
A Variability-Aware Module System

Christian Kästner Klaus Ostermann Sebastian Erdweg
Philipps University Marburg, Germany

Abstract
Module systems enable a divide and conquer strategy to
software development. To implement compile-time variability
in software product lines, modules can be composed in
different combinations. However, this way, variability dictates
a dominant decomposition. As an alternative, we introduce a
variability-aware module system that supports compile-time
variability inside a module and its interface. So, each module
can be considered a product line that can be type checked
in isolation. Variability can crosscut multiple modules. The
module system breaks with the antimodular tradition of a
global variability model in product-line development and
provides a path toward software ecosystems and product
lines of product lines developed in an open fashion. We
discuss the design and implementation of such a module
system on a core calculus and provide an implementation
for C as part of the TypeChef project. Our implementation
supports variability inside modules from #ifdef preprocessor
directives and variable linking at the composition level.
With our implementation, we type check all configurations
of all modules of the open source product line Busybox
with 811 compile-time options, perform linker check of
all configurations, and report found type and linker errors
– without resorting to a brute-force strategy.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Modules,
packages; D.2.2 [Software Engineering]: Reusable Soft-
ware; D.2.2 [Software Engineering]: Design Tools and
Techniques—Modules and interfaces; D.3.4 [Programming
Languages]: Processors—Compilers, Preprocessors

General Terms Design, Languages

Keywords variability, module system, composition, linker,
C, preprocessor, #ifdef, conditional compilation, Busybox,
software product lines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction
A module system allows developers to decompose a large
system into manageable subsystems, which can be developed
and checked in isolation [15]. A module hides information
about internal implementations and exports only a well-
defined and often machine-enforced interface. This enables
an open-world development style, in which software can be
composed from modular self-contained parts.

The need for compile-time variability, for example in soft-
ware product lines [7, 12, 19], challenges existing module sys-
tems. To tailor a software system, stakeholders may want to
select from compile-time configuration options (or features)
and derive a specific configuration (or variant, or product) of
the system. At compile-time, a user selects which configu-
ration options code should be compiled into the system. In
a modular scenario, we can derive different configurations
by composing different subsets of modules. However, to en-
code variability only at the composition level, variability must
align with the modular structure, and each compile-time con-
figuration option must be expressed as a separate module.
When variability crosscuts the dominant decomposition, a
modular implementation becomes tricky: A configuration
option, such as transaction support in a database, may affect
multiple modules and may even change their interfaces [35].

In fact, state-of-the-art product-line implementations often
use antimodular concepts: Conditional compilation, typically
with #ifdef directives of the C preprocessor, is common and
crosscuts entire implementations [39]. Intended variability of
the product line is commonly described in a single global vari-
ability model in a closed-world fashion. As long as product-
lines are developed entirely by a small team inside a single
company, this closed-world view may suffice. But, for larger
product lines developed by multiple teams, for product lines
that should be reused in other contexts, and for product lines
that span organizational units, a modular solution is needed.

An additional challenge comes from the combinatorial
explosion of configuration options. There are O(2n) compile-
time configurations of a product line with n Boolean con-
figuration options. Checking all configurations, one by one,
in a brute-force fashion is infeasible in practice due to the
sheer number of configurations. Likewise, checking only spe-
cific configurations at module-composition-time defies the
purpose of modularity, since conflicts are detected only late.

cKaestner
Text Box
© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.

To enable modular product-line development, we intro-
duce a variability-aware module system that supports both
inner variability inside a module and crosscutting variability
that affects multiple modules. In the module system, each
module can be considered as a product line in itself. Module
composition becomes the composition of entire product lines
including their variability.

We formalize our variability-aware module system as a
calculus. The distinguishing feature of this module calculus
is that interfaces and implementations are variable depend-
ing on the selection of configuration options. Furthermore,
each module defines its own local variability model – the
constraints on its environment. The formalization is based on
Cardelli’s seminal formalization of separate type checking
and linking [15] and a more recent generalization of this work
towards propositions in interfaces [36]. We show that the cal-
culus is sound in two ways: (1) well-typedness of a module
implies well-typedness of all configurations of the module,
and (2) module composition preserves well-typedness.

We implement a variant of our variability-aware module
system for the C programming language with #ifdef vari-
ability and build-system variability. Taking every translation
unit (.c file) as a module with inner variability (from #ifdef
directives), we efficiently and modularly check all configu-
rations of a module and infer an interface with variability.
Subsequently, we perform composition checks for all configu-
rations, equivalent to linker checks in C. We encode expensive
compatibility checks and type checks as Boolean satisfiability
problems, building on prior work on variability-aware analy-
sis [3, 17, 20, 33, 55, 56]. We provide a full open-source im-
plementation as part of our TypeChef project and type check
the entire Busybox product line with 811 compile-time con-
figuration options (and, thus, more potential configurations
than the estimated number of atoms in the universe [37]) to
demonstrate practicality. Modularity allows us to type check
each of Busybox’s 522 files in parallel. We show that Type-
Chef is able to find actual type errors in Busybox.

In summary, our central contributions are the following:
(1) We motivate the need for inner and crosscutting variabil-
ity. (2) We design a novel module system for product lines
and discuss design decisions. (3) We formalize the module
system as a formal calculus and prove its soundness. (4) To
demonstrate practicality, we present a practical implementa-
tion strategy, we implement the module system for C and the
C preprocessor, and we find type errors with this implemen-
tation in a medium-size real-world product line. To the best
of our knowledge, this is the first implementation of modular
type-checking for practical product-line implementions in C
with #ifdef variability.

2. Modules and variability
Modularity as enforced by most module systems serves a
simple means: It allows splitting a system into smaller sub-
systems (modules), each of which are divided into an internal

implementation and an external interface. The module’s inter-
face describes a contract with the rest of the system in terms
of imports and exports. Ideally, a developer (or compiler) can
understand (or type-check and compile) a module separately,
by looking only at its internal implementation and interface,
but not at implementations of other modules. Internals of the
module can be changed without affecting (and even know-
ing) any other module. This separation into modules with
interfaces enables modular reasoning and reuse of modules
in unplanned contexts. For uniformity, we adopt Cardelli’s
notion that modules have explicit imports and are closed un-
der composition [15]. That is, two modules can be composed
(or linked) to form a larger module, in which imports that
are exported by the other module are removed. When com-
posing two compatible modules, module composition should
preserve well-typedness.

In practical software development, frequently a demand
for variation arises. Different configurations of a system
should be compiled for different platforms, customers, and
use cases. Especially in software product lines, such variation
is planned and used as strategic advantage. Instead of develop-
ing a software system only for a single customer, product lines
cover related systems in a whole domain. Such a product-line
approach promises lower costs, better quality, shorter time
to market, and flexibility to react to market changes, due to
strategic reuse [7, 12, 19]. For illustration and demonstration,
we use two examples of product lines. First, we introduce a
tailorable embedded database management system that can
be configured with two different storage mechanisms – per-
sistent and in-memory, – an optional XML layer, and other
options. Second, we analyze Busybox, a real-world resource-
efficient product line of UNIX utilities. In both scenarios,
resource constraints of embedded systems demand compile-
time reduction and specialization to the necessary core; hence,
for different scenarios, different tailor-made solutions should
be provided.

In the following, we outline how to implement variability
with conventional module systems, we discuss their limita-
tions, we outline our concept of a variability-aware module
system, and we survey how variability is implemented in the
real-world product line Busybox.

2.1 Variable module composition
To implement product lines modularly, developers usually
develop a module for each configuration option and express
variability by composing different sets of modules (which we
also call intermodule variability). This style of programming,
in which modules align with configuration options, is also
known as feature-oriented programming [8, 47] and popular
in the form of plug-in systems [2, 7].

In our database example, we could decompose a sys-
tem into four modules as illustrated in Figure 1: a core
database module core, an in-memory-storage module inmem,
a persistent-storage module persist, and an XML module
xml. Now, we derive different systems by composing (•)

core = (
import write: Key→Table→Bool;
import read: Key→Table;

fun log(msg: String): Unit = ...;
export fun select(q: String): Table = ... read(...) ...;
export fun update(q: String): Bool = ... write(...) ...;
export fun main(p: String): Int = ...;

)

xml = (
import update: String→Bool;

fun parse(s: String): XML = ...;
fun unparse(x: XML): String = ...;
export fun storeXML(x: XML): Bool = ... update(...) ...;

)

inmem = (
export fun write(k: Key, t: Table): Bool = ...;
export fun read(k: Key): Table = ...;

)

persist = (
fun fopen(f: Int): Handle = ...;
export fun write(k: Key, t: Table): Bool = ...;
export fun read(k: Key): Table = ...;

)

Figure 1. Simple database example without inner variability.

modules in different combinations: core • inmem yields an
in-memory database, core • persist a persistent database,
core • inmem • xml an in-memory XML database, and so
forth.

Composing two modules merges their definitions. Imports
of one module are matched by exports of the other module as
far as possible; nonexported (private) functions are renamed
or inlined if necessary. Two modules exporting the same
function, such as inmem and persist in our example, are
incompatible and cannot be composed.

If desired, we can automate the generation of tailored sys-
tems for a given selection of configuration options with a
build system. Build systems range from simple shell scripts
to sophisticated compilation managers [11, 13, 48]. Build sys-
tems typically introduce explicit configuration options (and
possibly dependencies between them in a variability model).
The configuration options are then mapped to modules [19].
For a given selection of configuration options, the build sys-
tem compiles and composes the corresponding modules. In
such a setting, variability is expressed globally for a fixed set
of modules at composition level: The modules themselves
have no notion of variability, especially no variability in in-
terfaces.

2.2 A case against variability-induced decomposition
When variability is expressed only at the composition level,
modules align with configuration options. On one hand,
this alignment enforces separation of concerns regarding
configuration options; but, on the other hand, then, variability
dictates a dominant decomposition [53] of the system, which
might not be the desired one. There are at least three problems
of a variability-induced decomposition:

• Variability is known as a crosscutting concern [29, 39, 41,
47, 54]. In our database example, configuration options
such as READONLY affect many modules and concerns.
Even with advanced and controversial module constructs,
such as aspects, it is not clear whether the implementation
of crosscutting configuration options can be specified
modularly in a single module [35].

• Configuration options are not independent. In our example,
configuration option READONLY would affect both in-
memory and persistent storage. A typical solution of
the module-per-configuration-option approach is creating
more modules (e.g., inmem-common, inmem-write, and
inmem-readonly) [41], leading to an explosion of micro-
modules [32].

• Configuration options (and interactions between configu-
ration options) that affect only few lines of code must be
extracted into their own function and module, even if they
are just a minor concern in a larger context. Such small
additional modules reduce the benefit of an open-world
module system, because they are typically hard to reuse
and tightly coupled to the rest of the system [32].

We argue that variability should not necessarily dictate
the dominant decomposition. Although tool support could
potentially address the problem of many small modules,
we explore a language-based solution. In the remainder of
the paper, we introduce a variability-aware module system
that enforces modular checks in the presence of inner and
crosscutting variability.

2.3 Variability inside modules
Instead of encoding variability using module composition, we
propose to encode variability inside modules (which we also
call intramodule variability), such that configuration options
and modules do not need to align. Each module can be inter-
preted as a product line that can be configured. For example,
we implement a module storage for the storage subsystem
that can be configured to use in-memory or persistent storage
and to provide read-only or read-and-write access. However,
with variability in interfaces, the composition process and
the role of the variability model (previously part of the build
system) changes.

