
The IDE Portability Problem and Its Solution in Monto

Sven Keidel
TU Delft, Netherlands

Wulf Pfeiffer
TU Darmstadt, Germany

Sebastian Erdweg
TU Delft, Netherlands

Abstract
Modern Integrated Development Environments (IDEs) sup-
port multiple programming languages via plug-ins, but devel-
oping a high-quality language plug-in is a huge development
effort and individual plug-ins are not reusable in other IDEs.
We call this the IDE portability problem.

In this paper, we present a solution to the IDE porta-
bility problem based on a language-independent and IDE-
independent intermediate representation (IR) for editor-
service products. This IR enables IDE-independent language
services to provide editor services for arbitrary IDEs, using
language-independent IDE plug-ins. We combine the IR with
a service-oriented architecture to facilitate the modular ad-
dition of language services, the decomposition of language
services into smaller interdependent services, and the use of
arbitrary implementation languages for services.

To evaluate the feasibility of our design, we have imple-
mented the IR and architecture in a framework called Monto.
We demonstrate the generality of our design by constructing
language services for Java, JavaScript, Python, and Haskell
and show that they are reusable in the Eclipse IDE and in a
web-based IDE. We also evaluate the performance of Monto
and show that Monto is responsive and has admissible perfor-
mance overhead.

Categories and Subject Descriptors D.2.13 [Reusable Soft-
ware]; D.2.6 [Programming Environments]: Integrated envi-
ronments

Keywords reusable software, integrated development envi-
ronments

1. Introduction
IDEs aid software developers through tool support such as
syntax highlighting, code completion, outline views, code
refactorings, error reporting, and integrated debuggers. In-

Eclipse Java

IntelliJ Haskell

Web Browser JavaScript

(a) Current situation: For 3 IDEs and 3 languages,
3× 3 = 9 language plug-ins have to be implemented.

Eclipse Java

IntelliJ

Monto
Haskell

Web Browser JavaScript

(b) With Monto, the number of required implementations
becomes linear: 3 + 3 = 6.

Figure 1: The IDE portability problem.

stead of focusing on a single language, modern IDEs provide
a plug-in mechanism that enables the integration of additional
languages while reusing large parts of the IDE’s infrastructure.
Nevertheless, the development effort of a language plug-in is
significant.

For example, consider the development effort1 of language
plug-ins234 for Scala in three different IDEs as of June 2016:

1 Lines of code (LOC) measured with cloc.
2 https://github.com/scala-ide/scala-ide
3 https://github.com/JetBrains/intellij-scala
4 https://github.com/dcaoyuan/nbscala

https://github.com/scala-ide/scala-ide
https://github.com/JetBrains/intellij-scala
https://github.com/dcaoyuan/nbscala


IDE years contributors LOC Scala + Java

Eclipse 5 61 73k + 5k
IntelliJ 8 58 220k + 26k
NetBeans 3 11 23k + 122k

This table makes two points. First, developing a high-quality
language plug-in is very costly. Second, each IDE requires a
separate language plug-in; even for a single language there
is no code sharing between plug-ins of different IDEs. More
generally, when m IDEs support n programming languages,
m× n separate language plug-ins have to be implemented,
each with multiple years of development effort. We depict
this situation in Figure 1a.

In the late 1960s, software developers faced a similar prob-
lem: How to compile high-level programming languages to
assembly of different CPU architectures? Later, Richards
referred to this problem as the portability problem [9]. For
m target architectures and n languages, the traditional so-
lution was to develop m × n separate compilers. Richards
proposed a better solution where each language compiles to
a machine-independent and language-independent interme-
diate representation (IR) and each architecture provides a
translation from the IR to assembly. Modern compilers such
as GCC follow this design and only require m+n implemen-
tation artifacts. The challenge of this design is to provide a
generic IR that is expressive enough such that all languages
can be compiled to it, but that is also restrictive enough such
that assembly can be generated for all target architectures.

In the context of IDEs, we call this problem the IDE porta-
bility problem: How to provide editor support for n program-
ming languages in m different IDEs using only m + n im-
plementation artifacts. To solve the IDE portability problem,
we propose an IDE-independent and language-independent
IR called Monto IR for representing editor-service products
(e.g., coloring information). For each language, we require a
language service that takes source code and produces editor-
support descriptions in the Monto IR. For example, the pro-
duced Monto IR can describe the syntax highlighting, error
reporting, and code-completion proposals, but independent
of the IDE. On the IDE side, we require a Monto plug-in that
interprets the Monto IR and presents the editor support to the
IDE user. Thus, as depicted in Figure 1b, for m IDEs and
n languages, our design reduces the implementation effort
from m × n language plug-ins to m Monto plug-ins and n
language services. Moreover, our design effectively separates
decisions about what to present to the user (language-specific)
from how to present it (IDE-specific).

Modern IDEs not only provide editor support for lan-
guages, but also provide a platform for the integration of
custom language services. But in our setting, an IDE only has
a single plug-in that interprets the Monto IR. To retain the
extensibility of existing IDEs, we propose a service-oriented
architecture called Monto architecture for connecting lan-
guage services and IDEs, where all messaging is done via the

network and all messages adhere to a simple protocol. This
architecture enables (i) the modular addition of language ser-
vices for new languages, (ii) the decomposition of a language
service into multiple smaller services that can use each other’s
results, and (iii) the implementation of services and IDEs in
any implementation language. The central component of our
architecture is the message broker that implements a service
registry and routes messages between IDEs and language
services.

