
A Sound and Optimal Incremental
Build System with Dynamic Dependencies

Sebastian Erdweg Moritz Lichter Manuel Weiel
TU Darmstadt, Germany

Abstract
Build systems are used in all but the smallest software
projects to invoke the right build tools on the right files
in the right order. A build system must be sound (after a
build, generated files consistently reflect the latest source
files) and efficient (recheck and rebuild as few build units
as possible). Contemporary build systems provide limited
efficiency because they lack support for expressing fine-
grained file dependencies.

We present a build system called pluto that supports the
definition of reusable, parameterized, interconnected builders.
When run, a builder notifies the build system about dynam-
ically required and produced files as well as about other
builders whose results are needed. To support fine-grained
file dependencies, we generalize the traditional notion of
time stamps to allow builders to declare their actual require-
ments on a file’s content. pluto collects the requirements and
products of a builder with their stamps in a build summary.
This enables pluto to provides provably sound and optimal
incremental rebuilding. To support dynamic dependencies,
our rebuild algorithm interleaves dependency analysis and
builder execution and enforces invariants on the dependency
graph through a dynamic analysis. We have developed pluto
as a Java API and used it to implement more than 25 builders.
We describe our experience with migrating a larger Ant build
script to pluto and compare the respective build times.

Categories and Subject Descriptors D.2.9 [Management]:
Software configuration management; D.2.11 [Software Ar-
chitectures]: Languages

Keywords pluto; build system; builder API; incremental
building; dynamic dependencies; cyclic dependencies

1. Introduction
Software developers struggle with build systems on a regular
basis. Previous studies show that on average 12% of devel-
opment effort is not spent on developing software but on
maintaining build scripts [11]. Another study finds that build
scripts in existing software projects continuously change and
grow in complexity in sync with changes to the project’s
source code [12]. These studies show that the development
and maintenance of build scripts is an essential part of soft-
ware development.

As with any software artifact, build scripts are difficult to
implement correctly. This is particularly true because users
want build scripts to run fast enough to provide interactive
feedback [10]. Existing build systems such as Make or Ant
try to address this requirement through support for incremen-
tal rebuilding: After a file changes, the build system identifies
and executes only those build operations whose result has
been invalidated by the change. Unfortunately, existing build
systems do not support sufficiently fine-grained file depen-
dencies that are necessary for supporting sound and optimal
incremental rebuilding. Instead, existing build systems fre-
quently require clean builds (make clean && make all) in order
to work correctly.

We propose a novel build system called pluto that features
reusable, parameterized, interconnected builders. A builder
can execute any number of build operations, read and write
files, and trigger other builders. pluto tracks the dependencies
of a builder dynamically and organizes them in a single
dependency graph. To enable sound incremental rebuilding,
pluto interleaves dependency analysis and builder execution
and uses a dynamic analysis to enforce invariants on the
dependency graph, such as builder A must trigger builder B
before A may read any file generated by B. These invariants
are essential to correctly determine in which order to execute
builders after a file changed and whether a builder can be
skipped. We provide a formal model of pluto’s dependency
graph and prove the soundness and optimality of pluto’s
rebuild algorithm relative to the previous dependency graph.

Since our rebuild algorithm is optimal, incrementaliza-
tion is only limited by the precision of the builder-induced
dependency graph. While existing build systems often over-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3689-5/15/10...
http://dx.doi.org/10.1145/2814270.2814316

89

approximate dependencies, pluto aims to maximize incre-
mentality by providing four mechanisms for fine-grained
dependency tracking. First, pluto builders register file de-
pendencies dynamically at build time. Second, builders can
choose custom file stamps in place of the last-modified time
to precisely declare which part of a file they depend on. Third,
when running a builder, pluto automatically injects a depen-
dency on the builder’s implementation such that a change to
the builder’s implementation invalidates the builder’s result.
Fourth, pluto supports cyclic builder dependencies and allows
custom cycle-handling strategies.

We have developed pluto as a Java API1 and used it to
realize builders for Latex, Bibtex, Java, and 23 other builders
that we migrated from an existing Ant build script devel-
oped by others for the Spoofax language workbench [9]. For
Spoofax, we measured pluto’s build times and found substan-
tial speedups. To demonstrate the broad applicability of pluto ,
we furthermore used it to realize separate compilation and
incremental rebuilding within two compilers. In summary,
we make the following contributions.

• We review existing build systems with respect to their
dependency granularity and incrementality (Section 2).

• We describe a novel build system pluto with fine-grained
dependencies and demonstrate how it enables a builder
for Latex with exact dependencies (Section 3).

• We formalize pluto’s dependency model and stipulate
what it means for a build system to be sound and optimal
(Section 4).

• We present pluto’s rebuild algorithm and verify its sound-
ness and optimality (Section 5).

• We evaluate pluto’s applicability and its support for
incremental rebuilds (Section 6).

2. Existing Build Systems
To clarify the need for a new build system, we review a
few existing build systems with a focus on what kind of
dependencies can be declared and how the build system
supports incremental rebuilding.

GNU Make. A Make [16] build script consists of build
rules of the form 〈Provide : Require∗ Command∗〉. In Make
terminology, the provided and required entities are called
targets, which either refer to file names or to build-rule names.
Make executes rules in a demand-driven fashion. When a
target T is demanded, Make finds a rule that provides T ,
recursively demands the rule’s required targets, and executes
the rule’s commands if any of the required targets was
changed/rerun more recently than T . Thus, based on file
and build-rule dependencies, Make provides a simple form
of incremental building.

1 Source code is online https://github.com/pluto-build/pluto

The problem of Make is that all file and build dependen-
cies must be declared statically as part of a build rule. As
consequence, build rules often have to approximate their de-
pendencies, as a missing dependency makes the build script
unsound: A rule fails to execute despite a change to a file
that is actually needed. On the other hand, an overapproxi-
mation of dependencies limits incremental rebuilding: A rule
executes because a file changed that is actually not needed.
Neagu outlines the deficiencies of Make in greater detail in
his article What is wrong with make [14].

Most build systems used in practice besides Make (e.g.,
MSBuild, Ninja, SCons, CloudMake) manage dependencies
in a way that is very similar to Make. We discuss some notable
exceptions below.

Shake. Similar to Make, a Shake [13] build script consists
of build rules that statically declare all files they provide.
However, unlike Make, Shake build rules can discover and
register required files during building. That is, the dependency
graph can change during run time of a build script. This makes
many dependency patterns easy to express and allows Shake
to support incremental building for them.

A common example for dynamic dependencies is the set
of header files required to compile a C source file. The set of
header files is platform-dependent and thus cannot be inlined
into the build script. With Shake, a build script can simply
call the C preprocessor as part of the build routine and extract
the required header files from its output.

Shake is realized as a Haskell API and a build script takes
the following form:

main = shakeArgs shakeOptions $ do
Provide+ &%> \out -> do

need Require∗

Command+

need Require∗

Command+

...

Function need is part of Shake’s API and registers a file
dependency. As argument, need takes a file’s path as a string,
which can be, for example, computed from a command’s
output.

While Shake eliminates some overapproximation of depen-
dencies, there is plenty of room for improvement. In particu-
lar, Shake provides non-optimal incrementalization because a
build rule is considered outdated as soon as the last-modified
time of a required file changes (independent of the file’s con-
tent), because a clean build must follow any change of the
build script itself, and because the files provided by a build
rule need to be statically declared and cannot be computed.
A simple example where the provided files are hard to deter-
mine statically is the compilation of Java source files: The
compiler produces a class file for the main compilation unit
and one class for each inner or anonymous class inside the
compilation unit.

90

https://github.com/pluto-build/pluto

Apache Ant. An Ant2 build script is an XML file that
defines build rules of the following form:

<target name=Provide depends=Require∗ unless=Property>
Command∗

</target>

Unlike Make and Shake, Ant build rules do not express file
requirements directly. Instead, an Ant build rule provides
a name and requires the execution of other build rules by
reference to their name. Thus, Ant’s built-in dependency
management does not provide any support for incrementality.