We introduce variability with presence conditions. A
presence condition on a code element is a formula over
configuration options that specifies in which configurations
the element should be included. For example, we say module
storage defines function fopen only if configuration option

storage = (
config PERSIST "persistent storage" default;
config INMEM "in-memory storage"
config READONLY "read-only access only (faster, smaller)";
variability (PERSIST∨INMEM)∧¬(PERSIST∧INMEM);

fun fopen(f: Int): Handle if PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧INMEM = ...;
export fun read(x: Tid): Rec if PERSIST = ... fopen ...;
export fun read(x: Tid): Rec if INMEM = ...;

)

query = (
import config READONLY;
import write: Rec→ Tid if ¬READONLY,

read: Tid→ Rec;

config TXN, INDEX;

fun createIndex(t: T): I if INDEX = ...;
fun log(m: String): Bool = ...;
export fun select(q: String): Tab = ...;
export fun update(q: String): Bool if ¬READONLY = ...;
export fun main(p: String): Int = ...;

)

xml = (
import config READONLY, TXN, INDEX;
import select: String→ Table,

update: String→ Table if ¬READONLY,
read: Tid→ Rec;

config XQUERY;
variability XQUERY⇒ INDEX;

fun parse(e: String): Xml = ...;
fun toXML(x: Xml): String = ...;
export fun storeXML(x: Xml): Tid if ¬READONLY = ...;
export fun query(q: String): Xml if XQUERY = ...;

)

storage • xml = (
import config TXN, INDEX;
import select: String→ Table,

update: String→ Table if ¬READONLY;

config PERSIST, INMEM, READONLY, XQUERY;
variability (XQUERY⇒ INDEX) ∧

((PERSIST∨INMEM)∧¬(PERSIST∧INMEM));

fun fopen(f: Int): Handle if PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧PERSIST = ...;
export fun write(x: Rec): Tid if ¬READONLY∧INMEM = ...;
export fun read(x: Tid): Rec if PERSIST = ...;
export fun read(x: Tid): Rec if INMEM = ...;
fun parse(e: String): Xml = ...;
fun toXML(x: Xml): String = ...;
export fun storeXML(x: Xml): Tid if ¬READONLY = ...;
export fun query(q: String): Xml if XQUERY = ...;

)

Figure 2. Extended database example with inner variability.

PERSIST is selected (fopen if PERSIST). In the simplest
case, presence conditions can be implemented by conditional
compilation with #ifdef directives; we discuss alternatives in
Section 4.3.

To reason about configuration options inside a module, we
declare them explicitly or import them like functions. Hence,
for every configuration option there is a unique module that
declares the configuration option (and possibly related con-
figuration information, such as description, defaults, costs,
and interested stakeholders). Hence, there is a well-defined
distinction between configuration option definition and con-
figuration option usage, which yields a well-defined scoping
concept for configuration options and enables standard tech-
niques such as α-renaming of configuration options. Declared
configuration options are always part of the interface (they
cannot be hidden, because users must be able to configure
the module). Finally, each module can have a local variability
model that constraints possible combinations of configura-
tion options; for this purpose, we specify a formula, but other
notations, including graphical feature diagrams, are possi-
ble [9, 11, 19, 57].

Composing two modules in our variability-aware module
system is similar to composing two modules in a traditional
module system. Composing two modules with variability
(i.e., two product lines) yields another module that combines
the variability of both (i.e., another product line). Imports
are matched by exports as far as possible, and configuration
options and functions are merged. Local variability models
are combined, requiring now the constraints of both models.

We will explore additional constraints on the variability
model in case of function conflicts later.

In Figure 2, we illustrate module-system concepts with an
extended database example. The system is divided into three
modules storage, query, and xml, not aligned with variability.
Each of these modules has inner variability. Furthermore, we
exemplify the result of the composition storage • xml.

2.4 Crosscutting and inner-module variability in
Busybox

Before we get to a formal description, we want to emphasize
once more the need for a proper variability-aware module sys-
tem with a look into practice. We report data from the open-
source product line Busybox. Like in many product-lines,
the Busybox developers did not pursue a strictly modular
approach and used the C preprocessor to encode variability
inside and across modules.

We selected Busybox (release 0.18.5, available at http:
//busybox.net/) as a paradigmatic case, representing many
other product-line implementations based on conditional com-
pilation [39]. Busybox has 522 .c files and 260 000 lines of
unpreprocessed C code. BusyBox combines custom imple-
mentations of many common UNIX utilities into a single
small executable for small or embedded devices. Targeted
at resource-constraint environments, BusyBox is highly cus-
tomizable with 811 explicitly declared Boolean compile-time
configuration options, allowing users to select which utilities
to include and with which facilities.

As common in C, we regard every translation unit (.c file

http://busybox.net/
http://busybox.net/

with inlined header files) as a module. A C compiler translates
each module independently and a linker composes modules.
Variability in Busybox uses both intermodule variability at
the composition level, automated by the build system, and
intramodule variability at source-code level, encoded with
#ifdef directives inside modules.

We illustrate variability in Busybox from different per-
spectives:

• Variable module composition. There is a high amount of
intermodule variability at composition level. Of 522 mod-
ules, 413 modules (79 %) are composed only under some
condition. Of 811 configuration options, 386 (48 %) influ-
ence variable module composition, ov which 270 config-
uration options (33 %) exclusively control composition,
but not intramodule variability. Variability at composition
level mostly reflects the selection of compression libraries
and entire tools to be linked into the Busybox executable,
such as grep, find, and chmod.

• Variability inside modules. Of 811 configuration options,
499 (62 %) control intramodule variability at source-code
level with #ifdef directives. All 522 translation units
contain intramodule variability at source-code level. Many
translation units provide configuration options that are
local to that module and occur in no other module. For
example, find.c has 22 local inner configuration options,
hush.c has 13, and httpd.c has 11. There are 69 translation
units with at least two local inner configuration options.
Between configuration options inside a translation unit,
there are often dependencies in the variability model, such
as HUSH_JOB ⇒ HUSH_INTERACTIVE. Hence, Busybox
shows potential for local declarations of configuration
options and local variability models.

• Crosscutting variability. In addition to 391 (48 %) config-
uration options local to a single translation unit (usually
configuration options of individual tools, such as MOD-
PROBE_BLACKLIST), there are 109 (13 %) configuration
options that crosscut multiple translation units. Crosscut-
ting is mostly moderate with 46 configuration options
affecting between two and ten translation units, and 15
between 11 and 50 translation units. However, 47 configu-
ration options affect over 500 (essentially all) translation
units. Configuration options crosscut when several trans-
lation units together implement the same concepts, such
as UNICODE_SUPPORT and SHADOWPASSWDS. Heavy
crosscutting comes mostly from variability in header files
that are included in most translation units, independent of
whether the functionality is used. Our analysis confirms
that crosscutting configuration options are common, and
we argue that they should be supported natively by the
implementation approach.

• Variability in module interfaces. Source-level intramodule
variability does not only affect module implementations,
but also their interfaces. We regard imported and exported

functions of a translation unit in C as its interface (for
details, see Section 5.2). So, conditional compilation that
controls only statements, expressions, or unused declara-
tions does not cause variability in module interfaces.
Overall, 11 % of all exports and 7 % of all imports are vari-
able. Of all 811 configuration options, 303 (37 %) affect
imports or exports in at least one translation unit. While
again variability is mostly local to the interface of a single
translation unit, 45 configuration options affect interfaces
in up to ten translation units (e.g., HUMAN_READABLE,
SHADOWPASSWDS), and 11 configuration options affect
more than ten interfaces, with the maximum of 41 in-
terfaces affected by IOCTL_HEX2STR_ERROR (a config-
uration option adjusting how errors are reported). Our
analysis indicates that a large amount of source-level vari-
ability is hidden inside modules and does not influence
interfaces, but also that handling variability in interfaces
is crucial nonetheless.

In summary, Busybox illustrates that both intermodule
variability at composition level and intramodule variability
at source-code level are used. There is potential for local
definitions of configuration options and for hiding variability
implementations inside a module. Many translation units
can be considered as small product lines. At the same time,
crosscutting is also common. Based on our experience with
other open-source systems with compile-time variability
implemented in C [39], we judge Busybox as a paradigmatic
case.

Traditional module systems cannot handle implementa-
tions with intramodule variability at source-code level. En-
forcing decomposition by variability would require many
additional modules and rewrites, which we regard as imprac-
tical for Busybox. On the other hand, in the current form with
inner-module variability, a C compiler only determines im-
ported and exported symbols after running the preprocessor to
remove all variability from the code. Modules are composed
only after selecting configuration options. There is no means
to check module compatibility for all configurations, other
than applying a brute-force strategy. We conclude that our
motivation for variability-aware modules is also supported by
current software practice.

3. Formalization
In our module system, a module has a well-defined interface
that describes the names and types of imported and exported
functions. A type system checks each module in isolation
against its interface and a composition engine ensures that
composed modules have type-compatible interfaces without
name clashes. The formalization can be seen as the specifica-
tion of the desired behavior, quite distinct from our implemen-
tation. We use the formalization to prove that our module sys-
tem is sound. Although the formal definitions are simple, the
soundness properties are not obvious; in fact, it took several
iterations of proving and fixing to get the definitions right.

Notation:
x ∈ X function names
e ∈ E expressions
t ∈ T types

Γ ∈ X→ T contexts / function imports
∆ ∈ X→ E× T function definitions
m = (Γ ,∆) ∈M module

Auxiliary functions:
sig : (X→ E× T)→ (X→ T)
sig(∆)(x) = t where ∆(x) = (e, t)

∀x∈ dom(Γ1) ∩ dom(Γ2). Γ1(x) = Γ2(x)

typecompatible(Γ1, Γ2)

Module typing:

dom(Γ) ∩ dom(∆) = ∅ Γ ` ∆
(Γ ,∆) OK

∀x∈ dom(∆). Γ ∪ sig(∆) ` e : t where ∆(x) = (e, t)
Γ ` ∆

Module compatibility and composition:

dom(∆1) ∩ dom(∆2) = ∅
typecompatible(Γ1, Γ2)

typecompatible(Γ1, sig(∆2))
typecompatible(sig(∆1), Γ2)

(Γ1,∆1)÷(Γ2,∆2)

Γ ′ = Γ1 ∪ Γ2 \ (sig(∆1) ∪ sig(∆2))
∆ ′ = ∆1 ∪ ∆2

(Γ1,∆1) • (Γ2,∆2) = (Γ ′,∆ ′)

Figure 3. Module systemM without variability.

3.1 A base module systemM without variability
To illustrate the basic concepts, let us start with a small
calculus of a module system without intramodule variability
in Figure 3. The calculus follows the spirit of Cardelli’s
module system formalization [15].

A module consists of a set of imported function declara-
tions with their associated type, and a list of typed function
definitions with a body. Imports are modeled as partial finite
maps (we overload the function arrow→ to denote partial
maps) from names to types, definitions are maps from names
to types and expressions. The interface of a module consists
of all imported declarations and the signatures of all locally
defined functions. We could easily model a distinction be-
tween private definitions and exported definitions, but except
for the need of renaming during composition, this adds little
to our discussion; we instead assume that private functions
have been inlined. Translating the example from Figure 1 into
this calculus is straightforward. We leave the exact form of
expressions and types open; we just assume that there is a
type system for the expression language that can perform a
type-check of the form Γ ` e : t. The only requirement on
the typing relation is that it must be monotonic (if Γ ′ is an ex-
tension of Γ and Γ ` e : t, then Γ ′ ` e : t), otherwise module
composition would not preserve well-typedness. Almost all
type systems used in practical programming languages have
this property.1

We type check each module in isolation. A module is
well-typed (m OK) if all function bodies are well-typed in the

1 Often called weakening; substructural type systems [59] that violate this
property (such as linear types) are uncommon in practice.

context of imported and defined functions and if a function is
not both imported and defined.