In summary we make the following contributions:

• We identify the IDE portability problem and propose its
solution based on a common IR.

• We present the Monto IR for describing editor support in
an IDE-independent and language-independent style.

• We present the design of a service-oriented architecture
for connecting language services and IDEs modularly.

• We evaluate the design of Monto by implementing Monto
plug-ins for Eclipse and for a Web-Editor and language
services for Java, JavaScript, Python, and Haskell with
only 2 + 4 implementations.

• We show with measurements that the Monto architecture
responds fast to user input, even if source documents are
large.

2. Design Overview and Architecture
In this section, we first give an overview on the general
workflow of Monto and then describe the major components
of the architecture. Figure 2 illustrates the workflow of Monto
through an example featuring two Java services. The parser
service takes source code as input and produces ASTs. The
outline service takes source code and an AST as input and
produces an outline of the code.

When a user changes a source file 1 , the Monto plug-in
within the IDE sends a source message 2 to the message
broker. Each source message contains a unique ID called
version, the file name, the language, and source code of the
source file. Editor products include the version ID of the
source, such that we can easily discard outdated products.

The message broker is responsible for distributing source
and product messages to services that take them as input. The
broker distributes messages to services in parallel but respects
dependencies between services. In our example, the broker
first forwards the source message to the parse service 3 . The
Java parser extracts the source code from the source message
and parses the code into an AST. The parser then encodes the
AST as a product message according to the Monto IR and
sends the message back to the broker 4 .

Now the broker has all information required to trigger the
outline service and forwards the source and AST message
to the outline service 5 . The outline service computes an
outline, encodes it according to the Monto IR, and sends it
back to the broker.



The broker forwards all product messages to the IDE as
soon as they arrive 6 . Inside the IDE, the Monto plug-in
interprets the Monto IR of the received product messages and
updates the editor view of the IDE and the user observes the
result 7 . This workflow is repeated on every change to the
source code.

Monto IR Monto’s IR is a serializable representation of
visible IDE artifacts, like an outline view. The Monto IR
for outline views uses JavaScript Object Notation (JSON) to
represents the hierarchical tree-like structure of an outline.
The following code is the Monto IR for an outline of a Java
class:
[ { "label": "de.tu.darmstadt.graphics",

"link": { "offset": 8, "length": 24 },
"icon": "http://localhost:8080/package.png" },

{ "label": "Point",
"link": { "offset": 48, "length": 5 },
"icon": "http://localhost:8080/class-public.png",
"children": [

{ "label": "x : int",
"link": { "offset": 69, "length": 1 },
"icon": "http://localhost:8080/field-private.png" },

...
]

}
]

Each outline item contains a descriptive label, a link to a
position in the code, an icon that describes the type of element
and a list of child nodes. The outline view that corresponds to
the IR code above is shown in Figure 3a displayed in Eclipse
and Figure 3b displayed in a web-based IDE. The IR has to
be flexible enough to support object-oriented languages like
Java and functional languages like Haskell (see figure 3c and
3d). Furthermore, the IR has to be limited, so that all IDEs
can still display the information of the outline. For example,
if the location of icons would have been encoded with paths
instead of URLs, a Web-Editor would not be able to display
the icons, because direct file access is forbidden in browsers.

Language services In Monto, language services replace the
role of language plug-ins. A language service takes a source
document or products as input and returns Monto IR as output.
Services receive the input as a source message and send their
output as a product message via the network. The network
guarantees loose coupling between services, broker and IDE.
In particular language services can be implemented in a
language that is different from the implementation language
of the IDE. This property is required so that language services
work with every Monto plug-in.

Services can be decomposed into smaller services that fo-
cus on a single task. This makes services easier to understand
and increases their reusability. A service that is often reused
is the parsing service, because many other services need an
abstract syntax tree (AST) to produce their result. Services
that need products of other services as input define a depen-
dency on these products that is registered in the broker. The
broker then sends requirements of a service bundled together.
This allows services to respond directly to each request of the
broker, without the need to cache products of other services.

Note that we currently assume that services produce their
product by considering a single source file, but certain types
of services need to consider multiple source files. We discuss
in section 7 how the design of Monto can be extended to
allow services to process multiple source files.

Monto plug-in Monto requires one Monto plug-in per IDE.
Its main role is to react on source code changes, sending
document updates in form of source messages to the broker,
interpreting Monto IR and updating the user interface by
calling the API of the IDE. After the plug-in received a
response from the services, it might update the highlighting
of code, update the outline view, or indicate new errors.
The Monto plug-in communicates over the network with the
broker to guarantee low coupling to the services. We require
that a Monto plug-in not contain any language-specific code,
otherwise new language services cannot be added without
changing the code of the plug-in.

There are differences in the implementation between
Monto plug-ins for different IDEs, e.g. a plug-in for a Web-
based IDE has to dynamically generate HTML, whereas a
plug-in for Eclipse simply calls an API method. Nonethe-
less, the plug-in should preferably use functionality that is
provided by the API of the IDE rather than implementing
functionality from scratch, to achieve a consistent user expe-
rience.

3. Monto IR
To separate language services from IDEs, we need to find
an IR that language services can use to instruct an IDE.
Specifically, Monto IR must satisfy the following design goals
to ensure that it indeed solves the IDE portability problem
illustrated in Figure 1:

• Monto IR must be reusable across IDEs such that different
IDEs can interpret it. Consequently, the design of Monto
IR must be IDE-independent and cannot rely on specific
visualization styles.