To support incremental rebuilding, an Ant build rule can
declare its execution as being conditional using the attribute
unless. The value of this attribute is the name of a global
variable (property in Ant terminology). Ant skips a build rule
if the variable referred to by unless is defined to be true. Since
an Ant build script can set variables at any time, the skipping
of a build rule is programmable in Ant.

For example, to incrementally rebuild targets based on
file changes, Ant provides a generic macro uptodate to
determine whether a required file changed more recently
than a generated file. If the generated file is up-to-date, the
macro sets a user-supplied variable, which can be used to
skip the execution of a build rule:

<uptodate property="ok"
srcfile="A.java" targetfile="A.class"/>

<target name="compile" unless="ok">...</target>

This mechanism is very flexible as it allows comparing the
time stamps of arbitrary files. More generally, it is even
possible to dynamically determine the relevant files for
comparison or to incorporate other operations for deciding
whether to skip a build rule. However, since the skipping of a
build rule is programmable, this approach largely relies on the
discipline of the build-script developer and, in general, is not
sound. Moreover, full incrementality requires excessive use
of uptodate, but even projects like Tomcat use uptodate only
sporadically and require non-incremental rebuilds instead.

Problem statement. We provided a rough overview of de-
pendency models and incremental building supported by ex-
isting build systems. We have seen dependencies of the fol-
lowing kind:

• build rule provides file (statically declared)
• build rule requires file (statically declared)
• build rule requires file (dynamically discovered)
• build rule requires build rule (statically declared)

The goal of pluto is to achieve optimal incremental re-
building through maximally precise dependencies while also
guaranteeing soundness. To this end, pluto should allow all
dependencies of a build rule to be dynamically discovered
and support advanced dependency mechanisms that further
reduce the overapproximation of dependency declarations:
2 http://ant.apache.org/

public abstract class Builder<In, Out> {
protected abstract String description(In input);
protected abstract File persistentPath(In input);
protected abstract Out build(In input) throws Throwable;

protected void require(File p, Stamper s) { ... }
protected void provide(File p, Stamper s) { ... }
protected <In_, Out_> Out_ requireBuild

(BuilderFactory<In_, Out_> fact, In_ in) { ... }

protected CycleHandlerFactory getCycleHandler() { ...}
}

Figure 1. Abstract builder underlying all pluto builders.

• User-provided file stamps that declare a dependency on
parts of a file. To allow different build rules to apply
different usage patterns, the stamp should be provided by
the client and not by the producer of a file.

• When the definition of a build rule is changed, any
previous result of this build rule must be discarded and
rebuilt. Existing build systems fail to notice this and
require the user to initiate a clean build instead.

• When recursive build-rule dependencies occur, existing
build systems abort the build and indicate an error. Instead,
it should be possible to provide dedicated strategies for
handling cyclic dependencies.

In the following section, we illustrate pluto on a practical
use-case that requires support for all of these goals.

3. Building with pluto
In this section, we describe pluto’s builder API and show
how it enables the declaration of complicated dependency
patterns, using a builder for Latex and Bibtex as our example.

3.1 The Builder API
pluto provides a Java API for implementing custom build
scripts. A pluto build script consists of a collection of parame-
terized and interconnected builders. Figure 1 shows a slightly
simplified version of the abstract builder that underlies all
user-defined pluto builders.

A pluto builder takes input of type In and optionally
produces output of type Out. To eliminate any accidental
interactions between individual runs of a builder, we create a
new builder instance for every build.

A builder must implement three abstract methods. First, a
builder provides a description for logging purposes. Second,
a builder provides a file path where the build summary is
stored by pluto . This build summary remembers the required
and provided files of the previous run and is essential for
incrementalizing builds. Finally, a builder implements its
build procedure in method build. Since the build procedure
consists of regular Java code, a builder can make use of
existing Java libraries and is easy to debug.

91

http://ant.apache.org/

During the execution of the build procedure, a builder
can register required and provided files via methods require
and provide. Importantly, these methods not only take a
file path but also a file stamper, which provides a single
method to obtain a file stamp from a file path. The file
stamp governs when a file is considered up-to-date. pluto
provides a few generic stampers for builders to select from,
such as last-modified time, file exists, file hash, and file
content. However, a builder can also define and use its own
domain-specific stamper, which can extract some information
from the file and ignore the rest, such that only relevant file
changes trigger a rebuild. However, it is important to note that
different stampers have different performance and precision
characteristics. For example, computing a file hash is more
precise than comparing the last-modified times, but it also
requires significantly more computation time. To save time,
we tend to use the last-modified stamper for larger binary
files and files that rarely change.

A builder can request the execution of another builder us-
ing method requireBuild. This method takes a builder factory,
which constructs a fresh builder instance for the given input.
pluto automatically consolidates the required build’s build
summary to determine if the build can be skipped. Finally,
builders can request each other mutually recursively, thus
forming a dependency cycle. Since different builders require
different strategies for resolving cycles, a builder can over-
ride method getCycleHandler to provide a cycle handler. We
provide details about cycle handling in Section 3.4.

3.2 A Builder for Latex and Bibtex
We illustrate pluto’s builder API by describing a builder for
Latex documents. As input, our Latex builder takes the name
of the main tex file as well as a source and target directory:

public class LatexInput {
public final String docName;
public final File srcDir;
public final File targetDir;
// initializing constructor

}

As output, our Latex builder provides the file path of the
generated pdf document.

Figure 2 shows a builder for Latex documents with exact
file dependencies. The builder description and persistent file
path make use of the Latex input. Specifically, after a run of
the Latex builder, pluto will store its build summary in file
latex.dep in the target directory. pluto uses this build summary
to determine whether a build is up-to-date. In principle, pluto
could assign a persistent path automatically.

Method build does the actual building. As first step, the La-
tex builder requires a bibliography and requests the execution
of the Bibtex builder. The Bibtex builder takes the same input
as the Latex builder, but, in general, builders can be required
with arbitrary input. The request to the Bibtex builder returns

public class Latex extends Builder<LatexInput, File> {
public static BuilderFactory<LatexInput, File> factory =...;
public static final CycleHandlerFactory latexBibtexCycle =

FixpointCycleHandler.of(Bibtex.factory, Latex.factory);

protected String description(LatexInput input) {
return "Build PDF for " + input.docName;

}
protected File persistentPath(LatexInput input) {
return new File(input.targetDir, "latex.dep");

}
protected CycleHandlerFactory getCycleHandler() {
return latexBibtexCycle;

}
protected File build(LatexInput input) throws Throwable {

requireBuild(Bibtex.factory, input);

String docName = input.docName;
File tex = new File(input.srcDir, docName + ".tex");
File aux = new File(input.targetDir, docName + ".aux");
require(tex, FileHash.instance);
require(aux, FileHash.instance);

ExecutionResult res = Exec.run(input.srcDir, "pdflatex",
"-output-directory=" + input.targetDir,
"-interaction=batchmode",
"-kpathsea-debug=4",
docName + ".tex");

for (File p : extractReadFiles(res.errLog))
if (!p.equals(tex) && !p.equals(aux))

require(p, LastModified.instance);
for (File p : extractWrittenFiles(res.errLog))

provide(p, LastModified.instance);

return input.targetDir.resolve(docName + ".pdf");
}

}

Figure 2. A Latex builder with exact file dependencies.

immediately if the Bibtex builder is up-to-date and otherwise
blocks until the Bibtex build is finished.

As second step, the Latex builder identifies the main tex
file in the source directory and the aux file in the target
directory. The aux file is used internally by pdflatex to keep
track of references and other information within the Latex
document. The Latex builder requires both files using their
file hash as a stamp, such that only a true edit of a file triggers
a rebuild. This is beneficial for source files like our Latex
document because it makes the build invariant under file-
system operations (e.g., by version-control systems) that do
not change the content but the last-modified time of a file.
For the aux file, there is another reason for using a file hash
as a stamp, namely Latex requires repeated building until the
content of the aux file stabilizes (details in Section 3.4).