Two modules are compatible (m1÷m2) unless they con-
tain a function conflict. There are three kinds of possible
function conflicts: (1) both modules export a function with
the same name, (2) both modules import a function with
the same name but with different types, and (3) one mod-
ule imports a function defined in the other with a different
type. Composing two modules essentially merges imports
and exports, and imports provided by the other module are
removed. To compose two modules with a function conflict,
first the conflict must be resolved; for example, developers
can rename the function in one module to make both modules
compatible (see also the rename operator of the composition
language in Section 3.4).

Module systemM has the following desirable properties:

(P1) The module system is closed under composition, that
is, composing two modules yields a new module (• :
M×M→M).

(P2) We can type check each module in isolation (against its
own interface), independent of other modules (m OK).

(P3) To determine whether two modules are compatible
(m1÷m2), we only need to investigate their interfaces,
not their internal implementations.

(P4) When composing two well-typed compatible modules,
and the typing relation is monotonic, then the composed
module is well-typed as well (m1 OK ∧ m2 OK ∧

m1÷m2 ⇒ m1 •m2 OK).

(P5) Composition is associative and commutative.

Additional notation:
f ∈ F configuration options
c ∈ C = 2F configurations
v ∈ V = 2C variability models
Γ ∈ C→ X→ T variable contexts
∆ ∈ C→ X→ E× T variable definitions
m = (v, Γ ,∆) ∈Mv module

Auxiliary functions:
Sig : (C→ X→ E× T)→ (C→ X→ T)
Sig(∆)(c)(x) = t where ∆(c)(x) = (e, t)

Module typing:
v ⊆ dom(Γ) v ⊆ dom(∆)
∀c∈ v. (Γ(c),∆(c)) OK v 6= ∅

(v, Γ ,∆) OK

conflictpresence(Γ1, Γ2) =
{
c ∈ dom(Γ1) ∩ dom(Γ2) | dom(Γ1(c)) ∩ dom(Γ2(c)) 6= ∅

}
conflicttype(Γ1, Γ2) =

{
c ∈ dom(Γ1) ∩ dom(Γ2) | ∃x∈ dom(Γ1(c)) ∩ dom(Γ2(c)). Γ1(c)(x) 6= Γ2(c)(x)

}
conflict(Γ1,∆1, Γ2,∆2) =

⋃{
conflictpresence(Sig(∆1), Sig(∆2)), conflicttype(Γ1, Γ2),
conflicttype(Γ1, Sig(∆2)), conflicttype(Sig(∆1), Γ2)

}
Module compatibility and composition:

v ′ =
⋃

x 6=y conflict(Γx,∆x, Γy,∆y)

v = v1 ∩ . . . ∩ vn v\v ′ 6= ∅
÷
{
(v1, Γ1,∆1), . . . , (vn, Γn,∆n)

}
v ′ = v1 ∩ v2 \ conflict(Γ1,∆1, Γ2,∆2)

Γ ′(c) = Γ1(c) ∪ Γ2(c) \ (sig(∆1(c)) ∪ sig(∆2(c)))
∆ ′(c) = ∆1(c) ∪ ∆2(c)

(v1, Γ1,∆1) • (v2, Γ2,∆2) = (v ′, Γ ′,∆ ′)

Figure 4. Module systemMv with inner-module variability.

(P6) Module compatibility is closed under module com-
position (m1÷m2 ∧ m1÷m3 ∧ m2÷m3 ⇒
m1÷ (m2 •m3)), as proved in the appendix.

We want to preserve these properties when we move to a
variability-aware module system.

3.2 A variability-aware module systemMv

Now, let us introduce variability into the module system
M. For clarity, we proceed in two steps: First, we add
variability with a global name space for configuration options
in Mv, as specified in Figure 4. Subsequently, in the next
subsection, we add a scoping concept for configuration
options inMvl. The calculus models semantics and is hence
rather abstract: We leave open how sets of configuration
options are represented (usually with propositional formulas)
and just represent them semantically as sets of (or mappings
from) configurations. It also leaves open the question of an
efficient implementation, since the formal definitions quantify
over (possibly infinite) sets of configurations. We will outline
an efficient implementation strategy later in Section 5.1.

From the (countably infinite) set of names of configuration
options F, we can derive all possible configurations (c ∈ 2F).
Of those, a variability model describes the subset of intended
valid configurations (v ⊆ 2F). A module is a 3-tuple (v, Γ ,∆)
that consists of a variability model v, imported function
signatures Γ , and defined functions ∆. When considering
variability, a function may be imported only in a subset of
all configurations or may even be imported with different
types in different configurations. Hence, we model imports
as a partial map from configurations and function names to
types (Γ ∈ C → X → T). This model ensures the invariant

that, in each configuration, each name is mapped to at most
one type. Similarly, we model function definitions as map
from configurations and function names to expressions with
corresponding type declarations.

Despite variability, type checking (m OK) is still modu-
lar. Reusing the formalism of the module systemM without
variability, we check that function definitions are well-typed
and do not overlap with imports in all valid configurations
described by the variability model v. Furthermore, we assert
that for each valid configuration the partial map of imports
and definitions is well-defined (v ⊆ dom(Γ)). Finally, we ex-
pect that the variability model describes at least a single valid
configuration (v 6= ∅, a property called model consistency in
[19, 42]) – otherwise module compatibility would be trivial.2

Based on well-typed modules, we define module compati-
bility and module composition. There are actually different
designs of compatibility and composition possible. Here, we
first introduce a notion with some resemblance to type in-
ference: We infer a variability model that describes valid
configurations and only report an error when no valid config-
uration remains. In Section 4.1, we discuss alternative designs
and their benefits and drawbacks.

Modules are incompatible if their variability models do not
share a single configuration (v1 ∩ . . . ∩ vn = ∅). In addition,
modules are incompatible if all shared configurations contain
a function conflict (as in M, two modules define the same
function, two modules import the same function but with
different types, or one module defines a function imported by

2 Requiring a single valid configuration is merely a consistency check.
Asserting that a module provides specific configurations can be checked at
composition-language level, see Section 3.4.

Additional notation:
i ⊆ F configuration-option imports
j ⊆ F configuration-option definition
m = (v, i, j, Γ ,∆) ∈Mvl module

Module typing:
v ⊆ dom(Γ) v ⊆ dom(∆)
∀c∈ v. (Γ(c),∆(c)) OK v 6= ∅
i ∩ j = ∅ varmodel(v) ⊆ i ∪ j

varmap(v, Γ) ∪ varmap(v,∆) ⊆ i ∪ j
(v, i, j, Γ ,∆) OK

varmodel(v) =
{
f ∈ F | ∃c∈ v. (c \ {f}) /∈ v ∨ (c ∪ {f}) /∈ v

}
varmap(v,∆) =

{
f ∈ F | f /∈ varmodel(v) ∧ ∃c∈ v. ∆(c \ {f}) 6= ∆(c ∪ {f})

}
Module compatibility and composition:

mx = (vx, ix, jx, Γx,∆x)
v ′ =

⋃
x 6=y conflict(Γx,∆x, Γy,∆y)

v = v1 ∩ . . . ∩ vn
v\v ′ 6= ∅ ∀x 6= y. jx ∩ jy = ∅

÷
{
m1, . . . ,mn

}

m ′ = (v ′, i ′, j ′, Γ ′,∆ ′)
v ′ = v1 ∩ v2 \ conflict(Γ1,∆1, Γ2,∆2)

Γ ′(c) = Γ1(c) ∪ Γ2(c) \ (sig(∆1(c)) ∪ sig(∆2(c)))
∆ ′(c) = ∆1(c) ∪ ∆2(c)

i ′ = i1 ∪ i2 \ (j1 ∪ j2) j ′ = j1 ∪ j2
(v1, i1, j1, Γ1,∆1) • (v2, i2, j2, Γ2,∆2) = m ′

Figure 5. Module systemMvl extendsMv with scoped configuration options.

another module but with different types). Auxiliary function
conflict returns the set of configurations containing a function
conflict. In this design, we allow conflicts in some configura-
tions, as long as not all configurations are affected. Further-
more, pairwise checking of compatibility is not sufficient to
guarantee preservation of compatibility under composition
(P6), because incompatibilities, say, due to a mutual exclusion
property asserted by one module, only show up when consid-
ering the compatibility of all modules to be composed (see
discussion in Section 4.1). Hence, we model compatibility as
a predicate on a set of modules (÷

{
m1, . . . ,mn

}
).

Composing two compatible modules yields a new mod-
ule. The new module contains the common configurations of
both modules, excluding configurations that contain function
conflicts (v ′ = v1 ∩ v2 \ conflict(Γ1,∆1, Γ2,∆2); we essen-
tially add additional constraints to the variability model for
function conflicts). Imports are merged but reduced by the
corresponding function definitions for each valid configura-
tion separately. The exclusion of conflicting configurations
from the new variability model v ′ ensures that the partial map-
pings of imports and function definitions are well-defined on
the full variability model v ′.

Our module system Mv with variability preserves prop-
erties (P1)–(P5) of the module system M. Since pairwise
compatibility is not sufficient to preserve compatibility, as
argued above, we relax (P6) to (P6’):

(P6’) Module compatibility is closed under module composi-
tion
(÷

{
m1,m2, . . . ,mn

}
⇒ ÷

{
m1 •m2, . . . ,mn

}
).

Note that (P6’) is compatible with an open-world assumption
because a composed module can still be composed with
arbitrary other modules (provided that they are compatible

with the composed module).
In addition, Mv satisfies a new property configuration

preserves typing:

(P7) All module configurations derivable from a well-
typed module are well-typed, that is, ∀(v, Γ ,∆) ∈
Mv. (v, Γ ,∆) OK⇒ ∀c∈ v. (Γ(c),∆(c)) OK.

Properties (P1)–(P3) and (P7) follow directly from the defini-
tion ofMv. Proofs of the remaining properties can be found
in the appendix.

3.3 Locality of configuration options inMvl

So far, our module system has global configuration options.
In a final step, we introduce a scoping concept that allows
declaring and explicitly importing configuration options, as
illustrated in our motivating example in Figure 2.

We model configuration options in direct analogy to func-
tions: A configuration option is defined in a module. Equiv-
alent to a function body, a configuration option can provide
additional specifications, such as descriptions and defaults.
Other modules can import a configuration option to use it,
and referencing a configuration option as part of a presence
condition is the equivalent of a function call. In line with func-
tions, we check, in each module separately, that only defined
or imported configuration options are referenced. Similar
to name clashes between functions, name clashes between
configuration options can be resolved with α-renaming (see
Section 3.4). As function names in our basic module system,
configuration options share a global namespace; however,
declarations and imports provide a means to enforce scoping
of names, so modules that declare the same name are in-
compatible. As with functions, it does not technically matter
which of two modules defines and which imports a configura-

tion option; selecting where to place the definition is a design
choice. For example, similar to bundling function definitions
in separate modules as libraries, designers may decide to bun-
dle multiple configuration options in one separate module.