• Monto IR must be reusable across languages, such that dif-
ferent languages can target it. Consequently, the design of
Monto IR must be language-independent and expressive
enough to support a wide range of languages.

• Monto IR must be platform-independent because existing
IDEs and languages use different implementation lan-
guages.

• Monto IR must provide unique identifiers such that IDE
requests and service responses can be correctly linked.

Our concrete design for Monto IR follows the policy that the
IR should be low-level and explicit. The idea is that IDEs
solely focus on rendering editor information and should not
do any sophisticated processing. All such processing should
instead happen in language services. For example, instead of
providing regular expressions for syntax coloring, Monto IR
declares the color of each character explicitly, such that the



Eclipse

class Hello {
...

}

Hello.java

Monto
Plug-In Broker ...

Java
Parser

Java
Outline

changes
1

observes 7

name: "Hello.java",
version: 1,
langauge: "java",
contents: ...

Source Message

name: "Hello.java",
version: 1,
langauge: "java",
contents: ...

Source Message

source: "Hello.java",
version: 1,
language: "java",
product: "ast",
contents: ...

Product Message

name: "Hello.java",
version: 1,
langauge: "java",
contents: ...

Source Message

source: "Hello.java",
version: 1,
language: "java",
product: "ast",
contents: ...

Product Message

source: "Hello.java",
version: 1,
product: "outline",
contents: ...

Product Message

source: "Hello.java",
version: 1,
language: "java",
product: "ast",
contents: ...

Product Message

source: "Hello.java",
version: 1,
product: "outline",
contents: ...

Product Message

2

3

4

5

6

Figure 2: Communication between components in the Monto architecture.

(a) Java in Eclipse (b) Java in Browser

(c) Haskell in Eclipse (d) Haskell in Browser

Figure 3: Outline views for different languages and IDEs.

IDE can overlay the coloring but does not have to process the
source code. Using a low-level, explicit IR simplifies the IDE
plug-ins and provides more flexibility to language services.
We address platform-independence by encoding Monto IR
messages in JSON.

In the remainder of this section, we describe the concrete
design of Monto IR for source messages, syntax highlighting,
ASTs, outline views, and error messages. As a running
example, we use the following Java class:

public class Hello {
String world = "World";
public static void main(String[] args) {

System.out.println("Hello " + new Hello().world);
}

}

3.1 Source and Product Messages
An IDE sends a source message to the language services
upon a change to the source code. The format of the source
message is fairly straightforward:
Source ::= { name: String,

version: Int,
language: String,
content: String }

That is, each source message contains an identifier name that
uniquely identifies the source-code artifact, a unique ID
version that identifies the current version of the source artifact,
the language used in the source artifact language, and the
content of the source artifact content. The Monto plug-in is
responsible for using a fresh version number in every source
message it sends. For our example Java class, the IDE sends
the following message. To improve readability, we leave out
quotation marks for JSON field names in this paper.
{ name: "∼/project/src/Hello.java",

version: 5, // running number
language: "Java",
content: "public class Hello {\n String world = ..." }

Services send their result encoded in JSON as product
messages back to the broker. Product messages have the
following format:
Product ::= { name: String,

version: Int,
product: String,
content: JSON }

The name and version field of a product message link it to a
specific version of a source-code artifact the product was
derived from. The field product describes the sort of product
that is contained in this message and the content field contains
the actual pay-load of the service.

3.2 Syntax Highlighting
Syntax highlighting selects different fonts for different parts
of a source file. Typically, syntax highlighting associates



a font (family, color, weight, etc.) with specific syntactic
or semantic classes of code elements featured in the edited
language. The IDE then displays each code fragments in the
selected font.

For Monto IR, we must abstract all language-specific and
IDE-specific aspects of syntax highlighting. In particular,
Monto IR cannot refer to language-specific classes of code
elements. Instead, we opt for a low-level description of syntax
highlighting using messages of the following format:5

Highlighting ::= Token*
Token ::= { offset: Int,

length: Int,
font: Font }

Font ::= { color?: Color, bgcolor?: Color,
family?: String, size?: Int,
style?: String, variant?: String,
weight?: String }

Color ::= { red: Int, green: Int, blue: Int }

We describe syntax highlighting as a sequence of non-
overlapping highlighted tokens. Each token is identified
by its character offset in the source document and the num-
ber of characters it includes. We describe the font used for
highlighting through attributes identical to those in CSS.

Not all language services require the full flexibility of our
highlighting IR. However, services are free to confine them-
selves to use only a subset of the font attributes. Conversely,
not all IDEs support the full flexibility of our highlighting
IR. For example, many IDEs do not support multiple font
families within a single text editor. However, IDEs are free
to ignore those parts of the IR that they cannot render. Fi-
nally, the coloring of syntax sometimes is IDE-specific, for
example, because the IDE uses a dark theme for its GUI com-
ponents. As we describe in Section 4, language services in
Monto can be configured by the IDE or its users.

For our example Java class, the Java service sends the
following message:
[ // public class

{ offset: 0, length: 12, font: {/∗bold blue∗/}},
// Hello {\n String world =
{ offset: 13, length: 24, font: {/∗black∗/}},
// "World"
{ offset: 38, length: 7, font: {/∗italic green∗/}},
// ;
{ offset: 45, length: 1, font: {/∗black∗/}},
... ]

3.3 Abstract Syntax Trees
An abstract syntax tree represents the syntactic structure
of a program. While an AST is not directly useful for
visualization in an IDE, it serves as an intermediate result
that can be shared by services: A parser service can produce
the AST and other services can require the AST as input. To
support this scenario, we designed the following Monto IR
for representing ASTs:
AST ::= { name: String,

offset: Int,
length: Int,
children: AST* }

5 We write A* to denote a JSON array of A elements and k?: v to denote an
optional field k in the surrounding JSON object.