As third step, the Latex builder executes pdflatex with
appropriate command-line arguments. Specifically, the Latex

92

doc.tex

doc.aux

sigplan
conf.cls

logo.png

doc.bbl

Latex
.class

Latex
.java

Bibtex
.class

Bibtex
.java

bib.bib

Latex: doc Bibtex: doc

javac: Latex javac: Bibtex

doc.pdfdoc.log

Builder
.class

Bibtex
Aux

Stamper
.class

requires file
provides file
requires build

Figure 3. Exact dependencies of a simple Latex build.

builder uses the option -kpathsea-debug=4, which makes
pdflatex print the path of each read and written file to
stderr.3 Our method Exec.run starts pdflatex in a new pro-
cess with input.srcDir as working directory. Exec.run yields
an ExecutionResult that contains all messages the command
issued to stdout and stderr. The Latex builder parses these
messages to extract the read and written file paths and regis-
ters required and provided files accordingly. As final step, the
builder returns the file path of the generated pdf file, which
is among the files written by pdflatex.

The Bibtex builder (not shown) is similar to the Latex
builder, but calls bibtex instead of pdflatex. We want to em-
phasize two notable properties of the Bibtex builder. First, the
Bibtex builder not only requires all involved bibliographies
but also the aux file, generated by the Latex builder. To make
sure the aux exists, the Bibtex builder requests the execution
of the Latex builder, effectively forming a build cycle, which
pluto specifically supports. The Latex and Bibtex builders
explicitly define support for handling cycles (details in Sec-
tion 3.4). Second, while the Bibtex builder depends on the
aux file, most of this file is irrelevant for the Bibtex builder.
To this end, the Bibtex builder uses a custom stamper that
parses the aux file, extracts the bibliography name and the
set of referenced citation keys, and uses them as a stamp.
Accordingly, the Bibtex builder only becomes outdated when
a different bibliography is used or a different set of bibliogra-
phy entries is cited in the aux file. For example, changes to
regular text or to captions of figures do not lead to a rebuild
of the Bibtex builder.

3.3 Discussion
pluto achieves maximally incremental rebuilds while retain-
ing soundness by supporting precise dependencies. Figure 3
shows the dependencies of our Latex builder for a simple la-
tex document doc.tex in sigplanconf style including a graph-

3 http://tug.org/texinfohtml/kpathsea.html

ics logo.png and a bibliography bib.bib. Rebuilds are incre-
mental. For example, pluto only reruns the Bibtex builder
if bib.bib changes, a citation is added or removed from the
document, or the implementation of the Bibtex builder in
Bibtex.java changes. Below, we discuss the core properties
of pluto builders using this example.

Dynamic dependencies. Often, static dependency detec-
tion is difficult. In the case of Latex where even parsing
is undecidable [4], soundly detecting dependencies is a lost
cause. Therefore, in pluto , we support the dynamic discovery
of dependencies, which a builder can register at any time dur-
ing a build using methods require and provide. For example,
dynamic dependency discovery allowed us to identify the La-
tex class sigplanconf.cls, the included graphics file logo.png,
the bibliography doc.bbl, and the generated output doc.pdf in
Figure 3.

File stamps. In other build systems, when a builder requires
a file, the builder is rerun whenever the file’s last-modified
time changes. However, often a builder is only interested in
parts of a file and invariant to changes in other parts of a file.
For example, a JavaDoc builder is invariant to changes to
a method’s body and only interested in method signatures
and comments. Similarly, the Bibtex builder is invariant to
changes in a Latex document that do not change the set of
cited Bibtex entries. pluto supports custom file stamps such
that a builder can declare its actual dependency on a file’s
content. Since different builders can require different parts
of the same file, it is important that the client of a file selects
the file stamp rather than the provider of a file. For example,
the Latex builder requires the same aux file as the Bibtex
builder, but the Latex builder is sensitive to any change in
the file’s content and not just to the bibliography references.
Finally, note that sophisticated file stamps are more expensive
to check than simple ones. For example, the last-modified
time is much faster to compute than a file’s hash. In practical
applications, build-script developers need to trade a stamp’s
cost off against the potential incremental speedup.

Builder dependencies. In pluto , a builder not only requires
files but also other builds. For example, the Latex builder
requires the Bibtex builder to run. In fact, it is an error to
require a generated file without first requiring the builder
that generates the file. This is essential for the soundness
of the build system: If the Latex builder did not require the
Bibtex builder but reads the bbl file nonetheless, the build
result is only consistent when the Bibtex builder happens to
be up-to-date (e.g., no pending change of the bibliography
file). The behavior depends on the overall system state and
is nondeterministic from the build system’s point of view.
Builder dependencies ensure that requiring a generated file
consistently succeeds. This is particularly important for build
systems that support incrementalization (or parallelization),
because they may change the order in which builders are

93

http://tug.org/texinfohtml/kpathsea.html

executed. pluto enforces appropriate build requests through a
dynamic analysis.

Metadependencies. Beyond changes to required or pro-
vided files, a build result can also become inconsistent when
the code of its builder changed. While almost all existing
build systems ignore this kind of dependency, pluto automat-
ically injects appropriate dependencies into build results. To
this end, Figure 3 also shows the build units that result from
calling a Java builder on the code that implements the Latex
and Bibtex builders. In our example, the Java builder gener-
ates an executable Latex builder Latex.class from its source
file Latex.java, linking it against the abstract builder class
from pluto’s builder API. When pluto executes a builder, it
uses Java reflection to find the corresponding class file and
adds it as a required file to the build result. Since the class file
is generated, pluto also needs to identify the corresponding
builder and add it as a builder dependency as described above.
As consequence of this dependency setup, when a developer
changes Latex.java, a previously generated pdf document is
regenerated because (i) build result Latex: doc requires build
result javac: Latex, which requires the changed file Latex.java
and thus needs rebuilding and (ii) this rebuilding changes La-
tex.class, which is required by build result Latex: doc, which
thus needs rebuilding itself. This way, pluto guarantees build
results are consistent after each run.

Dependency injection. Consider a Latex file that includes
a generated png graphics that, for example, was generated
from evaluation data to display the data’s distribution. Since
the png file was generated, it may seem that the Latex builder
needs to unconditionally use method requireBuild to require
the builder of the png file. Such hard-coded dependency
would be bad because the Latex builder would have to be
changed whenever the dependencies change, for example, if
the png file is no longer needed.

To avoid such hard-coded dependencies, pluto supports
dependency injection. Build requests are first-class values
in pluto and can be forwarded to a builder, such that this
builder can execute the build requests and install correspond-
ing dependencies. For the png example, the Latex builder can
receive a list of build requests as part of its input (LatexInput
above does not show this). A request to build a Latex docu-
ment that includes a generated png graphics may then look
as follows.

BuildRequest pngRequest =
new BuildRequest(PNG.factory, new PNGInput(...));

File pdf = requireBuild(
Latex.factory, new LatexInput(..., pngRequest));

3.4 API for Handling Build Cycles
Most build systems assume that builders do not run into a cy-
cle. However, cyclic code dependencies are not uncommon in
practice, especially within a single language. In our example,
there are actually two cycles. First, the Latex builder is in a

public interface CycleHandler {
public String cycleDescription(BuildCycle cycle);
public boolean canBuildCycle(BuildCycle cycle);
public Set<BuildUnit> buildCycle(BuildCycle cycle,

BuildManager manager) throws Throwable;

}

Figure 4. Interface for cycle handlers.

cycle by itself because it reads from and writes to the same
aux file. Second, the Latex and Bibtex builders depend on
each other because the Latex builder writes to the aux file that
Bibtex reads and Bibtex writes to the bbl file that Latex reads.
Without cycle support, we would have to merge the Latex
and Bibtex builders into a single builder, which itself has to
make sure that Latex runs often enough and that Bibtex is not
called on every single run but only when actually needed.

Different builders require different strategies for building
cycles. Therefore, our API allows the definition and selection
of different cycle handlers. Figure 4 shows the definition of
the interface common to all cycle handlers. Like for builders,
we create fresh cycle handlers for each occurrence of a cycle
to avoid accidental interactions. By default, a builder does
not provide a cycle handler, which is the usual case in build
systems. If a builder is designed to support cycles, it can
provide a cycle handler by overriding method getCycleHandler
from the builder API (Figure 1).