We extend our module system to M vl as specified in
Figure 5. A module now additionally contains imports of
names of configuration options (i ⊆ F) and definitions of
configuration options (j ⊆ F). Since additional description or
defaults of configuration options are relevant only for external
concerns, we omit them from our formalization. Locally, we
check that a configuration option is not both imported and
declared (i ∩ j = ∅). Furthermore, variability in the variabil-
ity model, in function imports, and in function declarations
must be expressed only in terms of declared or imported
configuration options. Auxiliary function varmodel yields all
configuration options that affect the variability model and
varmap yields configuration options that make a difference in
the definition of a variable mapping (a configuration option
f makes a difference if and only if two otherwise equal con-
figurations with and without f are distinguished by a model
or mapping). This way, we enforce well-defined scoping of
configuration options. In a practical implementation, in which
sets of configuration options are represented by propositional
formulas, these checks can be conservatively approximated
by considering the set of configuration options that occur
syntactically in presence conditions in the module.

Compatibility and composition require only minimal,
straightforward extensions: Two modules are incompatible if
they declare the same configuration option. During compo-
sition, declarations and imports of configuration options are
matched and merged like functions.Mvl also preserves prop-
erties (P1)–(P5), (P6’), and (P7), as proved in the appendix.

3.4 Composition language
So far, we have discussed the module-composition operator
(• : M ×M → M) and module compatibility. There are
additional useful operators at the level of the composition
language, such as renaming, hiding, partial configuration,
and variability checking. Here, we outline useful operators
to give a more complete picture of typical and flexible
module composition. We have the following syntax of module
expressions in the module-composition language on top of
Mvl:
Z ::= Mvl atomic modules

| Z • Z composed modules
| closed Z completeness check
| rename X→ X in Z function renaming
| renameC F→ F in Z configuration-option renaming
| hide X in Z function hiding
| configure F→ {>,⊥} in Z partial configuration
| assert V in Z variability check

Since the operators and their formalization are straightfor-
ward, we provide only an intuition of how they work.

A module is closed if it has no remaining imports of
functions or configuration options in any configuration. The
operation closed returns a closed module unmodified and
gets stuck on modules that are not closed. A module check

is easy to specify and implement on a module’s interface by
inspecting Γ and i.

Operation rename takes a module and produces a new
module in which all occurrences of a function name (in func-
tion imports, function definitions, and function calls in all
configurations) are replaced by a different name. As precon-
dition, we expect a well-typed module in which the new func-
tion name is not already imported or defined. For example
to compose inmem and persist in Figure 1, we could rename
functions write to writemem and read to readmem: persist •
(rename read→readmem in (rename write→writemem in inmem)).

Similarly, operation renameC renames all occurrences of
a configuration option. The operation assumes a well-typed
module and a target name that is not yet imported or defined
as configuration option inside the module. Technically, we
simply exchange the names in configurations during lookups;
in a more syntactic implementation, we would rewrite vari-
ables in presence conditions. For example, in the source code
in Figure 2, we could simply replace all syntactic occurrences
of READONLY by DB_READONLY_ACCESS to avoid possible
name clashes with other modules that also have a configura-
tion option READONLY.

Operation hide hides a function inside a module so that it is
no longer exported. The notion of hiding is especially useful
in hierarchical module systems [13]. We can either explicitly
model private functions, or we implement hiding by inlining
the function. For example, after composing the modules core
and inmem in Figure 1, we could hide functions read and
write to clean the namespace before further compositions.

Operation configure removes a configuration option from
a well-typed module, by selecting or deselecting it. As dis-
cussed previously, there are no private configuration options,
but every configuration option must be exported to enable
a choice. Therefore, we cannot hide a configuration option
without deciding whether the corresponding code should
be included or not. Syntactically, this operation replaces all
occurrences of the configuration option in presence condi-
tions by true or false and removes the corresponding decla-
ration. For example, we could decide to select feature READ-
ONLY of module storage in Figure 2 (note that on subse-
quent composition of that module with query, the imported
feature READONLY would no longer be matched by a cor-
responding definition, that is, the resulting module is not
closed).

Finally, we provide a variability check for a module that
asserts that the given module provides expected variability
(roughly similar to a type cast). The operation simply returns
the module if the expected variability (provided as a vari-
ability model) is a subset of the module’s variability model,
or gets stuck otherwise. So, we can compare a composed
module with a separately defined specification, as we discuss
in Section 4.2.

Based on this composition language and the formalization
ofMvl, we could define a type system that statically checks
that a composition does not get stuck. However, such a type

system adds little new to our discussion of variability, so it is
outside the scope of this paper.

3.5 Formalization summary
We have shown that it is possible to make modules variability-
aware while preserving the basic properties of traditional
module systems. To do so, we replaced the globals of tra-
ditional feature-oriented programming – variability model
and scope of configuration options – by modular counterparts
and enriched the interface language with variability, such that
separate checking becomes possible.

4. Design decisions
The variability-aware module system that we defined in the
previous section makes several design decisions that deserve
discussion.

4.1 Constraint inference
The most controversial design decision of our calculus is to
infer constraints during composition when function conflicts
are detected. In our calculus, two modules are compatible
even if they contain function conflicts, as long as at least one
configuration is without conflict.

As alternative design, we could regard two modules as
incompatible, if they have function conflicts in any configu-
ration. We would define compatibility as follows:

v1 ∩ v2 ∩ conflict(Γ1,∆1, Γ2,∆2) = ∅ j1 ∩ j2 = ∅
(v1, i1, j1, Γ1,∆1)÷(v2, i2, j2, Γ2,∆2)∧

x 6=ymx÷my

÷
{
m1, . . . ,mn

}
A main difference between both designs is associativity of

module composition (P5). Consider the following modules:
a = (
config A;
fun foo(): Int
if A = ...;

)

b = (
config B;
fun foo(): Int
if B = ...;

)

vm = (
import config A,B;
variability

¬(A∧B);
)

Modules a and b export the same function in overlapping
configuration sets, but module vm excludes all overlapping
configurations. In an open-world scenario, modules a and b
do not know about each other or their configuration options.
Nevertheless, the inference-based design decision allows
us to compose modules a and b without knowing about
a dependency between configuration options A and B; the
composition operator infers that A and B must be mutually
exclusive. In the alternative design, in which we do not allow
any function conflicts, we can compose a with b only after
composing one of it with vm. That is, a • (b • vm) is a valid
composition, whereas (a • b) • vm is undefined.

In the inference-based design, the composition operator in-
fers additional constraints that are added to the feature model.
If needed, we can use the assert operator of the composition
language to ensure that we do not accidentally restrict the

module’s variability model too much (see Section 3.4). In
contrast, in the alternative design, a developer is forced to
compose one module with a glue-code module before com-
posing it with another module with partial function conflicts.
Along those lines, the variability model to be used as glue
code can be integrated into the composition operator, such as
m1 •vm2 as shorthand for (m1 • (v, ∅, ∅, ∅, ∅)) •m2.

There are trade-offs between both designs:

• Associativity vs. pairwise compatibility: On the one hand,
the inference-based design enables associativity of module
composition (P5). On the other hand, in the alternative
design, already pairwise module compatibility is closed
under module composition; thus it satisfies the stronger
property (P6) in addition to (P6’).

• Local errors vs. specification effort: In the alternative de-
sign, function conflicts are always reported locally when
composing two modules. When these function conflicts
do not matter due to additional constraints, the developer
must provide additional specifications at composition time.
Conceptually, the alternative design roughly relates to ex-
plicit type annotations for type checking, where precise
local error messages are possible at the expense of addi-
tional specification effort. In contrast, the inference-based
design roughly aligns with type inference, because we in-
fer which compositions are correct but only report an error
when we actually use one of the excluded configurations.
As in languages based on type inference, error reporting
is less immediate and less local, but less specifications are
required.

Both designs have their merits. For us, flexible, associative
composition (P5, P6’) was the more important goal, so
we decided to present and implement the inference-based
design as main mechanisms. Furthermore, our experimental
evaluation suggests that compatibility in the inference-based
design is not trivial and can find type errors in real-world
code. Nevertheless, the alternative design is straightforward
to formalize (actually, the different compatibility rule above
is the only necessary change) and to implement.

Finally, there is a third alternative that would allow both
associativity (P5) and pairwise compatibility checks (P6):
We could restrict variability models such that only positive
constraints can be expressed, for example, by restricting
constraints to Horn clauses. Unfortunately, that design choice
reduces expressiveness beyond what is acceptable in product-
line practice: We could not even express mutual exclusion as
in module vm.

4.2 Local variability models and configuration-option
imports

One of our design goals was to eliminate the inherently anti-
modular global variability model, which is common in prod-
uct line engineering [19]. A global variability model does
not align with the open-world design of our module system.
Instead, we allow specifying the relevant constraints distribut-

edly in different modules. Thereby, our variability-aware
module system allows decomposing large global variabil-
ity models into small local variability models. We believe
that modules with local variability models can be more eas-
ily reused, because local variability models make weaker
assumptions on the context.

If desired, a global variability model can still be encoded
as just another module. This module would declare all con-
figuration options and their constraints. The pattern of having
a separate variability model may be useful for the common
case that a domain expert models constraints not reflected or
detected by the type system, such as “a read-only database
does not require transactions”. Such an additional variability
model can simply be linked into any other module to restrict
valid configurations. Optionally, we could extend our module
system such that a module can specify expected variability
in the form of a minimal configuration space that should
not be restricted by other modules; this can also be encoded
with the assumes operator of the composition language (cf.
Section 3.4).

One could criticize that we still have a global namespace
for configuration options. While this is true, the same holds
for the namespace of function names. In both cases, we
enforce scoping with explicit imports and compatibility
checks detect accidental redefinitions. Furthermore, renaming
operations of the composition language can be used to resolve
naming conflicts.

A arguable aspect of our design is that we need to locally
redeclare constraints between crosscutting configuration op-
tions in every module that needs those constraints for modu-
lar type checking. This could easily be addressed by adding
named imports in which lists of constraints (and function
signatures) or entire modules can be imported with a single
import statement. In principle, we could also infer a local
variability model that describes exactly all well-typed config-
urations (similar to how we infer constraints during linking),
but in this case we prefer immediate modular reporting of lo-
cal errors. We could even argue that repeating constraints for
modular type checking provides even useful documentation.

4.3 Abstraction from variability implementation
Our calculus abstracts from a concrete language and type
system at expression level. We intentionally focus on module
interfaces to allow different inner implementation approaches
and different strategies to type check all configurations of a
module’s implementation.

There are many examples of how variability inside a
module can be implemented and type-checked.

• Conditional compilation as introduced in Section 2, even
though usually frowned upon from the research commu-
nity [52], is a perfect match for our calculus: Developers
can encode presence conditions on code fragments with
#ifdef directives. Even variability at expression level is
not uncommon in practice [39]. Variability-aware type

checking [33] can be used to type check all configura-
tions efficiently as we will show. Our implementation
for C, discussed in Section 5.2, is entirely based condi-
tional compilation in C code. Although we do not want to
encourage using lexical preprocessors, we acknowledge
their widespread use and the huge amount of legacy code
and provide corresponding tool support.

• We can use an approach with intermodule variability, in
which we provide one module per configuration option
(without variability inside modules; cf. Section 2.1), to
encode variability inside a composite module [58]. Several
mechanisms, called safe composition, can be used to
efficiently check whether all compositions of a fixed set
of inner modules allowed by a local variability model
are well-typed [3, 17, 22, 55]. In our module system, we
can nest even variable modules and guarantee a common
interface.