Our AST representation mostly corresponds to s-expressions:
AST nodes feature a name and a list of children. In addition,
our AST nodes provide a pointer into the source document,
encoded through offset and length. This way, other services
can extract the original text from the source document when
needed. For our example Java class, the Java parser sends the
following message:
{ name: "CompilationUnit", offset: 0, length: 150,

children: [
{ name: "ClassDeclaration", offset: 0, length: 149,

children: [
{ name: "Modifiers", offset: 0, length: 6,

children: [{name: "public", ...}] },
{ name: "Identifier", offset: 13, length: 5,

children: [] },
{ name: "FieldDeclaration", offset: 23, length: 23,

children: [ ... ] },
{ name: "MethodDeclaration", offset: 49, length: 98,

children: [ ... ] } ] } ] }

3.4 Outline Views
An outline view provides a structural overview of a source
document, typically in a hierarchical form. For example, an
outline for Java shows type declarations, fields, and methods.
IDEs often display a representative icon in front of each
outline item to illustrate the kind of the item. Moreover, when
the user clicks on an outline item, IDEs often move the cursor
to the definition site of the item in the source document.

To support arbitrary languages, the Monto IR cannot make
any assumption on the structure of the outline. For example,
as was shown in Figure 3, the Monto IR must support
languages that mostly consist of top-level declarations like
Haskell as well as languages that use more deeply nested
structures like Java. To this end, we designed the following
IR for outline views:
Outline ::= Item*
Item ::= { label: String,

icon?: URL,
children: Item*,
offset: Int,
length: Int }

The root of the outline IR is a list of outline items, such that
multiple top-level declarations can be displayed. Each item
defines a text label for display in the outline. The label is
free-form and can as in Figure 3 contain typing information
in addition to the name of the declaration. We declare the icon
of an outline item through an optional HTTP URL. This way,
an IDE can load and cache the icons for outline items. To
represent nested structures, an outline item can also declare a
list of subitems. Finally, each outline item provides a pointer
into the source document, encoded through offset and length.
For our example Java class, the Java outline service sends the
following message:

3.5 Error Reporting
Many language services detect and report errors, warnings,
or other information about a program. Example services that
produce such messages include parsers, spell checkers, type
checkers, static analyses, and unit testing. Besides providing



[ { label: "Hello",
icon: "http://localhost:8080/class-public.png",
offset: 13,
length: 5,
children:
[ { label: "world : String",

icon: "http://localhost:8080/field-default.png",
offset: 30,
length: 5 },

{ label: "main(args) : void",
icon: "http://localhost:8080/method-public.png",
offset: 68,
length: 4 } ] } ]

a list of such messages, IDEs typically highlight the location
of the messages directly in the source code to provide visual
feedback to the user. Moreover, IDEs typically display a
detailed description of the message when the user hovers
with the mouse over a highlighted location in the code. To
represent error reports, we designed the following IR:
Report ::= Message*
Message ::= { offset: Int,

length: Int,
level: Level,
category: String,
description: String }

Level ::= "info" | "warning" | "error"

A report consists of a sequence of messages. Each message
links to a region in the source code via offset and length and
each message declares a severity level, which is either info,
warning, or error. Finally, each message declares a message
category (such as spelling, type, test, etc.) and each message
contains a detailed description. The category enables users
to filter for messages in the global message list within the
IDE. For our example Java class, a service that applies a lint-
style analysis could send the following report, where the first
message marks an error and the second one marks a warning:
[ { offset: 0,

length: 0,
level: "error",
category: "lint",
description:
"Class ’Hello’ must not be in default package.",

},
{ offset: 23,

length: 12,
level: "warning",
category: "lint",
description: "Field ’world’ is public but non-final." } ]

3.6 Summary
The IR plays a central role in solving the IDE portability
problem, where it serves as a standardized message format.
We have presented standardized IR designs for different
products: syntax highlighting, ASTs, outline views, and error
reporting. In each design, we were careful to provide a generic
representation such that the IR is reusable across IDEs and
languages. So far, our work has focused on continuous editor
services that run after every change to the source code. In
Section 7, we discuss how our future work will add support
for interactive editor services such as code completion or
debugging.

DiscoveryResponse ::= ServiceDescription*
ServiceDescription ::= { service_id: String,

label: String,
description: String,
options: Option* }

4. Service-Oriented Architecture
The service-oriented architecture of Monto enables (i) the
modular addition of new language support, (ii) the decom-
position of a language service into multiple smaller services
that can use each other’s results, and (iii) the implementation
of services and IDEs in any implementation language. In this
section, we explain why these properties are important for
Monto and how Monto achieves them.

Modular addition of languages. Modern software projects
often use multiple programming languages or domain-
specific languages (DSLs) in the style of language-oriented
programming [3, 13] to program different aspects such as the
application logic, front-end, data persistence, or configuration
and deployment. For this reason, existing IDEs support the
modular addition of languages as plug-ins and we require
the same flexibility for Monto. However, in comparison to
traditional IDEs, a Monto language service simultaneously
becomes available in all Monto-capable IDEs.