When pluto detects a build cycle, it queries all builders in
the cycle for a cycle handler. If none of the builders provides
a cycle handler, the cycle cannot be built and building is
aborted. Otherwise, pluto asks each cycle handler whether it
can build this particular cycle (method canBuildCycle). If at
least one cycle handler can build the cycle, pluto invokes its
method buildCycle. This method takes the build cycle and an
instance of the currently running build manager. It produces a
set of build units (cf. Section 4), one for each member of the
cycle. Method buildCycle can call method build of the involved
builders and needs to resolve the cyclic dependencies. We
implemented two predefined generic cycle handlers that can
be used by builders as needed.

Fixpoint cycle handler. This cycle handler invokes the
builders in the cycle iteratively until they stabilize, that is,
until a fixpoint is reached. In each iteration, the cycle handler
checks which builders in the cycle need to be reinvoked
because some dependencies are not up-to-date. The handler
then invokes these builders. If no builder required invocation,
the building reached a fixpoint and the cycle building stops.
If at least one builder was invoked, the cycle handler starts
the next iteration. It is important to note that the fixpoint
cycle handler itself does not guarantee a fixpoint will be
reached. The builders in the cycle need to be designed to take
part in a fixpoint compilation. We implemented the fixpoint
cycle handler independently of the builders that participate

94

P ::=<path> path to a file
Ω ::=P → <file>⊥ file system

FS ::=P × Ω→ S file stamper
S ::=stamp <value> FS file stamp

R ::= freq P S | breq B I file or build requirement
G ::=gen P S provided file with stamp
I ::=<value> builder input
B ::={build : I × Ω→ U × Ω, path: I → P} builder
U ::={builder : B, input : I , reqs: R, gens: G} build unit

Figure 5. Syntax of build units and requirements

in a cycle, which makes the handler reusable. We use the
fixpoint cycle handler in the Latex and Bibtex builder from
the example above.

Build-at-once cycle handler. This cycle handler collects
all the input of the cyclic builders and builds them simulta-
neously by invoking a single builder on the collected input.
Thus, the build-at-once cycle handler only supports cycles
where all builders are equal and only differ with respect to
their input. Moreover, the involved builder must provide a
build method that accepts a set of inputs. In the noncyclic
case, the builder is invoked with a singleton set. When a cycle
is detected, the build-at-once handler invokes the builder on
all these inputs. For example, we use this cycle handler in our
Java builder. The builder takes multiple source files as input.
If they do not depend on each other cyclicly, we invoke the
java compiler on each source file separately. But if there is
a cyclic dependency between files, we pass them to the Java
compiler together.

4. A Formal Model of pluto Dependencies
The previous section introduced pluto from a user’s perspec-
tive. In this section, we formally describe the dependency
graph used by pluto for dependency management and how
pluto manages metadependencies and cycles. On top of the
dependency graph, we precisely define what it means for a
build result to be up-to-date and what constitutes a sound and
incremental build system.

4.1 A Two-Layered Dependency Graph
pluto represents dependencies in a two-layered dependency
graph. The file layer of a dependency graph contains nodes
that represent required and provided files. File nodes are never
connected. The build layer of a dependency graph contains
nodes that represent the result of a builder. We call such
nodes build units. pluto connects build units to those nodes
in the build layer that the unit required to be built. In addition,
pluto connects a build unit to all nodes in the file layer that
represent files required or provided by the build unit. Figure 3
shows an example dependency graph resulting from a Latex
build.

Figure 5 defines the syntax of build units and requirements
used by our dependency graph. Since build systems read and
write files, we need to model a file system. We represent
the file system as a function ω ∈ Ω that retrieves a file
handle <file> for a path p ∈ P or ⊥ if the file does not exist.
We assume the existence of generic functions for reading
(readT :P×Ω→ T⊥) and writing (writeT :T×P×Ω→ Ω)
arbitrary data to the file system.

To model precise file dependencies, the edges in pluto’s
dependency graph are labeled with file stamps s ∈ S . We
model a file stamper FS as a function that takes the path of
a file and yields a stamp. A stamp S consists of an arbitrary
stamp value <value>. To allow up-to-date checks, a stamp
stores a reference to the stamper that created the stamp
(details in Section 4.2). A file requirement (freq p s) stores
the path of the required file together with the file stamp for
that path, as does a provided file (gen p s).

We represent builders b ∈ B similar to our Java API as
a record with fields build and path . One notable difference
to our Java API is that we left out the in-memory builder
output in our formal model. We write b.label to access the
data stored at field label . A builder provides a function build
that implements the build procedure. The build procedure
takes the builder’s input i ∈ I and yields a build unit u ∈ U .
The build procedure may read and write any file from the file
system and may trigger the execution of other builders. We
assume that builders correctly register file dependencies in
the resulting build unit. In addition to the build procedure, a
builder also provides a function path that yields the path for
storing and retrieving the build unit resulting from invocations
of build . A build unit then simply is a record collecting all
relevant information: the builder, its input, the required files
and required builds reqs , and the provided files gens . We use
the helper function

path(u) = u.builder .path(u.input).

We represent edges on build units through relation requires ⊂
U × Ω × U , where (u requiresω v) if and only if there
are b ∈ B and i ∈ I such that (breq b i) ∈ u.reqs
and readU (b.path(i), ω) = v. We write requires+ω for the
transitive closure and requires∗ω for the reflexive transitive
closure of requiresω .

A two-layered dependency graph DG is a set of build
units DG ⊂ U . A dependency graph is ω-well-formed if it
adheres to the following conditions:

1. Closed under requiresω: If u ∈ DG and u requiresω v,
then v ∈ DG .

2. No overlapping build-unit files: If u, v ∈ DG and u 6= v,
then path(u) 6= path(v).

3. No overlapping generated files: If u, v ∈ DG , u 6= v, and
(gen p _) ∈ u.gens , then (gen p _) 6∈ v.gens .

4. No hidden dependencies: If u, v ∈ DG, u 6= v, u.reqs =
〈r1, . . . , rn〉, rk = (freq p _), and (gen p _) ∈ v.gens ,

95

then for some j < k, rj = (breq b i) such that
readU (b.path(i), ω) = x and x requires∗ω v.

The conditions ensure that changing the build order does
not affect the build results. The first condition makes sure a
dependency graph contains all required build units. The sec-
ond condition checks that different builders provide distinct
paths for storing their build unit. Similarly, the third condition
ensures different builders do not generate the same files. A
violation of any of the previous two conditions would make
building sensitive to build order. The last condition ensures
all file dependencies are governed by builder dependencies.
That is, before a build unit u can require a file generated by
another build unit v, u must (transitively) require v. Accord-
ingly, our condition checks that, preceding the file require-
ment, there is a build requirement (breq b i) of some unit that
requires v. This condition is most important as it guarantees
that build-unit/build-unit dependencies soundly approximate
build-unit/file dependencies. In our implementation, pluto
checks all four conditions incrementally as requirements are
discovered. In case of a violation, we abort the build and
provide a meaningful error message.

4.2 File Stamps and Build-Unit Consistency
We consider a build unit to be consistent if all required build
units are consistent as well as all required and generated files.

We use customizable file stamps to track file changes.
Given a path p and file system ω, we consider a file to be up-
to-date with respect to a stamp (stamp v f) if f(p, ω) = v.
Thus, only a change to p that leads to a change of its stamp
f(p, ω) will invalidate a file requirement (freq p (stamp v f))
or generated file (gen p (stamp v f)).

For build-units, we distinguish internal from total consis-
tency. A build unit u is internally consistent with respect to a
file system ω if

1. all generated files (gen p s) ∈ u.gens are up-to-date,

2. all required files (freq p s) ∈ u.reqs are up-to-date, and

3. for all required builds (breq b i) ∈ u.reqs , the correspond-
ing build unit v = readU (b.path(i), ω) exists and satisfies
v.builder = b and v.input = i .

A build unit u is totally consistent (or just consistent) with
respect to ω if all build units v with u requires∗ω v are
internally consistent. Thus, total consistency of u requires
internal consistency of u itself and of all build units that u
transitively depends on.