• Finally, we can use any other implementation strategy,
including runtime variability [49], sophisticated metapro-
gramming systems [30, 36], and configuration manage-
ment systems [12, 37]. For most of these implementa-
tion mechanisms, no efficient means to type check all
configurations is available yet. However, if variability
in each module is sufficiently restricted, a brute-force
approach of checking each distinct implementation of
the module’s configurations may sufficiently scale. Using
a variability-aware module system, we can apply brute-
force type checking to each module in isolation, whereas,
once we determined that a module is well-typed, there is
no need to recheck it for composition (P3).

To summarize, the variability-aware module system can pro-
vide uniform interfaces to many different forms of variability
implementation and type checking inside modules. As such,
it also helps us to reason about the composition of variable
modules implemented with different approaches and bridges
intermodule and intramodule variability.

4.4 Product lines of product lines
Developing product lines of product lines (also known as
nested product lines [37], multi product lines [50], or product
populations [58]) has received increasing attention as the
size of industrial product lines has grown and the need for a
divide-and-conquer strategy arose again. Since each module
can be considered as a product line of its own, composing
multiple product lines and reusing product lines in different
(even unplanned) contexts is a natural use case of our module
system. For example, we could reuse the storage-subsystem
product line from Figure 2 in a product line of consumer
electronics. Our module system offers a clean solution to
decompose a product line into smaller subproduct lines,
including a suitable decomposition of the variability model,
enforcing information hiding with variable interfaces.

In this context, it is useful to adopt the notion of hierarchi-
cal modularity [13] and provide a rich composition language

as outlined in Section 3.4. Supporting composition in hierar-
chical form allows resolving possible composition conflicts
locally, at lower levels of the hierarchy. At each level, devel-
opers control what functions and variability the composed
module exposes. To that end, renaming, hiding exported func-
tions after composition, and partially configuring a module
by selecting or deselecting configuration options become es-
sential operations to prepare modules for composition with
independently developed product lines. We believe that most
concepts of the SML/NJ compilation manager [13] can be
adopted for product lines in our module system as well; but
an in-depth analysis is outside the scope of this work.

5. Implementation and practical scenario
We demonstrate a practical application of our variability-
aware module system as follows. First, we outline an imple-
mentation strategy that is sufficiently efficient for real-world
product-line implementations. Second, we actually imple-
mented a variant of the module system for C code with #ifdef
variability as part of our TypeChef project. Third, we apply
our implementation to the medium-size product line Busy-
box, which we already introduced in Section 2.4, and report
detected type and linker errors. We do not intend to perform
rigorous benchmarks; instead, we demonstrate that it is pos-
sible to implement such a module system that is sufficiently
efficient, and we illustrate practical potential of the module
system in a realistic setting.

5.1 Implementation strategy
The calculus leaves open how to represent variability and
describes checks by quantifying over large configuration
spaces (e.g., ∀c ∈ v. . . .). In our implementation, we en-
code sets of configurations as propositional formulas (p ∈ P),
in which variables are names of configuration options, as
exemplified already in Section 2.3. Each model of the for-
mula corresponds to a configuration. This allows us to encode
module well-formedness and compatibility as Boolean sat-
isfiability problem. We describe an encoding in line with
a long tradition of prior work on variability-aware analy-
sis [3, 6, 17, 20, 33, 34, 54–56].

Despite exponential worst-case time, reasoning about all
configurations induced by a formula is sufficiently efficient
in practice with modern Boolean satisfiability solvers [42].
An empty configuration set corresponds to an unsatisfiable
formula (JfalseK = ∅), the intersection of two configuration
sets is equivalent to the conjunction of the corresponding
formula (Jp1 ∧ p2K = v1 ∩ v2), and so forth.

We encode the map from configurations and names to
types (Γ ∈ C→ X→ T) as a map from names and formulas
to types (Υ ∈ X → P → T). This has two benefits: We can
iterate over a typically small set of formulas describing only
distinct types, and, due to the reversed mapping order, we
do not need to copy the entire environment when changing
a single function. In this encoding we need to enforce the
invariant that all formulas for a name are mutually exclusive

with a SAT solver. As optimization, two entries with the same
name pointing to the same type can be joined by disjuncting
their formulas.

Module compatibility. To determine compatibility between
module interfaces, we check whether there is at least one sat-
isfiable configuration that satisfies both variability models
and is not a function conflict: SAT(p1 ∧p2 ∧¬conflict(. . .)).
To determine function conflicts, we derive a formula that de-
scribes all conflicting configurations. Let us illustrate this en-
coding with conflictpresence: For a name x, we determine the
condition when x is exported with any type (

∨
dom(Υi(x)));

subsequently, we require exports from both modules must be
mutually exclusive (¬

(∨
dom(Υ1(x)) ∧

∨
dom(Υ2(x))

)
);

finally, we return the disjunction of these mutually-exclusive
constraints for all x defined in both modules. That is, to de-
termine conflictpresence, we iterate over a small set of names
and with a small set of formulas per name to create a sin-
gle formula describing all configurations with conflicts. We
encode conflicttype similarly, but additionally compare (a
usually small number of) types. All checks are performed
solely on interfaces (P3).

Module composition. During module composition, we cre-
ate a new variability model as conjunction of the original
ones without conflicts (p1 ∧p2 ∧¬conflict(. . .)). When both
modules import the same function with the same type, we
import it only once using the disjunction of the respective
presence conditions. To remove a function import with for-
mula a by an export with formula b, the resulting module
imports the function with formula a ∧ ¬b. Finally, all en-
tries with formulas a that are unsatisfiable in the resulting
variability model p ′ (i.e., ¬SAT(p ′ ∧ ai)) can be removed.

Type checking all configurations of a module. As dis-
cussed in Section 4.3, many different implementation mech-
anisms can be used inside a module; even a brute-force
approach to type check all configurations may be feasi-
ble in some cases. Still, more sophisticated checks have
been developed for certain variability-implementation ap-
proaches [3, 6, 17, 20, 22, 33, 55, 56]. Here, we briefly out-
line how to type check code with conditional compilation.

With variability, each expression can have alternative
types, just as each name in the current context can have alter-
native types. All expressions are type checked in a variability
context pctx (a formula describing the subset of configura-
tions that are checked, for example, the presence condition
of the function that contains the expression). When looking
up a function call, we find all declared types ti with the cor-
responding formulas pi. We can discard types with formulas
never satisfiable in the current context (¬SAT(pctx ∧ pi)).
We raise an error if, in any configuration in the context, there
is no type (SAT(pctx ∧¬p1 ∧ . . .∧¬pn)) and hence no func-
tion; a violation of a property that we call reachability [33].
Again, the key idea is using propositional formulas to reason
about (typically few) alternative types instead of iterating
over all configurations.

For operations that involve comparing two types, such as
function application (e.g., e1(e2)), we look up alternative
types for both subexpressions. We check all combinations of
both alternative types, if the conjunction of their formulas
is satisfiable in the current context. Worst-case effort is
exponential and the number of types can explode, but, in
practice, expressions rarely have a large number of alternative
types [3, 6, 17]. For more details on variability-aware type
checking see the rich body of prior work [3, 6, 17, 22, 33, 55].

We determine relevant configuration options (varmodel,
varmap in Mvl) syntactically with a sound and conserva-
tive approximation (all properties still hold): We collect all
variable names in formulas, including the variability model.

Due to SAT solving, determining compatibility and well-
typedness of modules is NP-complete. However, with modern
SAT solvers, the complexity of SAT solving is not of practical
concern even for large product lines [33, 42, 55].

5.2 Implementation for C
We provide the first approach to type check all configura-
tions of realistic C code, beyond actually preprocessing and
checking all configurations in isolation in a brute-force fash-
ion (prior work focused on Java dialects [3, 22, 33, 55], the
lambda calculus [17], and UML [20], or only sketched a
possible strategy [6]). Our implementation of variability-
aware module system supports both modular checking of
all configurations of a translation unit and variability-aware
compatibility checks. The implementation is part of the Type-
Chef project, which pursues variability-aware analysis of
real-world C code. TypeChef is open source and available at
http://ckaestne.github.com/TypeChef/. For experimen-
tation, a simple interactive online version is available at that
site as well.

Based on the outlined implementation strategy, we im-
plemented the variability-aware module system Mvl for C.
Instead of modifying a C compiler and linker, we wrote the
module system as a separate analysis tool in Scala. It sep-
arately detects errors that the normal compiler and linker
would find when compiling and composing files in a spe-
cific configuration. The implementation consists of four main
parts: parsing, modular variability-aware type checking of
translation units, interface inference, and composition checks
between interfaces.

Variability-aware parsing. A challenge in analyzing #ifdef
variability in C code, which hampered prior approaches, is
preserving variability during parsing. Conventional C parsers
only parse a single configuration after the preprocessor has
inlined includes, expanded macros, and evaluated conditional-
compilation directives. Instead, we parse C code without eval-
uating #ifdef directives and produce an abstract syntax tree
that contains variability information (including information
from header files). In case of #ifdef directives, we parse both
branches and encode variability in the abstract syntax tree.
Typically only explicitly declared configuration options are

considered for variability, whereas other macros, such as in-
cluded guards, are processed as in a traditional preprocessor.
The actual process is precise but much more complex, due
to lexical use of #ifdef directives on arbitrary tokens and
because of interactions between macros, includes, and condi-
tional compilation. The parser has been discussed in detail in
prior work [34]; here, we use it as black-box component.

Modular variability-aware type checking. For each trans-
lation unit, we perform modular variability-aware type check-
ing (m OK of Mvl) on the abstract syntax tree with vari-
ability, as outlined above in Section 5.1. The type system
determines (alternative) types for all expressions. In C, this
means it checks reachability (as described in Section 5.1)
of function calls and variables access, reachability of field
access of structures, and compatibility of types. In princi-
ple, a sound and complete variability-aware type system is
possible [3, 17, 22, 33]. However, due to the size and the
informal description of the C standard, our prototype covers
only a large subset of the standard but is incomplete and un-
sound regarding, for example, goto labels, unreachable-code
removal, and several GNU C extensions. The type system in-
corporates a local variability model (defined in a separate file
for each translation unit) and reports errors only within valid
configurations. It checks each translation unit in isolation
(P2).

Interface inference. Based on the type system’s result, we
infer an interface for each translation unit. C fits particularly
well to our module-system design, because it distinguishes
between function declarations without bodies (prototypes;
typically defined in header files) and function definitions with
bodies. Function definitions are exported unless marked static,
whereas called functions that are declared but not defined are
imported. From the presence conditions of function defini-
tions and function calls, we derive presence conditions for
the interface; for imports, we derive a presence condition as
disjunction of all presence conditions of calls of this function
within the translation unit.3 Types of imports and exports are
directly recognized from function declarations and function
definitions, respectively (i.e., no type inference and no investi-
gation of other modules is necessary). Furthermore, the inter-
face contains imports for all configuration options used within
presence conditions in the translation unit. We do not automat-
ically infer declarations of configuration options or local vari-
ability models, but users can define them manually if desired.