To support the modular addition of languages, Monto em-
ploys a service-oriented architecture where language services
can be registered dynamically with the message broker ( 1 in
figure 4). To register a language service, the service sends an
initial request of the following form to the message broker:

RegistrationRequest ::= { service_id: String,
label: String,
description: String,
products: String*,
dependencies: Dependency*,
options?: Option* }

That is, a service identifies itself through a unique ID
service_id and provides a user-readable label and descrip-
tion. It also declares the names of the products it produces, its
dependencies on products of other services, and its configura-
tion options. When the broker receives a registration message,
it adds edges to a graph that represents the dependencies
between services and products of other services. Moreover,
the broker allocates a port for communication with the new
service and informs the service:

RegistrationResp ::= RegistrationSucc | RegistrationFail
RegistrationSucc ::= { connect_to_port: Int }
RegistrationFail ::= { error: String }

After services successfully registered at the broker, the
IDE can request information about running services by
sending a discovery request 2 to the broker. The broker
responds with a list of descriptions of running services
that contains an id, a label, a description text and a list of
configuration options that can be displayed in a configuration
menu to the user.



Monto
Plug-In Broker

Java
Parser

Java
Highlighter

Java
Outliner

Observe 4

Change 5

Discover 2

Response 3

New Config. 6

Registe
r 1

New
Config. 7

Register 1

Register 1

Figure 4: Service Discovery and Configuration in Monto.

Decomposition of services into smaller services. Monto
services can provide multiple products. Thus, in principle, a
single language service could implement all editor support
for a language. However, there are often alternatives for indi-
vidual aspects of a language. For example, there is a variety
of type checkers (Flow, Strobe, Check) and static-analysis
tools (JSLint, JSHint, ESLint) for JavaScript. To support their
flexible replacement and composition, Monto supports the
decomposition of a language into microservices. Specifically,
multiple services can jointly implement the tooling for a
single language, where different services produce different
products.

A service can depend on source code or on the result of
other services. Services declare their dependencies during
registration:
Dependency ::= SourceDependency | ProductDependency
SourceDependency ::= { language: String }
ProductDependency ::= { service_id: String, product: String }

For example, the Java outline service depends on the source
code and the AST. It sends the following registration request:
{ service_id: "javaOutliner",

label: "Java Outline Service",
description: "Produces an outline view for Java code",
products: [ "outline" ],
dependencies: [ { language: "java" },

{ service_id: "javaParser",
product: "ast" } ] }

Different implementation languages. The implementation
language of a language service is often different from the
supported language and from the implementation language of
the IDE. For example, Flow and Strobe are implemented
in Ocaml, Check is implemented in JavaScript, and our
Haskell language service uses the Haskell API of the Glasgow
Haskell Compiler (GHC). The support for services and IDEs
implemented in different languages is essential for facilitating
the integration of new IDEs and language services and to
avoid bias.

The service-oriented architecture of Monto integrates
services and IDEs written in different languages through

the standardized Monto IR. We use JSON for the encoding
of the IR because of the wide-spread availability of JSON
libraries in different languages. For communication, Monto
uses ZeroMQ, a messaging library that provides a minimal
abstraction layer over raw network connections. ZeroMQ
provides a small API that currently has bindings for 50
languages and thus does not restrict the implementation
language of services or IDEs.

Service configuration. Services like syntax highlighting
or spell checking need to be configurable to allow users to
select a coloring scheme or a language. Like traditional IDEs,
we would like to provide a graphical UI for users to adjust
their configuration. Since a Monto IDE plug-in is unaware of
the services it presents, we introduce a protocol for service
configuration.

To display a configuration dialog, the IDE can request
a list of running services from the message broker 2 . The
response 3 contains a list of available configuration options
for each service:
Option ::= { type: "boolean", option_id: String,

label: String, value: Bool }
| { type: "number", option_id: String,

label: String, value: Int }
| { type: "text", option_id: String,

label: String, value: String }
| { type: "select", option_id: String,

label: String, value: String,
values: String* }

| { type: "group", label: String,
members: Option* }

Each configuration option has a unique ID, a user-readable
label, and a default value. A service can declare options of
different types, like boolean options which will be displayed
as check boxes in the configuration dialog.

The Monto plug-in interprets the configuration description
of the services and presents a configuration dialog to the user
4 . The current configuration is stored and persisted on the

IDE-side, to a per-IDE configuration. When the user changes
the configuration 5 , the IDE sends the new settings to the
message broker 6 in the form of an associative array:



Configuration ::= { service_id: String, settings: Setting* }
Setting ::= { option_id: String, value: String }

The broker forwards the configuration to the corresponding
service 7 , which validates the new configuration and changes
its internal state. During discovery and configuration, plug-in
and services communicate via the broker to reduce coupling.

5. Technical Realization and Case Studies
In the previous sections, we presented the design of the
Monto IR and the Monto service-oriented architecture. In
this section, we present two IDE bindings and four language
services that we realized to evaluate the feasibility and
generality of our design and to demonstrate that our design
indeed enables language support across IDEs without code
duplication. All of our source code is available online.6

As a basis for our evaluation, we developed an implemen-
tation of the message broker in Haskell. The broker imple-
mentation exactly follows the design outlined in Section 4,
using ZeroMQ for message passing.

To demonstrate the generality of our design, we chose
IDEs and languages of various character. We developed
generic Monto plug-ins for the following IDEs:

• Eclipse is an IDE implemented in Java and supports a
wide range of languages. We used Eclipse IMP [2] to
build a generic Monto plugin-in that sends source code
to the broker after any code change. The plug-in accepts
product messages from the broker and can render all IRs
from Section 3.

