolds with integer-

valued polarization carries a hermitian line bundle, whose Chern form is up to
a constant the Petersson-Weil form.

Corollary. All compact complex subspaces of the moduli spaces M′
e and MH,e

resp. including the moduli spaces of Kähler-Einstein manifolds are projective.

Note added in proof:
In the meantime A. M. Nadel has introduced multiplier ideal sheaves in order to

prove the existence of Kähler-Einstein metrics. Examples include Del Pezzo surfaces
and complete intersections of low degree, the blow-up: blowup of IP4 along the
intersection of two quartic hypersurfaces, and the cubic threefold along an elliptic
curve.

E. Viehweg has proved the quasi-projectivity of the moduli scheme of polarized
compact manifolds (with fixed Hilbert polynomial) and semi-ample canonical bundle.
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Bildgarben, Invent. math 16, 113-160 (1972)

Fricke, R., Klein, F. [F-K 1926] Vorlesungen über die Theorie der automorphen Funk-
tionen, Leipzig, 1926

Fujiki, A. [FU 1978] On automorphism groups of compact Kähler manifolds, Invent.
math 44, 226-258 (1978)

Fujiki, A. [FU 1981] A theorem on bimeromorphic maps of Kähler manifolds and its
applications, Publ. RIMS Kyoto 17, 735-754 (1981)

Fujiki, A. [FU 1984] Coarse moduli spaces for polarized Kähler manifolds, Publ.
RIMS, Kyoto 20, 977-1005 (1984)



References 59

Fujiki, A., Schumacher, G. [F-S 1988a] The moduli space of Kähler structures on a
real symplectic manifold, Publ. RIMS, Kyoto 24 141-168 (1988)

Fujiki, A., Schumacher, G. [F-S 1988b] The moduli space of extremal, compact Kähler
manifolds and generalized Weil-Petersson metrics, preprint 1988, 157 p., to appear
in Publ. RIMS, Kyoto

Gerritsen, L., Herrlich, F. [G-H 1988] The extended Schottky space, J. reine angew.
Math. 389, 190-208 (1988)

Gerstenhaber, M., Rauch, H.E. [G-R 1954] On extremal quasi-conformal mappings,
I, II, Proc. Nat. Acad. Sci, 40, 808-812, 991-994 (1954)
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