We decided to infer interfaces instead of writing them
explicitly, because, except for declarations of configuration
options and variability model, all information is already avail-
able in the C code. Developers can decide when to import a

3 In fact, the GNU C compiler creates symbols only for functions called
after the optimizer removed unreachable code. We do not yet perform
such optimizations; so, functions called only from unreachable code are
part of the inferred interface. Adopting variability-aware constant folding
and variability-aware static analysis in C to detect unreachable code in all
configurations is an interesting avenue for future work.

http://ckaestne.github.com/TypeChef/

function by adding an #ifdef around the prototype declara-
tion and can explicitly decide when to export a function with
the static specifier, which can also be guarded by an #ifdef.
Maintaining a separate manual interface specification and
checking it against the implementation is possible, but does
not provide additional benefits: An interface cannot be more
restrictive than the implementation, unless we change the C
compiler as well to enforce our interfaces.

Compatibility checks. Compatibility checks between in-
ferred interfaces (÷

{
m1, . . . ,mn

}
) implement Mvl as out-

lined in Section 5.1. Our implementation works on inferred
interfaces in separate files, not directly on C code.

5.3 Type checking Busybox
Finally, we used our variability-aware module system to parse
all translation units in Busybox, type check each translation
unit in isolation, infer interfaces, and check all compositions.

Errors. In the analyzed release 0.18.5, all 522 translation
units are syntactically correct and well-typed in all valid
configurations. The development process of Busybox, which
includes some random-configuration testing before releases,
seems to catch most type errors already. However, in recent
development revisions, we found and reported three compile-
time errors specific to certain configurations.4 In addition,
occasionally compile-time errors in development revisions
are reported on the mailing list; we reproduced some known
(and now fixed) compiler errors throughout the revision
history. Here, we exemplify a type error and a linker error.

In September 2011, a user reported a compile-time er-
ror reporting two undeclared variables now and info in file
procps/ps.c.5 After some investigation, the user eventually
traced down the problem to a configuration without fea-
ture FEATURE_PS_LONG and posted a configuration that
would reproduce the error. The patch that fixed the prob-
lem adds an additional #ifdef directive around the prob-
lematic code fragment. Running TypeChef on the revision
at the time of the bug report (git commit b64bd16459)
yields two type errors in file procps/ps.c. Without man-
ual investigation, TypeChef pinpoints the problem precisely
to a set of configurations with the following constraint:
¬DESKTOP ∧ PS ∧ ¬FEATURE_PS_LONG ∧ (SELINUX ∨

FEATURE_SHOW_THREADS ∨ FEATURE_PS_WIDE).
In the same month, another user provided a patch for a

linker error.6 An incorrectly placed #ifdef directive (intro-
duced in git commit 128543721) caused that library func-
tion match_fstype was no longer exported (instead of being
exported when feature PLATFORM_LINUX is selected). At

4 Bug reports https://bugs.busybox.net/show_bug.cgi?id=4994
and http://lists.busybox.net/pipermail/busybox/
2012-April/077683.html; fixed in subsequent commits.
5 See http://lists.busybox.net/pipermail/busybox/
2011-September/076730.html for the full discussion and patch.
6 http://lists.busybox.net/pipermail/busybox/
2011-September/076576.html

the same time, the function was still imported in modules
mount and umount when the corresponding features MOUNT
or UMOUNT were selected. In that revision, TypeChef re-
ports that the composed module still conditionally imports
function match_fstype; that is, the module is not closed in
configurations with MOUNT ∨ UMOUNT.

For other kinds of linker errors, such as conflicting types
of imports, multiple function exports with the same name,
and type mismatch between imports and exports, we have not
found actual instances in Busybox. For testing purposes, we
deliberately introduced and detected several of them. Overall,
our experiments confirm that TypeChef finds type errors and
linker errors in real-world product lines, which is especially
helpful as rapid feedback during the development process,
for instance as part of an automated build in a continuous-
integration process.

Local and crosscutting variability. Our module system
supports local and crosscutting variability. In Section 2.4, we
already presented several metrics from Busybox that we gath-
ered ex post from our infrastructure. When relying on inter-
module variability by providing one module per configuration
option, we would have been forced to decompose translation
units with inner variability into smaller modules, just for tech-
nical reasons. Furthermore, we would have been forced to
create many additional modules for configuration options that
crosscut the entire implementation. Such encoding appears
cumbersome and unpractical, whereas our module system
allows modular checks without restructuring the code.

Our module system explicitly supports encapsulating local
inner variability, enables variability to crosscut multiple
modules, and supports variability in interfaces. Whereas
previously every configuration had to be checked in isolation
in a brute-force fashion, we can type check all configurations
of each module in isolation and we can check compatibility
of all modules with their variability.

Performance. The advantage of modular checks shows
most prominently regarding performance. In total, we need
57 minutes to type check all modules.7 On average we need
5 seconds to parse a single translation unit with all its headers
and with its variability, 0.7 seconds to type check all con-
figurations in a variability-aware fashion, and 0.03 seconds
to infer its interface. Compared to a brute-force approach
of checking all configurations in isolation, our analysis is
extremely fast. The slow down compared to conventional
compilers is a tribute to the inherent complexity (we parse
and type check all, potentially billions of possible config-
urations) and the necessity to solve many Boolean satisfia-
bility problems. With our module system, we easily paral-

7 We measured performance on a normal lab computer (Intel quad-core 3.4
GHz with 8 GB RAM; Linux; Java 1.6, OpenJDK). We did not perform
low-level optimizations and still compute debug information and statistics.
Measured times provide only rough indicators about what performance to
expect and that variability-aware analysis is feasible; they are not meant as
rigorous benchmarks.

https://bugs.busybox.net/show_bug.cgi?id=4994
http://lists.busybox.net/pipermail/busybox/2012-April/077683.html
http://lists.busybox.net/pipermail/busybox/2012-April/077683.html
http://lists.busybox.net/pipermail/busybox/2011-September/076730.html
http://lists.busybox.net/pipermail/busybox/2011-September/076730.html
http://lists.busybox.net/pipermail/busybox/2011-September/076576.html
http://lists.busybox.net/pipermail/busybox/2011-September/076576.html

lelize type checking with multiple machines. Furthermore,
after a change, we only need to recheck affected files and
corresponding compatibility checks instead of reperforming
whole-program analysis.

Checking compatibility and composing all interfaces in-
crementally (in alphabetical order) requires 29 seconds. Com-
posing them in a divide and conquer fashion (pairwise com-
position, then pairwise composition of the results, and so
on) reduces effort to 4 seconds, with additional potential for
parallelization. Overall, the opportunity for quick compatibil-
ity checks, for parallelization, and for incremental checking
allows us to scale variability-aware analysis to real-world C
code.

6. Related work
Variable module composition. Product-line implementa-
tions that target some notion of modularity (e.g., compo-
nents, plug-ins, feature modules, functors, or aspects) typi-
cally follow an approach in which compile-time variability
is expressed as intermodule variability during composition,
not inside modules [2, 4, 8, 16, 19, 29, 30, 47, 48, 51]. Sev-
eral of these approaches offer notions of function refinement,
orthogonal to our discussion, for which composition is not
commutative [5]. When constructing product lines from mod-
ules without inner variability, type checking each module in
isolation is usually straightforward; for languages without
explicit module interfaces, such as AHEAD, AspectJ, and
DeltaJ, corresponding interfaces can be inferred [22, 38, 51].
However, since variability is encoded as variable composition,
there is still an exponential number of possible configurations.
Checking them all is usually infeasible; modular type check-
ing reduces the costs for each composition check but does
not reduce their number.

Inheritance and subtype polymorphism is the traditional
way to model variability in object-oriented languages. In
classical object-oriented languages, these mechanisms are
restricted to single classes and hence not suitable for features
that affect multiple classes; more advanced approaches such
as class boxes [10] or virtual classes [24] generalize these
notions (with different restrictions) to sets of collaborating
classes. In contrast to our approach inheritance with subtyp-
ing supports dynamic variability, it is more restricted with
regard to the structural changes that a feature entails. Due
to the highly dynamic nature of subtyping, subsumption re-
quires that subtypes can only add methods or refine types of
existing methods subject to co- and contravariance restric-
tions. For instance, it would not be possible to have a function
return an integer value in one configuration and a Boolean
value in a different configuration and be totally absent in a
third configuration.

The idea to use configuration knowledge for type checking
occurred in different contexts, for example, to make configu-
ration options explicit during type checking [4] or to check
all configurations of an entire product lines [55, 56]. For a

fixed set of modules (i.e., in a closed world), safe compo-
sition explores all configurations against a global variabil-
ity model using an encoding as Boolean satisfiability prob-
lem [3, 22, 55]. The same technique was explored also as
variability-aware type checking for closed-world nonmod-
ular implementations [6, 17, 20, 33] and for other analysis
approaches [14, 18]. Although following a different technical
route, the implementation of our type-checking mechanism
inside modules with alternative types was particularly in-
spired by the structures of the choice calculus [17, 26] and
the concept of variational programming [27]. Overall, in our
module system, we use similar algorithms and encodings for
type checking a module and for implementing linker checks,
but a closed-world assumption is never required; an exist-
ing (composed) module can always be composed with more
modules while retaining the soundness guarantees.

Variability inside modules. Variability inside modules has
been explored in different contexts. Our work was initially in-
spired by prior work on modular logic metaprogramming [36].
In logic metaprogramming, programs are derived from a de-
ductive database; by using a logic to describe the effect of
metaprograms in interfaces, sound modular type checking can
be achieved. We adopted the underlying idea of logic formu-
las in interfaces, but restricted and specialized it to a level that
is practical for large-scale product line development and effi-
cient to check with automated provers. From the perspective
of logic metaprograming, we reduce metaprogramming to
propositional presence conditions over configuration options
and local variability models.

Several programming languages support some form of
type-conditional methods, a form of parametric polymor-
phism in which the applicability of a method call can depend
on the type parameter of the enclosing class [23, 31, 40, 45].
Invoking a conditional method is only well-typed when the
condition is satisfied in the context of the invocation. For
example, in a collection class, such as List, clients should
only be allowed to invoke a method print if the class is pa-
rameterized with a type that can be printed. The purpose of
type-conditional methods is to improve static type-safety; the
operational semantics of the language does not change. For
instance, it is not possible to define several alternative vari-
ants of a method (with different implementations or types) or
to define dependencies between configuration options. This
means that the applicability of these approaches to variability
management in software product lines is rather limited.

Approaches to increase the flexibility of method dispatch,
such as multi-methods [44], predicate dispatch [25], or de-
pendent classes [28] could be used for modules with inner
variability, but since the dispatch only depends on method
arguments, it is not obvious how to encode variability that can
not be deduced from the dynamic arguments of a method call.
Furthermore, a set of methods with the same name typically
needs a default implementation, which is called if none of the
other methods is applicable, which is less safe than the checks

in our approach, which do not need default implementations
but can detect statically when no applicable function exists.
Also, modular type checking of these approaches is quite
hard [43, 44]. On the other hand, these approaches are much
more powerful with regard to expressing dynamic variability,
which is not in the scope of this work.

Compile-time metaprogramming, such as C++ templates
or the C preprocessor, is often used to express inner compile-
time variability [19], but these approaches suffer from the
problem that type checking can only take place after special-
ization to a specific instance of the product line.

Also the product-line community has explored compo-
nents with inner variability. Most prominently, the Koala
component system has mechanisms for run-time and compile-
time variability inside a module, exposed through a diversity
interface in Koala [58]. A Koala module can express variable
module composition of inner modules; the condition for the
composition can be exposed in the diversity interface. If a
configuration parameter is known at compile-time, only the
corresponding inner module is included (a specialized form
of partial evaluation), otherwise all modules are included and
function calls are dispatched at run-time. In contrast to our
module system, Koala does not support variability in the func-
tional interface: Diversity interfaces may change the behavior
(and which inner component is used to provide the behavior)
but not the interface. Dependencies between configuration
options and crosscutting variability are not explicitly sup-
ported, but can be encoded. Since compile-time variability is
expressed with variable module composition (possibly nested
inside another module), Koala enforces a variability-induced
dominant decomposition.