• CodeMirror is a text editor implemented in JavaScript
and runs in the browser. As such, CodeMirror has lim-
ited file access and only supports WebSockets. We build
a generic Monto plug-in that sends source code via Web-
Sockets to a small proxy, which forwards the messages
to the broker via ZeroMQ. The plug-in accepts product
messages via the proxy and can render all IRs from Sec-
tion 3. Since CodeMirror is just a text-editor pane, we
added custom UI elements to render outline views.

The IDE bindings are language-independent and only depend
on the Monto IR. That is, they can render source code of any
language for which a language service exists. We developed
language services for the following languages:

• Java is a statically typed, compiled, class-based object-
oriented language. We provide separate services for syntax
highlighting, parsing, outline viewing, and code comple-
tion (not described in this paper), where the latter two
services both depend on the result of parsing.

• JavaScript is a dynamically typed, interpreted, prototype-
based object-oriented language. We provide separate ser-
vices for syntax highlighting, parsing, outline viewing,
code completion (not described), type checking, and spell

6 https://github.com/monto-editor/

checking. Both, the type and spell checker simply wrap
existing tools Flow 7 and Aspell to generate corresponding
error reports in the Monto IR. The spell checker is config-
urable and allows users to select a language as well as to
deactivate the checking of comments or string literals.

• Python is a dynamically typed, interpreted, multi-paradigm
language. We provide separate services for syntax high-
lighting, parsing, outline viewing, and code completion
(not described). We implemented the services for Java,
JavaScript, and Python in Java, factoring out common
code into a reusable library.

• Haskell is a statically typed, compiled, functional lan-
guage. We provide a single service that supports syntax
highlighting, parsing, outline viewing, and type check-
ing. We implemented this service in Haskell by using the
Haskell compiler GHC as a library and simply translating
its outputs into the Monto IR.

Using Monto, our two IDE bindings can interoperate with
any of the four supported languages despite the variety of
supported languages and despite the implementation lan-
guages used for different components (Java for Eclipse;
JavaScript for CodeMirror; Haskell for the broker; Java for
Java, JavaScript, and Python; Haskell for Haskell).

6. Performance Evaluation
Monto’s design requires language services to encode all
information as JSON messages according to the Monto IR.
Furthermore, Monto’s service-oriented architecture requires
network-based communication that is routed through the
message broker. In this section, we empirically evaluate the
impact of Monto’s design on its performance. Specifically,
what is the response time after a user edits a source file?

Representatively, we measured the response times of the
Java tokenization, parsing, and outline services. To identify
the overhead of Monto, we slightly modified the Java ser-
vices to keep track of the inherent processing time used for
tokenization, parsing, and outline extraction, but excluding
the time used for translation into the IR, for serialization, and
for deserialization.

To measure the response times of the Java services, we
implemented a special Monto plug-in that runs stand-alone
rather than within an IDE. The plug-in simulates user changes
to the source file and sends a source message to the broker for
each change, thus triggering the processing in a controlled
fashion. After every sent source message, the plug-in waits
and measures the time until it receives the service responses.
We repeat the measurement 10 times for each source file and
take their mean. After each measurement, we wait 100ms to
allow the system to reach an idle state.

As Java corpus, we used the main source files from the
Apache Ant project, version 1.9.7. The corpus contains 851

7 http://flowtype.org/

https://github.com/monto-editor/
http://flowtype.org/


Figure 5: Distribution of Apache Ant file sizes.

Figure 6: Response times of individual Java language ser-
vices relative to the file size.

source files containing 222k lines of code. Individual files
of the corpus contain between 24 and 2725 lines of code,
with the median at 148 and the mean at 261. We show the
distribution of file sizes as a box plot in Figure 5

Response time. Figure 6 shows the response times of the
Java services for the source files of Apache Ant. We plot the
response times for each service individually. The graph shows
that for all files, the IDE receives the highlighting response
first, followed by the parsing response (which is discarded by
the IDE), and finally the outline response. While the outline
service has to wait for the parsing service because it requires
the AST, the parsing and highlighting services run in parallel.
We consider a response to be complete when the IDE received
the outlining response.

The graph shows that the response time grows linearly
with the file size. For example, the system responds to files
with ≤ 700 lines of code in under 50ms and to files with
≤1250 lines of code in under 100ms. To bring such numbers
into context, Nielsen has shown that users do not perceive
any notable delay if a system reacts in under 100ms [8]. For
Monto, this means that there is no notable delay for files with
≤1250 lines of code, while larger files impose a notable delay
that linearly grows with their size.

7. Discussion and Future Work
In this section, we discuss design decisions of the Monto
architecture and possible extensions of the design.

Stateless services. One of the central design decisions of
Monto was that language services should be stateless. The
main benefit of this design is that it is easy to add new
language services. For example, the outline service requires
both the source code and the AST of the source code. Since
the service is stateless, the broker is responsible to invoking
the service with all required data as input. That is, the
broker delays the invocation of the outline service until
the AST is available, joins the source file and AST with
corresponding versions, and submits them jointly to the
outline service. A stateful service could have implemented
the same logic, but we rather provide it once in the broker
for all services. A disadvantage of stateless services is that
services cannot support incremental processing of source-
code changes, which requires state in general. However, as
our performance evaluation showed, even non-incremental
processing provides fast enough feedback. Nevertheless, for
computationally involved services, we want to investigate
how to support incrementality in future work.

Message Compression. File systems like ZFS and BTRFS
use compression to increase the writing speed at the cost of
higher CPU usage and slower reads. We could use a similar
technique in Monto to reduce the size of source and product
messages and the messaging overhead.