4.3 Sound Build Systems
A build unit requires rebuilding if it is not totally consistent.
Conversely, a totally consistent build unit does not require
rebuilding. It is the job of a build system to produce a set of
totally consistent build units that do not require rebuilding.
For soundness, it does not matter if the build system performs
a clean build or incrementally rebuilds some build units.

We model a build system as a function build :(B × I)×
Ω → (U)⊥ × Ω. A build system takes a sequence of build
requests, represented as pairs of builders and builder inputs,
and a file system as input. In addition to a possibly updated
file system, the build system yields an error ⊥ if the executed
builders violate any of the well-formedness conditions for
dependency graphs. Otherwise, a build system yields one
totally consistent build unit for each build request forming a
well-formed dependency graph. Formally, a build system is
sound if it satisfies the following soundness criteria:

(S1) If build((b, i), ω0) = (u, ω), then the closure of u
under requiresω is an ω-well-formed dependency graph.

(S2) If build(〈(b1, i1) · · · (bm, im)〉, ω0) = (〈u1 · · ·un〉, ω),
then m = n and for all x ∈ {1, . . . ,m}, ux.builder = bx
and ux.input = ix.

(S3) If build((b, i), ω0) = (u, ω), then all u ∈ u are totally
consistent with respect to ω.

The soundness of a build system can only hold if the involved
builders satisfy a sanity check and yield reasonable results.
Otherwise, a builder could always yield an inconsistent build
unit, triggering a sound build system impossible.

Assumption 4.1. For any builder b ∈ B with input i ∈ I ,
if b.build(i, ω0) = (u, ω), then u.builder = b, u.input = i,
and u is internally consistent with respect to ω.

Note how our formalization assumes the build system has
exclusive access to the file system. In practice, it is sufficient
to ensure that no other process changes any files required
or generated by any of the involved builders. Even if this
cannot be ensured, a change from another process will at most
contaminate the ongoing build; a subsequent build will detect
the outdated file stamp and trigger a rebuild accordingly.

4.4 Incremental Build Systems
We consider incremental building at the level of build units.
That is, if we execute a builder, we execute it completely.
Therefore, our model of builders as a function from build
input to build unit is sufficient. Users can realize incremental
computations at different granularities by splitting or merging
builders.

We call a sound build system incremental if it optimizes
for the following two incrementality properties:

(I1) Minimize the number of builder-function executions.

(I2) Minimize the number of internal-consistency checks.

An incremental build system is optimal if, for any input, it
executes the minimal number of builders (I1) and checks
internal consistency as infrequently as possible (I2), where
(I1) takes precedence over (I2). As a corollary, an optimal
build system is idempotent when the file system is unchanged:
If build((b, i), ω0) = (u, ω), then build((b, i), ω) = (u, ω).

As a small caveat, a build system can only be optimal
if the involved builders satisfy a stability condition. That

96

is, a builder may not drop a requirement if all previous re-
quirements are up-to-date. Otherwise, a builder could drop
requirements arbitrarily, making incremental rebuilding un-
predictable and optimality impossible.

Assumption 4.2. For any builder b ∈ B with input i ∈ I , let
b.build(i, ω0) = (u, ω) and u.reqs = 〈r1, . . . , rk, . . . , rn〉.
If rk is a build requirement and all r1, . . . , rk−1 are build
requirements or up-to-date file requirements in ω, then the
rebuild b.build(i, ω) = (v, ω′) retains rk, rk ∈ v.reqs .

Based on this assumption, given a build-system invocation
build((b, i), ω0) = (u, ω), a sound build system is optimal
if it only rebuilds those units v reachable from u for which
b.path(i) is invalid in ω0 or for which v is internally inconsis-
tent after all of its build requirements have been made totally
consistent.

4.5 Metabuilding: Building Builders
As discussed in Section 3.3, a build result also becomes
inconsistent if the definition of the builder changes. So far,
our formal model has ignored this issue.

Typically, building a builder amounts to generating one
or more executable files and using these executable files
as a builder. For the sake of simplicity, let us assume that
building a builder generates a single file at path p that we
can deserialize into a builder using readB(p, ω) = b. When
executing b, we automatically add a file requirement on p
and a build requirement on the build unit ub that generated
p. Thus, when a file that is required for building ub changes,
ub gets built again, which makes our file requirement on
p outdated and triggers a rerun of b. It is important to
notice that the build and file requirements that we add as
metadependencies are regular requirements. For this reason,
any sound build system will detect a change to the definition
of b, trigger a rebuild of b, detect changes to the executable
files generated for b, and trigger a rebuild of any result built
by b.

In our implementation, when a builder b is executed,
we use Java’s reflection to find the jar or class file p that
implements b. If the file was generated by another builder,
we locate the corresponding metabuild unit ub and add
requirements on p and ub to units produced by b. When
pluto finds an outdated metadependency, it not only triggers
a rebuild but also uses the JVM’s hotswapping support to
dynamically reload the rebuilt class files. If hotswapping
fails (e.g., when adding or removing a field), the JVM
needs to be restarted by the user in order to run the latest
builder definition. pluto detects this situation and issues a
corresponding error message.

4.6 Cyclic Dependencies
pluto allows build units to mutually recursively depend on
each other. We represent cyclic dependencies in the same way
as non-cyclic dependencies using a build unit’s requirements
field reqs . In particular, we call a build unit u cyclic in ω

if u requires+ω u. Cyclic build units adhere to the same
definitions for internal and total consistency as their non-
cyclic counterparts. However, according to the definition of
total consistency, either all or none of the units involved in a
cycle are totally consistent.

To build a cycle, it is not possible to simply execute all
involved builders, because the builders require each other’s
build results recursively. For example, the Latex builder from
Section 3 requires the bbl file generated by the Bibtex builder
and the Bibtex builder requires the aux file generated by the
Latex builder. Without special support for cycles, the Latex
and Bibtex builders need to be merged into a single builder
whose build procedure needs to manually take care to invoke
Latex often enough and not to invoke Bibtex when it can be
safely skipped.

In general, there is no one correct way of handling cycles
and different builders require different cycle-handling strate-
gies. Even though we did not show this in the definition of
builders B in Figure 5, pluto allows builders to optionally
provide custom cycle supports of the following form:

cycle-support : (B × I)× Ω→ (U)⊥ × Ω

Note that a cycle support has the same signature as a build
system (Section 4.3). However, when a cycle support is called,
it is guaranteed that the input builder/build-input pairs form a
cycle if they were built normally. The only job of the cycle
support is to break the cycle, that is, to implement a strategy
for building the cycle such that there is a build unit for each
builder in the cycle. We expect that most cycle-handling
strategies are specific to the builders that occur in the cycle.
Therefore, we allow a cycle support to reject building a cycle
by returning ⊥. If no builder in a cycle provides a handler
capable of handling the cycle, pluto aborts the build with an
appropriate error message.

To be sound, a cycle support must satisfy the same sound-
ness criteria as a build system. That is, the result must form
a well-formed dependency graph, each build unit was built
with the requested builder and input, and each build unit is
totally consistent.

5. The pluto Incremental Build Algorithm
In this section, we present pluto’s incremental build algorithm
and prove it sound and optimal. Figure 6 and Figure 7 show
the build algorithm without cycle support. We discuss how
we support cycles in Section 5.2, but cycles are not included
in the following formalization of the algorithm. The build
algorithm of pluto consists of four functions:

• Function build is the entry point of the build system and
satisfies the soundness criteria from Section 4.3.