Along similar lines, de Jonge [21] introduced configu-
ration interfaces into a package mechanism: Each package
can declare configuration options and bind them in imported
packages. Similarly, plastic partial components [46] introduce
variability interfaces for architectural components and realize
variability internally with aspect-oriented programming. Van
der Storm [57] subsequently extended this approach with
local variability models and configuration checks by encod-
ing variability information as Boolean satisfiability problem.
However, all these approaches do not enforce modularity of
the host language modules with code-level interfaces; at most
they check consistency between packages.

Composing variability models. Finally, there are many
mechanisms to specify and compose variability models and
to reason about them. In practice, some flavor of graphical
feature diagrams are typically used [19], which represent con-
figuration options in a hierarchical form and have a straight-
forward translation to propositional logic [57]. Busybox uses
the textual feature-modeling language KConfig with a similar
concept and translation [11]. Advanced composition mech-
anisms attempt to retain the hierarchical form of variability
models [1]; they are orthogonal to our discussion. If variabil-
ity model and reasoning should include non-Boolean con-

figuration options, other logics and solvers can be used [9].
For our calculus and our implementation, composing propo-
sitional formulas was sufficient.

7. Conclusion
We introduced a variability-aware module system for soft-
ware product lines that overcomes the variability-induced
dominant decomposition of traditional module systems, by
allowing variability inside modules and in module interfaces.
Each module can be type checked in isolation, covering
all configurations allowed by the module’s local variability
model. Composing two compatible well-typed modules with
variability yields another well-typed module with the com-
bined variability. The module system breaks with the product-
line tradition of closed-world implementations with a global
variability model and takes it into an open environment, to-
ward software ecosystems and product lines of product lines.
We defined the module system formally in a calculus, out-
lined a general implementation strategy, and presented an
implementation for C, which we applied to the open source
product line Busybox. Our next step is to type check the entire
Linux kernel with 10 000 configuration options, a task for
which the module system is an important foundation, but for
which various engineering problems still have to be solved.

Acknowledgments. The work was inspired by Karl Klose’s
work on modular metaprogramming. We thank Tillmann
Rendel, Sven Apel, Yannis Smarakdakis, Don Batory, Chung-
chieh Shan, Martin Erwig, and Paolo G. Giarrusso for their
valuable discussions on early presentations of this work. This
work is supported by ERC grant #203099.

References
[1] M. Acher, P. Collet, P. Lahire, and R. France. Comparing

approaches to implement feature model composition. In
Proc. European Conf. Modelling Foundations and Applications
(ECMFA), volume 6138 of LNCS, pages 3–19. Springer-Verlag,
2010.

[2] M. Anastasopoules and C. Gacek. Implementing product line
variabilities. In Proc. Symposium on Software Reusability
(SSR), pages 109–117. ACM Press, 2001.

[3] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type
safety for feature-oriented product lines. Automated Software
Engineering, 17(3):251–300, 2010.

[4] S. Apel, C. Kästner, and C. Lengauer. Research challenges in
the tension between features and services. In Proc. ICSE
Workshop on Systems Development in SOA Environments
(SDSOA), pages 53–58. ACM Press, 2008.

[5] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebraic
foundation for automatic feature-based program synthesis.
Science of Computer Programming (SCP), 75(11):1022–1047,
2010.

[6] L. Aversano, M. D. Penta, and I. D. Baxter. Handling
preprocessor-conditioned declarations. In Proc. Int’l Work-
shop Source Code Analysis and Manipulation (SCAM), pages
83–92. IEEE CS, 2002.

[7] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, Boston, MA, 1998.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. IEEE Trans. Softw. Eng. (TSE), 30(6):355–
371, 2004.

[9] D. Benavides, S. Seguraa, and A. Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review.
Inf. Systems, 35(6):615–636, 2010.

[10] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Control-
ling the scope of change in Java. In Proc. Int’l Conf. Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 177–189. ACM Press, 2005.

[11] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki.
Variability modeling in the real: A perspective from the operat-
ing systems domain. In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 73–82. ACM Press, 2010.

[12] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Vari-
ability management with feature models. Sci. Comput. Pro-
gram., 53(3):333–352, 2004.

[13] M. Blume and A. W. Appel. Hierarchical modularity. ACM
Trans. Program. Lang. Syst. (TOPLAS), 21(4):813–847, 1999.

[14] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba. Intrapro-
cedural dataflow analysis for software product lines. In Proc.
Int’l Conf. Aspect-Oriented Software Development (AOSD),
2012. to appear.

[15] L. Cardelli. Program fragments, linking, and modularization.
In Proc. Symp. Principles of Programming Languages (POPL),
pages 266–277. ACM Press, 1997.

[16] W. Chae and M. Blume. Building a family of compilers. In
Proc. Int’l Software Product Line Conference (SPLC), pages
307–316. IEEE CS, 2008.

[17] S. Chen, M. Erwig, and E. Walkingshaw. Extending type
inference to variational programs. Technical report (draft),
School of EECS, Oregon State University, 2012.

[18] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay.
Symbolic model checking of software product lines. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 321–330. ACM
Press, 2011.

[19] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-
Wesley, New York, 2000.

[20] K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints.
In Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 211–220. ACM Press, 2006.

[21] M. de Jonge. Source tree composition. In Proc. Int’l Conf.
Software Reuse (ICSR), volume 2319 of LNCS, pages 261–282.
Springer-Verlag, 2002.

[22] B. Delaware, W. R. Cook, and D. Batory. Fitting the pieces
together: A machine-checked model of safe composition. In
Proc. Foundations of Software Engineering (ESEC/FSE), pages
243–252. ACM Press, 2009.

[23] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and
generalized constraints for C# generics. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), volume 4067 of
LNCS, pages 279–303. Springer-Verlag, 2006.

[24] E. Ernst, K. Ostermann, and W. Cook. A virtual class calculus.
In Proc. Symp. Principles of Programming Languages (POPL),
pages 270–282. ACM Press, 2006.

[25] M. Ernst, C. Kaplan, and C. Chambers. Predicate dispatching:
A unified theory of dispatch. In Proc. Europ. Conf. Object-
Oriented Programming (ECOOP), pages 186–211. Springer-
Verlag, 1998.

[26] M. Erwig and E. Walkingshaw. The choice calculus: A
representation for software variation. ACM Trans. Softw. Eng.
Methodol. (TOSEM), 21(1):6.1–27, 2011.

[27] M. Erwig and E. Walkingshaw. Variation programming with
the choice calculus. In Generative and Transformational
Techniques in Software Engineering. Springer-Verlag, 2012. to
appear.

[28] V. Gasiunas, M. Mezini, and K. Ostermann. Dependent classes.
In Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 133–152. ACM
Press, 2007.

[29] M. Griss. Implementing product-line features by composing
aspects. In Proc. Int’l Software Product Line Conference
(SPLC), pages 271–288. Kluwer Academic Publishers, 2000.

[30] S. S. Huang and Y. Smaragdakis. Expressive and safe static
reflection with MorphJ. In Proc. Conf. Programming Language
Design and Implementation (PLDI), pages 79–89. ACM Press,
2008.

[31] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhancing Java
with safe type conditions. In Proc. Int’l Conf. Aspect-Oriented
Software Development (AOSD), pages 185–198. ACM Press,
2007.

[32] C. Kästner, S. Apel, and K. Ostermann. The road to feature
modularity? In Proc. SPLC Workshop on Feature-Oriented
Software Development (FOSD). ACM Press, 2011.

[33] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking
annotation-based product lines. ACM Trans. Softw. Eng.
Methodol. (TOSEM), 21(3):14.1–39, 2012.

[34] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Oster-
mann, and T. Berger. Variability-aware parsing in the presence
of lexical macros and conditional compilation. In Proc. Int’l
Conf. Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 805–824. ACM Press, 2011.

[35] J. Kienzle and R. Guerraoui. AOP: Does it make sense? The
case of concurrency and failures. In Proc. Europ. Conf. Object-
Oriented Programming (ECOOP), volume 2374 of LNCS,
pages 37–61. Springer-Verlag, 2002.

[36] K. Klose and K. Ostermann. Modular logic metaprogramming.
In Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 484–503. ACM
Press, 2010.

[37] C. W. Krueger. New methods in software product line develop-
ment. In Proc. Int’l Software Product Line Conference (SPLC),
pages 95–102. IEEE CS, 2006.

[38] H. C. Li, S. Krishnamurthi, and K. Fisler. Interfaces for
modular feature verification. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 195–204. IEEE CS, 2002.

[39] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An
analysis of the variability in forty preprocessor-based software

product lines. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 105–114. ACM Press, 2010.

[40] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert,
R. Scheifler, and A. Snyder. CLU Reference Manual, volume
114 of LNCS. Springer-Verlag, Berlin/Heidelberg, 1981.

[41] J. Liu, D. Batory, and C. Lengauer. Feature oriented refac-
toring of legacy applications. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 112–121. ACM Press, 2006.

[42] M. Mendonça, A. Wąsowski, and K. Czarnecki. SAT-based
analysis of feature models is easy. In Proc. Int’l Software
Product Line Conference (SPLC), pages 231–240. ACM Press,
2009.

[43] T. Millstein, C. Frost, J. Ryder, and A. Warth. Expressive and
modular predicate dispatch for Java. ACM Trans. Program.
Lang. Syst. (TOPLAS), 31(2):7.1–54, 2009.

[44] T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava:
Balancing extensibility and modular typechecking. In Proc.
Int’l Conf. Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 224–240. ACM Press,
2003.

[45] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types
for Java. In Proc. Symp. Principles of Programming Languages
(POPL), pages 132–145. ACM Press, 1997.

[46] J. Pérez, J. Díaz, C. Costa-Soria, and J. Garbajosa. Plastic
partial components: A solution to support variability in ar-
chitectural components. In Proc. European Conf. Software
Architecture (ECSA), pages 221–230. IEEE CS, 2009.

[47] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In Proc. Europ. Conf. Object-Oriented Programming
(ECOOP), volume 1241 of LNCS, pages 419–443. Springer-
Verlag, 1997.

[48] R. Prieto-Diaz and J. M. Neighbors. Module interconnection
languages. Journal of Systems and Software, 6:307–334,
November 1986.

[49] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Us-
ing symbolic evaluation to understand behavior in configurable
software systems. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 445–454. ACM Press, 2010.

[50] M. Rosenmüller and N. Siegmund. Automating the configura-
tion of multi software product lines. In Proc. Int’l Workshop on
Variability Modelling of Software-intensive Systems (VaMoS),
pages 123–130, 2010.

[51] I. Schaefer, L. Bettini, and F. Damiani. Compositional type-
checking for delta-oriented programming. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages 43–56.
ACM Press, 2011.

[52] H. Spencer and G. Collyer. #ifdef considered harmful or
portability experience with C news. In Proc. USENIX Conf.,
pages 185–198. USENIX Association, 1992.

[53] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees
of separation: Multi-dimensional separation of concerns. In
Proc. Int’l Conf. Software Engineering (ICSE), pages 107–119.
IEEE CS, 1999.