We evaluated this technique empirically by measuring the
latency of sending messages uncompressed and the latency
of compressing the message and sending the compressed
message. As a compression algorithm we used LZ4, a fast
compression algorithm that is also used by the file systems
mentioned above. Our measurements showed that compres-
sion becomes viable only when source messages are larger
than 30MB. However, source documents are typically much
smaller. We conclude that compression is not worthwhile for
Monto.

File Dependencies. The current Monto architecture as-
sumes that a service can produce its result for a file with-
out considering other files. In general, this assumption is
untenable. For example, to type check a Java source file or
to provide code completion, the service needs information
about methods defined in other files that have been imported.
Support for such file dependencies is work in progress; here
we only outline our approach.

When a source file changes, the broker triggers relevant
language services like it does now. The broker makes sure
to delay language services that have a declared dependency
on another service (e.g., outline on parsing), such that all
relevant information is available when the service is called.
For file dependencies, this is not possible because file de-
pendencies are inherently dynamic and can only be detected
when analyzing a concrete source files (e.g., by inspecting



the import statements). Thus, the broker cannot anticipate file
dependencies. Instead, we allow language services to inter-
rupt processing in order to request additional products from
the broker. We plan to adopt an existing incremental algo-
rithm [4] for reestablishing consistency in face of changes
and dynamic dependencies.

Interactive Services. Monto as presented in this paper only
triggers language services when a source file changes. While
this is sufficient for a large set of editor services, it does not
support services that react to user interactions other than file
changes. For example, code completion and hover help are
triggered by user interactions (key combination or mouse
hovering) rather than by source-file changes. More sophisti-
cated interactive services include read-eval-print loops and
debuggers.

We believe that our design extends to interactive services,
but we need to design new IR forms for communicating
interactions. As in our current design, these interaction IRs
must be IDE-independent and language-independent. This
ensures that an IDE can submit interactions to the broker
without knowledge of the language service, and a language
service can interpret interactions independent of the IDE that
submitted it. Similarly, we need to design new IR forms for
presenting the results of interactive services, such as a list
of code-completion proposals or a debugger state. In our
implementation, we already support code completion, but the
design of further interactions is future work.

8. Related Work
We discuss the relation of Monto to other systems that at least
partially address the IDE portability problem.

Existing IDEs like Eclipse and IntelliJ provide plug-in
mechanisms [1] for the modular extension with new features
and programming languages. These plug-in mechanisms en-
able a single IDE to support multiple languages. However, as
discussed before, plug-ins are closely coupled to a particular
IDE and are not reusable in other IDEs. The development
effort for Scala plug-ins in Eclipse, IntelliJ, and NetBeans
that we showed in Section 1 confirms that the development of
language plug-ins is costly and there is no code reuse across
IDEs. Thus, existing IDEs do not solve the IDE portability
problem.

Microsoft’s language server protocol8 (LSP) is a protocol
between a client (like an IDE) and a language server. Com-
pared to Monto, the client communicates directly with the
language server and a central component like the Monto bro-
ker is missing. In contrast to Monto, the protocol is stateful
and the language server has to maintain and update a copy of
the document. A language server can signal the client if the
whole document contents or incremental updates should be
sent to the server. The main advantage of Monto compared
to LSP is that language services can be split up into small

8 https://github.com/Microsoft/language-server-protocol

services that share results, whereas in LSP the sharing of
results is not part of the protocol.

IDE-independent language processors like the Scala pre-
sentation compiler or the Haskell ide-backend9 provide APIs
for retrieving editor-relevant information about source files.
The API and the editor-service data structures are IDE-
independent and can be reused in multiple IDEs. However,
the APIs and data structures are language-specific. For ex-
ample, the Scala presentation compiler and the Haskell ide-
backend do not share a common interface or common IR.
Consequently, a separate IDE plug-in is necessary for each
language and there is little code reuse. Moreover, it is not
clear how to apply these APIs in IDEs that use a different im-
plementation language. Existing IDE-independent language
processors do not solve the IDE portability problem.

Language workbenches are tools for the definition of new
languages [5]. Given a (typically declarative) language defi-
nition, a language workbench derives a fully functional IDE
plug-in for the language. Thus, language workbenches pro-
vide IDE support that is reusable across languages. However,
language workbenches are coupled to a particular IDE. We
discuss MPS, Spoofax, and Xtext in more detail below.

MPS [12] is a language workbench that generates projec-
tional editors for language definitions. The language specifica-
tion as well as the generated projectional editors are specific
to MPS and cannot be used in other IDEs. In particular, MPS
does not provide an IDE-independent IR and does not solve
the IDE portability problem.

Spoofax [7] is a language workbench that generates edi-
tor support in Eclipse from declarative language definitions.
While Spoofax is coupled to Eclipse and does not support
other IDEs, it provides IDE-independent metalanguages for
the definition of languages. Specifically, Spoofax provides
metalanguages SDF3 for syntax, NaBL for name binding, TS
for type checking, and DynSem for dynamic semantics [11].
It may be possible to derive IDE plug-ins for different IDEs
from such language definitions. In contrast to using generic
metalanguages, Monto relies on a generic IR for communi-
cating concrete editor products in a language-independent
and IDE-independent fashion.