• Function require takes a build request and yields a
corresponding build unit. This function implements the
incrementalization of pluto and yields a previously built
build unit if it is still consistent or triggers a rebuild
otherwise. Like in our API, Builders are intended to call

97

1 var Pconsistent , var Preq , var Gen

2 function build(〈(b1, i1) · · · (bn, in)〉, ω0)
3 Pconsistent , Preq := ∅
4 Gen := {p 7→ ⊥ | p ∈ P}
5 var ω := ω0

6 for j from 1 to n do
77 val (uj , ω

′) := require(bj , ij , ω)
8 ω := ω′

9 return (〈u1 · · ·un〉,ω)

10 function require(b, i, ω0)
11 var ω := ω0

1212 val u := readU (b.path(i), ω)

1313 if u = ⊥ then
1414 return execute(b, i, ω)
1515 if b.path(i) ∈ Pconsistent then
1616 return (u, ω)

1717 if u.builder 6= b ∨ u.input 6= i then
1818 return execute(b, i, ω)
1919 foreach gen p (stamp s f) ∈ u.gens do
2020 if f(p, ω) 6= s then
21 return execute(b, i, ω)
22 foreach r ∈ u.req do
2323 if (freq p (stamp s f)) := r∧ f(p, ω) 6= s then
2424 return execute(b, i, ω)
25 else if (breq b′ i′) := r then
2626 (_, ω) := require(b′, i′, ω)
2727 validate(u, b.path(i), ω)
2828 Pconsistent := Pconsistent ∪ {b.path(i)}
2929 return (u, ω)

30 function execute(b, i, ω0)
31 val (u, ω) := b.build(i, ω0)

3232 val ω′ := writeU (u, b.path(i), ω)

3333 validate(u, b.path(i), ω′)
33 Pconsistent := Pconsistent ∪ {b.path(i)}
34 return (u, ω′)

Figure 6. Rebuild algorithm without cycle support.

function require in order to require the execution of
another builder.

• Function execute runs a builder when require finds it
is inconsistent.

• Function validate dynamically checks if the involved
build units form a well-formed dependency graph.

We use three global variables that are initialized by func-
tion build at the beginning of each build-system run. Vari-
able Pconsistent stores the set of consistent build units that
have been checked or rebuilt during the current run. Thus,
Pconsistent functions as a cache. Moreover, at all times, the
build units in Pconsistent form a well-formed dependency

1 function validate(u, pu, ω)
22 if pu ∈ Pconsistent then
33 abort (⊥, ω)

44 foreach (gen p _) ∈ u.gens do
55 if Gen(p) 6= ⊥ ∨ p ∈ Preq then
66 abort (⊥, ω)

7 else
88 Gen := {p 7→ pu} ∪Gen

9 for k from 1 to |u.reqs| do
10 if (freq p _) := u.reqs[k] then
1111 Preq := Preq ∪ {p}
1212 if Gen(p) 6= ⊥ then
13 val ugen := readU (Gen(p), ω)

14

val uk := {builder := u.builder ,
input := u.input ,
reqs := u.reqs[1 . . . (k−1)],
gens := u.gens}

14 if ¬ (uk requires∗ω ugen) then
1515 abort (⊥, ω)

Figure 7. Validation of dependency well-formedness.

graph. Variable Preq stores the set of files that have been
required by build units in Pconsistent . Variable Gen stores a
mapping from a generated file to the path of the build unit that
generated it. We use variables Preq and Gen in validate to
check that dependencies are well-formed. After initializing
the variables, function build simply iterates over the list of
requested builds and calls require on each of them (Line 7).
Note that we update the current file system ω during the loop.

Function require tries to reuse a previously built build
unit u by reading it from the file system (Line 12). If no
build unit is found, require triggers a rebuild using function
execute (Line 14). If u exists and is known to be consistent,
require simply returns it (Line 16). Otherwise, require
performs a consistency check on u to determine whether a
rebuild is necessary. In accordance with our definition of
internal consistency in Section 4.2, a rebuild is necessary (i)
if u was built by another builder or another input than the
request one (Line 17), (ii) if any of the files generated by u is
outdated (Line 19), or (iii) if any of the files required by u is
outdated (Line 23).

However, function require not only checks for internal
consistency, but also ensures total consistency. To this end,
require recursively calls itself for any build required by u
(Line 26), which may or may not lead to a rebuild of the
required unit. After the recursive call returns, the required
build is consistent and it is sound to use any of the files
generated by it. Here, it is visible why a build must be
required prior to requiring a file generated by that build:
If the file was required first, the file requirement would
already have been checked by the loop. Conversely, if the
file is required after the build, the file requirement will

98

be subsequently checked by the loop. If no inconsistency
was found, require validates the well-formedness of the
dependency graph, caches the result, and returns the build
unit (Line 27 ff.).

When called by require, function execute simply runs
the requested builder, stores the build result, validates the
well-formedness of the dependency graph, caches the result,
and returns it.

Function validate (Figure 7) checks the well-formedness
of the dependency graph induced by Pconsistent . It does so
incrementally by checking every build unit u added to the
graph, such that all four well-formedness conditions from
Section 4.1 hold. First, a graph is closed under requires be-
cause we call validate for every unit added to Pconsistent .
Then, validate checks that no previously added unit uses
the same path as u (Line 2), and that no file generated by
u overwrites a previously generated file (Line 4). Finally,
validate checks that there are no hidden dependencies.
That is, if path p is generated by u, then there is no previous
requirement on p (Line 4), and if path p is required by u
and p is generated by ugen , then u transitively requires ugen

before it required p. To check the latter condition, validate
constructs a build unit uk that contains only those require-
ments that appear before the one to p. If validate finds a
well-formedness violation, it aborts all pending builds and
yields an error ⊥.

5.1 Properties of pluto
Function build as defined above implements a sound and
optimal build system as specified in Sections 4.3 and 4.4.
Note that we presently only deal with non-cyclic builds.
Proofs of all lemmas and theorems appear in Appendix A.

Soundness. To show soundness, we first observe that the
global variable Pconsistent invariably stores a well-formed
dependency graph. Moreover, Preq contains all files required
by units in Pconsistent , and Gen maps each file generated by
a unit in Pconsistent to the path of that unit. Together, we call
this the well-formedness invariant (details in Appendix A).

Lemma 5.1. Given a call require(b, i, ω0) = (u, ω), if
the well-formedness invariant holds for ω0, then the well-
formedness invariant also holds for ω.

This holds because we use validate to explicitly check
that adding a unit to Pconsistent retains well-formedness.
Besides well-formedness, the units in Pconsistent are also
totally consistent:

Lemma 5.2. During a single run of build, whenever
path(u) is added to Pconsistent and the current file system is
ω, then u is totally consistent in ω.

This holds because (i) in a well-formed dependency graph,
builders cannot invalidate each other, and (ii) we only add
build units to Pconsistent after either ensuring their internal
consistency or executing them (relying on Assumption 4.1).

From these lemmas, we can show that build is sound.

Theorem 5.3. Function build satisfies the soundness crite-
ria (S1), (S2), and (S3) from Section 4.3.

Optimality. We first observe that due to the cache Pconsistent ,
build executes each build request (b, i) at most once.

Lemma 5.4. If require(b, i, ω0) = (u, ω1) followed by
require(b, i, ω2) during a single run of build, then the
second call yields a cached result in Line 16.

Next, we show that build does not execute build requests
(b, i) that are not (transitively) required by the result of build.
Since all executed build requests add an entry to Pconsistent ,
we show that Pconsistent only contains entries transitively
required by the result of build.

Lemma 5.5. If build((b, i), ω0) = (u, ω), then for all
p ∈ Pconsistent with v = readU (p, ω), u requires∗ω v for
some u ∈ u.

Finally, if build executes a build request (b, i), then either
there was no valid persisted build unit at b.path(i) or the
build unit had an outdated file requirement of a file p that was
guaranteed to remain unchanged during the rest of the build.

Lemma 5.6. Let build call execute(b, i, ω0) = (_, ω) and
p = b.path(i). Then either

1. readU (p, ω0) = ⊥,
2. readU (p, ω0) = u such that u.builder 6= b or u.input 6=

i,
3. readU (p, ω0) = u such that (freq p s) ∈ u.reqs outdated

in ω0 and Gen(p) = ⊥, or
4. readU (p, ω0) = u such that (freq p s) ∈ u.reqs outdated

in ω, Gen(p) = pv , and read(pv, ω) is totally consistent.

With these lemmas together, we can show that the number of
builders executed by pluto is minimal.

Theorem 5.7. The number of builders executed by build is
minimal.

Lastly, we show that build executes the minimal num-
ber internal consistency checks (Line 19 ff.). For a call
build((b, i), ω0) = (u, ω), the minimal number of consis-
tency checks is

N = |{v|u ∈ u, u requires∗ω v, readU (path(v), ω0) 6= ⊥}|.