[54] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat.
Feature consistency in compile-time-configurable system soft-
ware: Facing the Linux 10,000 feature problem. In Proc. Eu-

ropean Conference on Computer Systems (EuroSys), pages
47–60. ACM Press, 2011.

[55] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe com-
position of product lines. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE), pages
95–104. ACM Press, 2007.

[56] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer,
and G. Saake. Analysis strategies for software product lines.
Technical Report FIN-004-2012, School of Computer Science,
University of Magdeburg, 2012.

[57] T. van der Storm. Variability and component composition.
In Proc. Int’l Conf. Software Reuse (ICSR), volume 3107 of
LNCS, pages 157–166. Springer-Verlag, 2004.

[58] R. van Ommering. Building product populations with software
components. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 255–265. ACM Press, 2002.

[59] D. Walker. Substructural type systems. In B. C. Pierce,
editor, Advanced Topics in Types and Programming Languages,
chapter 1, pages 3–43. MIT Press, 2005.

A. Proofs
A.1 Properties ofM
Lemma 1. Let ` be a monotonic relation, (Γ1,∆1) ∈ M,
(Γ2,∆2) ∈ M, (Γ1,∆1) OK, (Γ2,∆2) OK, and dom(∆1) ∩
dom(∆2) = ∅. Then Γ1 ∪ Γ2 \ (sig(∆1)∪ sig(∆2)) ` ∆1 ∪∆2.

Proof. Γ1 ∪ Γ2 \ (sig(∆1) ∪ sig(∆2)) ` ∆1 ∪ ∆2 if and
only if ∀x∈ dom(∆1 ∪ ∆2). Γ1 ∪ Γ2 ∪ sig(∆1) ∪ sig(∆2) `
e : t where (∆1 ∪ ∆2)(x) = (e, t). Since dom(∆1) ∩
dom(∆2) = ∅, assume x ∈ dom(∆1) with ∆1(x) = (e, t).
Then, from (Γ1,∆1) OK it follows that Γ1 ∪ sig(∆1) ` e : t.
Thus, by monotonicity, Γ1 ∪ Γ2 ∪ sig(∆1) ∪ sig(∆2) ` e : t.
Analogous for x ∈ dom(∆2).

Theorem 1 (P4: Composition preserves typing inM). Given
a monotonic relation `, module composition of well-typed,
compatible modules preserves typing, that is, ∀m1,m2 ∈
M. m1 OK ∧ m2 OK ∧ m1÷m2 ⇒ m1 •m2 OK.

Proof. Let m1 = (Γ1,∆1), m2 = (Γ2,∆2), and m1 •m2 =
(Γ ′,∆ ′). (Γ ′,∆ ′) OK if and only if (dom(Γ ′) ∩ dom(∆ ′) =
∅) ∧ Γ ′ ` ∆ ′. We inline the definitions of Γ ′ = Γ1 ∪ Γ2 \

(sig(∆1) ∪ sig(∆2)) and ∆ ′ = ∆1 ∪ ∆2. The first conjunct
then follows from the equation dom(sig(∆)) = dom(∆) for
all ∆. The second conjunct follows by Lemma 1.

A.2 Properties ofMv

Lemma 2. Let m1 = (v1, Γ1,∆1) ∈ M v and m2 =
(v2, Γ2,∆2) ∈ Mv with m1 OK, m2 OK, and (v ′, Γ ′,∆ ′) =
m1 •m2. Then v ′ ⊆ dom(Γ ′) and v ′ ⊆ dom(∆ ′).

Proof. By m1 OK and m2 OK, we deduce v1 ⊆ Γ1, v1 ⊆ ∆1,
v2 ⊆ Γ2, and v2 ⊆ ∆2. v ′ ⊆ dom(Γ ′) and v ′ ⊆ dom(∆ ′)
then follow from the definition of Γ ′ and ∆ ′.

Theorem 2 (P4: Composition preserves typing in M v).
Given a monotonic relation `, module composition of
well-typed, compatible modules preserves typing, that is,
∀m1,m2 ∈ M v. m1 OK ∧ m2 OK ∧ m1÷m2 ⇒
m1 •m2 OK.

Proof. Let m1 = (v1, Γ1,∆1), m2 = (v2, Γ2,∆2), and m1 •
m2 = (v ′, Γ ′,∆ ′). (v ′, Γ ′,∆ ′) OK if and only if v ′ 6= ∅, v ′ ⊆
dom(Γ ′), v ′ ⊆ dom(∆ ′), and ∀c∈ v ′. (Γ ′(c),∆ ′(c)) OK.
The first constraint follows fromm1÷m2. The second and
third constraint follow from Lemma 2. For the final con-
straint, note that (Γ ′(c),∆ ′(c)) = (Γ1(c) ∪ Γ2(c) \ (∆1(c) ∪
∆2(c)), ∆1(c) ∪ ∆2(c)), which equals (Γ1(c),∆1(c)) •
(Γ2(c),∆2(c)). Thus, the final constraint follows from the
type-preservation Theorem 1 of module systemM.

Lemma 3. For the computation of conflicts the following
properties hold.

(i) conflictpresence and conflicttype are commutative
(ii) conflict(Γ1,∆1, Γ2,∆2) = conflict(Γ2,∆2, Γ1,∆1) for

all Γ1, Γ2,∆1,∆2

(iii) conflictpresence(Γ ′, Γ) = conflictpresence(Γ1, Γ) ∪
conflictpresence(Γ2, Γ), where Γ ′(c) = Γ1(c) ∪ Γ2(c)

(iv) conflicttype(Γ ′, Γ) = conflicttype(Γ1, Γ) ∪
conflicttype(Γ2, Γ), where Γ ′(c) = Γ1(c) ∪ Γ2(c)

(v) conflicttype(Γ ′, Γ) = conflicttype(Γ1, Γ) \

conflicttype(Γ2, Γ), where Γ ′(c) = Γ1(c) \ Γ2(c)

(vi) conflicttype(Γ1, Γ2) ⊆ conflictpresence(Γ1, Γ2)

(vii) conflict(Γ ′,∆ ′, Γ ,∆) = conflict(Γ1,∆1, Γ ,∆) ∪
conflict(Γ2,∆2, Γ ,∆), where Γ ′(c) = Γ1(c) ∪ Γ2(c) \
(Sig(∆1(c)) ∪ Sig(∆2(c))) and ∆ ′(c) = ∆1(c) ∪
∆2(c).

Proof. (i)–(vi) follow directly from the definition of
conflictpresence, conflicttype, and conflict. (vii) follows from
the definition of conflict and properties (i)–(vi).

Theorem 3 (P6’: Composition preserves compatibility). The
partial composition of compatible modules only yields com-
patible modules, that is,
÷
{
m1,m2, . . . ,mn

}
⇒ ÷

{
m1 •m2, . . . ,mn

}
.

Proof. Let mi = (vi, Γi,∆i) and m1 • m2 = (v ′, Γ ′,∆ ′).
÷
{
m1 • m2, . . . ,mn

}
if and only if va \ vb 6= ∅ where

va = v ′ ∩ (
⋂

x>2 vx) =
⋂

x vx \ conflict(Γ1,∆1, Γ2,∆2)
and vb =

(⋃
y>2 conflict(Γ ′,∆ ′, Γy,∆y) ∪⋃

2<x<y conflict(Γx,∆x, Γy,∆y)
)
. By Lemma 3 (vii),

we can simplify vb to
(⋃

x 6=y conflict(Γx,∆x, Γy,∆y)
)
.

Since also conflict(Γ1,∆1, Γ2,∆2) ⊆ vb, we get va \ vb =(⋂
x vx

)
\
(⋃

x 6=y conflict(Γx,∆x, Γy,∆y)
)
, which is

non-empty due to the assumption ÷
{
m1,m2, . . . ,mn

}
.

Theorem 4 (P5: Commutativity and associativity of mod-
ule composition). Module composition is commutative
(m1÷m2 ⇒ m1 • m2 = m2 • m1) and associative
(÷

{
m1,m2,m3

}
⇒ m1 • (m2 •m3) = (m1 •m2) •m3).

Proof. Commutativity is obvious from the definition of mod-
ule composition. Associativity follows from Lemma 3 (ii),
Lemma 3 (vii), and Theorem 3 by inlining the definition of
module composition.

A.3 Properties ofMvl

Lemma 4. For varmodel and varmap, the following proper-
ties hold.

(i) varmodel(v1 ∩ v2) ⊆ varmodel(v1) ∪ varmodel(v2)

(ii) varmodel(v1 \ v2) ⊆ varmodel(v1)

(iii) varmap(v1 ∩ v2,∆) ⊆ varmap(v1,∆) ∪ varmap(v2,∆)
(iv) varmap(v1 \ v2,∆) ⊆ varmap(v1,∆)
(v) varmap(v,∆ ′) ⊆ varmap(v,∆1) ∪ varmap(v,∆2)

where ∆ ′(c) = ∆1(c) ∪ ∆2(c) well-defined on v
(vi) varmap(v,∆ ′) ⊆ varmap(v,∆1)

where ∆ ′(c) = ∆1(c) \ ∆2(c) well-defined on v

Proof. (i)–(iv) follow directly from the definition of varmodel
and varmap. For (v), there are four cases in which∆1(c\{f})∪
∆2(c \ {f}) 6= ∆1(c∪ {f})∪∆2(c∪ {f}): For i ∈ {1, 2}, either
dom(∆i(c \ {f})) 6= dom(∆i(c∪ {f})) or for some variable x
∆i(c \ {f})(x) 6= ∆i(c ∪ {f})(x). Either case is subsumed by
varmap(v,∆i). Similarly for the proof of (vi).

Theorem 5 (Composition preserves locality). Module com-
position of well-typed, compatible modules preserves the
locality of configuration options, that is,

∀m1,m2 ∈Mvl. m1 OK ∧ m2 OK ∧ m1÷m2 ∧

m1 •m2 = (v ′, i ′, j ′, Γ ′,∆ ′)
⇒ varmodel(v ′) ∪ varmap(v ′, Γ ′)∪

varmap(v ′,∆ ′) ⊆ i ′ ∪ j ′

Proof. By Lemma 4, varmodel(v ′) ⊆ varmodel(v1) ∪
varmodel(v2), varmap(v ′, Γ ′) ⊆ varmap(v1, Γ1) ∪
varmap(v2, Γ2), and varmap(v ′,∆ ′) ⊆ varmap(v1,∆1) ∪
varmap(v2,∆2), which respectively are subsets of
i ′ ∪ j ′ = (i1 ∪ j1) ∪ (i2 ∪ j2) bym1 OK andm2 OK.

Theorem 6 (P4: Composition preserves typing in M vl).
Given a monotonic relation `, module composition of
well-typed, compatible modules preserves typing, that is,
∀m1,m2 ∈ M vl. m1 OK ∧ m2 OK ∧ m1÷m2 ⇒
m1 •m2 OK.

Proof. Follows directly from Theorem 2 and Theorem 5.

	Introduction
	Modules and variability
	Variable module composition
	A case against variability-induced decomposition
	Variability inside modules
	Crosscutting and inner-module variability in Busybox

	Formalization
	A base module system without variability
	A variability-aware module system
	Locality of configuration options
	Composition language
	Formalization summary

	Design decisions
	Constraint inference
	Local variability models and configuration-option imports
	Abstraction from variability implementation
	Product lines of product lines

	Implementation and practical scenario
	Implementation strategy
	Implementation for C
	Type checking Busybox

	Related work
	Conclusion
	Proofs
	Properties of M
	Properties of Mv
	Properties of Mvl

