Library-based Language Extensibility

Sebastian Erdweg
University of Marburg

In the modern era of embedded domain-specific languages (DSLs) and language-
oriented programming, two core requirements arise: Languages have to be ex-
tensible and language extensions need to compose easily. Without language ex-
tensibility, programmers are bound to a single (typically general-purpose) pro-
gramming language and cannot benefit from all aspects of DSLs (for instance,
domain-specific syntax or IDE support). Since software projects typically touch
upon many domains, it is furthermore essential to support the composition of
DSL embeddings for the common case of conflict-free language composition. For
example, it should be possible to extend Java with SQL, XML or regular expres-
sions with regard to their concrete syntax, IDE support (e.g., code completion),
static analyses (e.g., XML Schema validation), and so forth. It should be simple
for programmers to use any combination of such language extensions within a
single source file.

To address these goals, we propose to organize and implement language ex-
tensions as libraries in the object language itself. In contrast to conventional
libraries, language libraries do not export functionality and data structures but
rather stipulate an augmentation of the object language. Due to our library-
based design, a programmer can easily activate and compose language extensions
by simply importing the corresponding language libraries; no external configu-
ration or reasoning is necessary to understand a given source file. Furthermore,
programmers can readily implement a language extension themselves by writing
an language library; no additional tools but the object language compiler are
required. Lastly, language libraries inherit the self-applicability property from
conventional libraries, that is, language extensions can be used for developing
language extensions: domain syntax, IDE support and static analyses for the
definition of syntactic extensions, IDE extensions, static analyses, and so forth.

In prior work [I], we have demonstrated the feasibility of our library-based
approach for extending a language’s syntax. We have developed an extension
of Java—called SugarJ—which supports the definition of syntactic sugar within
libraries. Each syntactic sugar extends the grammar of the object language and
specifies a transformation—called desugaring—from the extended syntax into
the base syntax. Programmers can activate and compose (domain-specific) syn-
tax extensions through simple import statements that bring the correspond-
ing libraries into scope. Technically, we support library-based syntax extensions
through an incremental parsing process that parses a file one top-level entry at a
time and adapts its own grammar as it goes along. The finally resulting abstract
syntax tree is desugared using all desugarings in scope.

For example, consider the following illustration of a SugarJ source file, where
we extended the base language with syntax for XML through an import of the
xml.Sugar library. In our embedding, we compose the grammar of XML with



SugarJ’s base grammar, so that SugarJ parses XML documents as part of the
surrounding Java syntax. Furthermore, the xml.Sugar library declares a desugar-
ing of XML to Java, which SugarJ applies after parsing. Programmers can easily
compose the XML embedding with other syntactic extensions such as SQL or
regular expressions by adding more import statements.

0 sookschemasunl _Cgsootbandrsialin, ~O)Eom =1
import xml.Sugar; - lﬂz -
import xml.Editor;
import xml.schema.BookSchema;

¥BookHandler

VappendBook
=public class BookHandler { ¥hoaok N
= public void appendBook(ContentHandler ch) throws SAXException { .’a:F nar
String title = "Sweetness and Power"; . editions
@Validate isPublished
& 2 ch.<{lib}book title="{new Strina(title)}"> getlanguage
<{lib}author nome="S5idney W. Mintz" />
a <{lib}editions>
<{lib}edition year="1885" publisher="Viking Press" />
(%] <flibledit yvear="1986" publiszher="Penguin Books" />
</{lib}editions= .
i
h2d <iliblauthor b

<{liblbook

This screenshot furthermore highlights some of the features of our current
work, that is, generalizing our library-based extensibility mechanism towards
IDEs. Accordingly, we promote to organize and implement IDE extensions within
libraries of the object language, so that simple import statements suffice to
activate and compose editor services of several DSLs. In the example above, we
import the xml.Editor library and the Book schema to bring syntax coloring and
code completion for XML into scope. Such editor services compose with editor
services for Java because each one only affects those fragments of the syntax
tree that correspond to Java or XML, respectively. We have implemented a
prototypical extensible IDE—called Sugarclipse—based on the Spoofax language
workbench [2] and its support for the declarative configuration and dynamic
reloading of editors. Sugarclipse provides editor services on a file-by-file basis,
according to the libraries in scope.

In comparison with related work, our library-based approach makes it partic-
ularly easy for users to compose language extensions (no external configuration,
no user-triggered regeneration of parsers, IDE plug-ins, etc.). In general, though,
languages do not always compose naturally and conflicts may arise. In our future
work, we plan to investigate declarative means for detecting and resolving con-
flicts between language libraries, as well as to explore library-based extensibility
for a language’s type system and semantics.

References

1. S. Erdweg, T. Rendel, C. Kastner, and K. Ostermann. Sugarj: Library-based syn-
tactic language extensibility. In OOPSLA. ACM, 2011. to appear.

2. L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. In OOPSLA, pages 444-463. ACM, 2010.



	Library-based Language Extensibility