That is, the build system should try to reuse every build unit
that is required in the result u for which existed a previous
build in ω0.

Theorem 5.8. The number of consistency checks performed
by build is N .

5.2 Supporting Cycles
Our implementation supports cyclic dependencies as pre-
sented in Section 3.4. To support cycles in our rebuild al-
gorithm, we use two stacks for detecting cycles and in-
crementally maintaining the result of a strongly-connected-
component analysis on the growing dependency graph.

99

The first stack is used by function execute to detect
cycles. Function execute adds a builder and its input before
running it and removes them when the builder finishes. If a
builder and its input are already on the stack when adding
them, a cycle is found. The cycle involves all builders on the
stack starting at the first occurrence of the cyclic builder.

All the builders in the cycle are part of a single strongly
connected component in the dependency graph. But it might
well be that other builders are in the same strongly connected
component, too. For example, if builder A requires builder B,
builder C requires B, and builder B requires both A and C (for
simplicity, the inputs of the builders are left out). Then, A,
B, and C form a strongly connected component, which also
contains two cycles, namely A-B and B-C. The problem is
that these two cycles mutually recursively require each other
via B. Let us assume that the cycle A-B is detected first but
the requirement on C was not found yet. During the run o the
cycle handler for A-B, a requirement from B to C may be
detected, leading to the execution of builder C (but not as part
of the cycle handler). But then, the cycle B-C is detected and
a new cycle handler is started. If this cycle handler was only
run on B-C, the cycle A-B would be detected again, leading
to an endless chain of mutually dependent cycle handlers. Our
solution to this problem is to run the cycle handler on the full
strongly connected component A-B-C, as soon as the second
cycle is detected. It is not possible to run the cycle handler
on A-B-C from the beginning because the requirement on C
is not known yet.

The second stack is used by function require to deter-
mine the consistency of cycles. As shown in Figure 6, we
determine consistency of a builder by transitively checking
consistency for all required builders. But in a cycle, this tran-
sitive check includes the initial builder itself. We use the
second stack to detect and break such requirement cycles by
assuming the recursive build requirement to be consistent.
Essentially, this just means that the cycle itself is not a source
of inconsistency.

The support for cycles introduced some engineering over-
head: the two stacks, the strongly-connected-component anal-
ysis, and the incremental detection of cycles in execute calls.
But, as long as no cycles are detected, the rebuild algorithm
implemented by us behaves exactly as the one formalized in
this section.

5.3 Practical Considerations
We discuss a few practical considerations regarding the build
algorithm of pluto. First, in our implementation, we hide a
lot of the internal details of build units through our API. In
particular, a builder in our API does not have to produce a
build unit on its own, but simply register requirements and
generated files. Second, in practice, builders frequently fail. In
our model, builders can fail as long as they yield an internally
consistent build unit nonetheless. In our implementation, a
builder can simply throw an exception and the API will yield
an appropriate build unit. A failing build will only be rerun

if any of its requirements changes. Third, in contrast to the
algorithm presented here, our implementation does not read
a build unit from the file system all the time. Instead, we use
an additional cache to save time. The source code of pluto is
available online at

https://github.com/pluto-build/pluto.

6. Case Studies
We have used pluto in three different projects to support
incremental building. First, we have migrated an existing Ant
build script to pluto. We compare the two build scripts and
report on their respective build times. Second, we have used
pluto to implement Java-style separate compilation [1] for
two existing languages. These case studies confirm pluto’s
broad applicability and support for incremental building.
The first case study moreover demonstrates that incremental
building can improve build performance significantly.

6.1 From Ant to pluto: The Spoofax Builder
We manually reimplemented an existing Ant build script
developed by others for the Spoofax language workbench [9].
Spoofax supports developers of external domain-specific
languages (DSLs) by providing a set of language-definition
languages. Spoofax provides languages for defining a DSL’s
syntax, name binding, type system, code generation, and
editor services such as syntax coloring or code completion.
Spoofax uses a fairly complex Ant build script4 to compile all
language-definition artifacts into an Eclipse plug-in. The Ant
build script supports a rather limited form of incrementality
based on the uptodate target. We reimplemented this build
script using pluto .5 For testing and for comparing build times,
we used one of Spoofax’s own DSLs.6

Figure 8 compares the original Ant build script to our
pluto build script. For most Ant builders, we simply provide
a corresponding implementation as a pluto builder. However,
the Ant script has more builders (Ant targets) than pluto
because we only implemented a pluto builder when the incre-
mental pay-off seemed worthwhile. In particular, we imple-
mented 12 computationally inexpensive Ant builders as reg-
ular Java methods that get called from actual build methods.
Conversely, for one computationally expensive Ant builder,
we added an additional builder for its subtasks in order to
achieve better incrementalization. The implementation of
our pluto build script is 58% longer than the Ant script. We
believe this is admissible, given that Ant provides a domain-
specific notation whereas we rely on regular Java code. The
development of a concise DSL on top of pluto is outside the
scope of this paper.

4 https://github.com/metaborg/sdf/blob/master/org.
strategoxt.imp.editors.template/build.main.xml
5 https://github.com/pluto-build/build-spoofax
6 https://github.com/metaborg/sdf/tree/master/org.
strategoxt.imp.editors.template

100

https://github.com/pluto-build/pluto
https://github.com/metaborg/sdf/blob/master/org.strategoxt.imp.editors.template/build.main.xml
https://github.com/metaborg/sdf/blob/master/org.strategoxt.imp.editors.template/build.main.xml
https://github.com/pluto-build/build-spoofax
https://github.com/metaborg/sdf/tree/master/org.strategoxt.imp.editors.template
https://github.com/metaborg/sdf/tree/master/org.strategoxt.imp.editors.template

Ant pluto

Builders 34 23
Lines of code 1168 1852
Builder dependencies 37 60
Hidden dependencies 6 0
Injected dependencies 0 5

Generated files n/a 243
Required files (user-supplied) n/a 108
Required files (generated) n/a 208
Last-modified stamp always 271
File-hash stamp 0 277
File-exists stamp 0 8
Custom stamp 0 3

Figure 8. Comparison of Ant and pluto build scripts.

Regarding builder dependencies, the Ant and pluto build
scripts vary because of the removal and addition of builders
as well as the discovery of previously hidden dependencies.
For example, the pluto build script contains 34 additional
dependencies due to dependencies on the subtask builder
we added. Using our dynamic analysis, we discovered 6 de-
pendencies that were hidden in the Ant script. We added
builder dependencies in the pluto script accordingly. Finally,
the pluto script uses generic builders for Stratego [17] compi-
lation, for Java compilation, and for Java packaging in a jar
file. Since these builders deal with generated files, the pluto
build script injects a total of 5 dependencies.

Figure 8 also provides some statistics about required and
provided files for the pluto build script. In total, a build re-
quired 108 user-supplied source files and generated 243 files,
from which 208 were subsequently required by other builders.
Our build script uses a last-modified stamp for all generated
files as well as for 28 required files (larger files and binaries
typically). We use a file hash for almost all other require-
ments. As exception, in 8 cases, a builder was only interested
in whether a file exists or not. Finally, we implemented 3 cus-
tom stamper functions to precisely describe the requirements
of 3 builders. These 3 builders depend on the grammar of the
user-defined DSL, but each of the builders depends on a differ-
ent aspect of the grammar: The first builder generates a pretty
printer and ignores the names of nonterminals, the second
builder generates a parenthesis optimizer and ignores every-
thing except precedence declarations, and the third builder
generates AST declarations and ignores all lexical syntax.
Since the execution of these builders is quite costly (0.4–1.2
seconds each), being able to skip their execution when the
grammar changed in irrelevant ways can save important time.