Xtext [6] is a language workbench that generates editor
support for Eclipse, IntelliJ, and three web-based editors. The
generated editors for Eclipse and IntelliJ are regular plug-ins
that are generated by two distinct generators. Neither the
generators nor the plug-ins are reusable in other IDEs. To
support web-based editors, Xtext provides a separate API
based on HTTP requests that an editor can use to retrieve
editor products. This API and the editor products are tailored
for usage in web-based IDEs and do not appear to be reusable.
Thus, Xtext does not solve the IDE portability problem.

While existing language workbenches are coupled to
specific IDEs, it would probably be easy to adopt Monto
for them: Instead of generating plug-ins directly, a language

9 https://github.com/fpco/ide-backend/

https://github.com/Microsoft/language-server-protocol
https://github.com/fpco/ide-backend/


workbench could generate a language service that generates
Monto IRs for source files. Our generic IDE plug-ins can then
serve as a front-end to the language services derived from
declarative language definitions.

Sloane et al. proposed what they called a disintegrated
development environment [10]. While our work borrows some
ideas from this Sloane et al.’s work, there are significant
differences. Most importantly, the goal of the disintegrated
development environment was to provide editor-independent
tooling that derives additional information (i.e., separate text
files) about a source file. In contrast, we are interested in
integrated editor services that directly influence the behavior
of the IDE. For example, the disintegrated development
environment can show the AST of a file in separate buffer,
but it cannot affect the highlighting of the source file itself.
As consequence, Sloane et al. did not propose a generic IR,
which is central to our approach. There are further technical
differences. In particular, our message broker supports service
dependencies and our services are stateless. As consequence,
it is easier to add new language services in our design.

9. Conclusion
We defined the IDE portability problem, which says that the
editor support for a language is currently tightly coupled to a
single IDE. Contemporary systems require m× n implemen-
tation artifacts in order to support n languages in m different
IDEs and there is almost no code reuse.

In this paper, we presented Monto, a solution to the IDE
portability problem based on a language-independent and
IDE-independent IR. Specifically, we standardized IR rep-
resentations for syntax highlighting, ASTs, outline views,
and error reporting, and we discussed how to support inter-
active services. We presented a service-oriented architecture
for Monto that enables the modular addition of language ser-
vices, the decomposition of a service into smaller services,
and the implementation of services and IDEs in arbitrary
implementation languages.

We evaluated the feasibility and generality of Monto
through case studies and showed that we can support four
languages (Java, JavaScript, Python, Haskell) in two IDEs
(Eclipse, Web browser) with only 2 + 4 implementation
artifacts. Monto enables the reuse of an IDE binding for
all languages and the reuse of each language service for all
IDEs. Finally, we empirically validated that the performance
overhead induced by Monto is admissible and Monto-based
IDEs provide rapid feedback to users.

Acknowledgments
This research was supported by DFG grant “Evolute” and
Oracle Labs. We thank Anthony Sloane, Sylvia Grewe, Hans
Becker, and Eduardo Souza who provided helpful feedback.
Furthermore, we want thank Stefan Kockman for implement-
ing the Python plugin for Monto.

References
[1] Dorian Birsan. On plug-ins and extensible architectures. ACM

Queue, 3(2):40–46, 2005.

[2] Philippe Charles, Robert M Fuhrer, and Stanley M Sutton Jr.
Imp: a meta-tooling platform for creating language-specific
ides in eclipse. In Proceedings of IEEE/ACM international
conference on Automated software engineering, pages 485–
488, 2007.

[3] Sergey Dmitriev. Language oriented programming: The next
programming paradigm. JetBrains onBoard, 1(2), 2004.

[4] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound
and optimal incremental build system with dynamic depen-
dencies. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), pages 89–106. ACM, 2015.

[5] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Lau-
rence Tratt, Remi Bosman, William R. Cook, Albert Gerrit-
sen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël D. P.
Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eu-
gen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A.
Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van der Woning. Evaluating and comparing language
workbenches: Existing results and benchmarks for the future.
Computer Languages, Systems & Structures, 44:24–47, 2015.

[6] Moritz Eysholdt and Heiko Behrens. Xtext: Implement your
language faster than the quick and dirty way. In Proceedings of
ACM international conference companion on Object oriented
programming systems languages and applications companion,
pages 307–309, 2010.

[7] Lennart C. L. Kats and Eelco Visser. The Spoofax language
workbench: Rules for declarative specification of languages
and IDEs. In Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), pages 444–463. ACM, 2010.

[8] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[9] Martin Richards. The portability of the bcpl compiler. Software:
Practice and Experience, 1971.

[10] Scott Buckley Tony Sloane, Matt Roberts and Shaun Muscat.
Monto: A disintegrated development environment. Software
Language Engineering, pages 211–220, 2014.

[11] Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre
Neron, Vlad A. Vergu, Augusto Passalaqua, and Gabrieël
Konat. A language designer’s workbench: A one-stop-shop
for implementation and verification of language designs. In
Proceedings of International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software (ON-
WARD), pages 95–111. ACM, 2014.

[12] Markus Völter and Vaclav Pech. Language modularity with
the MPS language workbench. In Proceedings of International
Conference on Software Engineering (ICSE), pages 1449–1450,
2012.

[13] Martin P Ward. Language-oriented programming. Software-
Concepts and Tools, 15(4):147–161, 1994.


	Introduction
	Design Overview and Architecture
	montoir
	Source and Product Messages
	Syntax Highlighting
	Abstract Syntax Trees
	Outline Views
	Error Reporting
	Summary

	Service-Oriented Architecture
	Technical Realization and Case Studies
	Performance Evaluation
	Discussion and Future Work
	Related Work
	Conclusion