Incremental performance. To demonstrate the advantage
of incremental building, we measured the build times of
the pluto build script after various changes to the DSL
definition. Since the Ant build script supports only limited
incrementality, we did not compare incremental build times

Code modification Build time Inc. speedup

Clean build 31.3 s 1
No change 0.027 s 1160
Grammar 16.0 s 1.9
Name analysis 5.7 s 5.5
Type system 4.7 s 6.7
Code generator 4.8 s 6.5
Editor service 1.2 s 26.1

Figure 9. Incremental Spoofax build times with pluto .

of the two systems but only within pluto. We repeated all
measurements five times, discarded the first and second
measurements, and report the average wall-clock time of
the remaining three measurements. We report build times in
seconds together with the speedup relative to a clean pluto
build in Figure 9. The measurements were conducted on a
dual core 2.8 GHz MacBook Pro with 8GB memory running
Eclipse 4.4.2 with a maximum heap size of 512MB.

We first measured the build time of a clean pluto build
when all builders have to be executed. The clean build time of
31.3 seconds serves as a reference value for the incremental
rebuilds. For comparison, we also measured the clean build
time of the original Ant script (not shown in the table), which
amounts to 56.7 seconds and is slower than a clean pluto
build by a factor of 0.55. While we have not investigated this
slowdown in detail, the most likely explanation seems to be
that the pluto build script runs in a single VM whereas each
invocation of Ant instantiates a fresh VM. Using a single
VM reduces the (accumulated) startup time and enables JIT
optimizations across build-script runs.

As shown in Figure 9, we measured pluto build times
after various changes of the DSL definition. When nothing
is changed, a rebuild is almost instantaneous and only takes
27 milliseconds, which yields a dramatic speedup. A change
to the grammar of the DSL definition entails quite some re-
building of builders that depend on the grammar, such as the
parse table, pretty-printer, abstract-syntax declarations, de-
fault structural editor services, and more. In total this amounts
to 16.0 seconds and a speedup of only 1.9. Other changes are
less invasive. A change to the name analysis, type system,
or code generation leads to modified Stratego code, which
the build script subsequently recompiles, yielding speedups
between 5.5 and 6.7 compared to a clean build. Finally, we
measured the build time for changing a DSL’s editor services
by changing the color for highlighting keywords. While the
definition of editor services typically depends on many other
DSL definitions like the grammar, the editor services are part
of the final output of the Spoofax builder and no other builders
depend on them. For this reason, a change to a DSL’s editor
services entails little rebuilding and yields a high speedup of
26.1.

101

In summary, we can say that pluto provides substantial
speedups for rebuilding a Spoofax DSL definition after a
change. As expected, the actual speedup depends on how
many builders depend on the changed artifact transitively.

6.2 Implementing Compilers with pluto
A build system is not the only software artifact that generates
files and manages dependencies. Another typical example are
compilers. A compiler takes a set of source files as input and
compiles them into binaries of some form. When any of the
source files changes, the compiler needs to rebuild all binaries
that depend on the changed source file. pluto can be readily
used to implement such compilers that are incremental at the
file level.

To implement a compiler with pluto, the compiler must
be defined as a builder using our API from Section 3.1. That
is, the compiler extends class Builder and provides a method
build as entry point to the compilation. The next step is to
organize builder invocations such that each builder only com-
piles a single source file. When a source file depends on the
compilation result of other source files (e.g., due to an import
statement), the builder issues a build request to itself with the
other source file as input. Finally, the builder registers a file
dependency on binaries that it needs during compilation. A
compiler like this spans a dependency graph for which our
rebuild algorithm automatically provides incremental recom-
pilation. Furthermore, the builder can use pluto’s customiz-
able stampers to express precise dependencies. For example,
a Java compiler could use a custom stamper to only depend
on the class header, field types, and method signatures within
a class file, but not on the bodies of methods.

Following this method, we have used pluto to implement
file-level incremental compilation for two programming lan-
guages, Stratego [17] and SugarJ [3, 5]. Previously, Stratego
did not feature separate compilation and performed a global
compilation with all source files at once. SugarJ did feature
file-level incremental compilation before, implementing its
own dependency tracking and suboptimal rebuild algorithm.
Based on pluto , we were able to eliminate this code, relying
instead on the more general, sound, and optimal dependency
tracking and rebuilding of pluto . The code for our builders of
Stratego7 and SugarJ8 is available online.

The Stratego and SugarJ case studies show that pluto is
applicable to different application scenarios, including the
development of file-level incremental compilers. In particular,
it is possible to reuse the dependency tracking and rebuild al-
gorithm of pluto , which typically is a complicated subsystem
of a compiler that now can be eliminated.

7 https://github.com/lichtemo/strategoxt/tree/
separate-compilation-bootstrap
8 https://github.com/sugar-lang/compiler

7. Related Work
pluto follows in the footsteps of a large number of existing
build systems and a full survey of them is not in scope of this
paper. For our discussion of related work, we selected rep-
resentatives for different styles of dependency management
and incremental rebuilding.

First, we would like to point out that, to the best of our
knowledge, pluto is the only build system that supports incre-
mental building of Latex documents with exact dependencies.
Even Latex-specific build systems like latexmk9 use unsound
heuristics to detect dependencies.

We already discussed Make, Shake, and Ant in Section 2.
To summarize, Make [14, 16] does neither support dynamic
discovery of file requirements, custom file stamps, metade-
pendencies, nor cycles. Therefore, in order to achieve sound
incremental rebuilding with Make, build-script developers
have to overapproximate the set of file dependencies, for ex-
ample, by requiring all Java files in a source directory even
though only a few of them are needed. Shake [13] supports
the dynamic discovery of required files and inspired pluto.
We improve over Shake by supporting custom file stamps,
metadependencies, and cycles. In contrast, Shake uses the
last-modified time, does not detect build-script changes, and
aborts execution when detecting a cycle. Ant makes the skip-
ping of build rules programmable. In order to use this mecha-
nism in a sound way, build-script developers essentially have
to implement their own dependency-management system.
Indeed, it might be possible to implement the concepts we
developed for pluto on top of Ant as macros.

The majority of existing build systems model dependen-
cies identical to Make. Examples include MSBuild, Ninja,
SCons, Gradle, and CloudMake. The features they add on
top of Make are unrelated to dependency management and
incremental rebuilding, such as the syntax of build scripts,
the execution environment, and parallelization.

Gradle does not support dynamically discovered depen-
dencies. Dependencies are declared as part of a task using an-
notations @InputDirectory and @InputFile. In addition, Gradle
allows dependencies to be added between builds, but not dur-
ing a build. The lack of dynamic dependencies also becomes
apparent when inspecting Gradle’s build lifecycle.10 Gradle
first identifies all outdated tasks and then executes all of them.
With dynamic dependencies this would be wrong, because the
execution of one task could produce a new task dependency
or drop an old dependency. Gradle also supports Ant-like up-
to-date checks through method TaskOutputs.upToDateWhen.

CloudMake [2] has Make-like, fixed dependencies but
uses a functional programming language for describing builds.
In contrast to most other Make derivatives, CloudMake fea-
tures a formal specification and soundness proof, which
shows that a very simple caching strategy yields sound incre-

9 http://www.ctan.org/pkg/latexmk/
10 http://gradle.org/docs/0.8/userguide/build_lifecycle.
html

102

https://github.com/lichtemo/strategoxt/tree/separate-compilation-bootstrap
https://github.com/lichtemo/strategoxt/tree/separate-compilation-bootstrap
https://github.com/sugar-lang/compiler
http://www.ctan.org/pkg/latexmk/
http://gradle.org/docs/0.8/userguide/build_lifecycle.html
http://gradle.org/docs/0.8/userguide/build_lifecycle.html

mental building. Our build system features more complex and
dynamic dependencies than CloudMake, requiring a more so-
phisticated rebuild algorithm and a more involved soundness
proof. Metamorphosis [6] is a tool for automatically migrat-
ing existing build scripts to CloudMake. Metamorphosis pro-
vides a dynamic analysis that traces opened file handles at the
operating-system level in order to determine a build script’s
required and provided files. From this, Metamorphosis in-
fers approximate Make-like file dependencies. Interestingly,
beyond migration, the dynamic analysis can also be used to
validate the correctness of the dependency declarations of a
build rule, that is, to check that the dynamically required and
provided files are a subset of the declared file dependencies.
It would be interesting to combine this dynamic analysis with
pluto, where we could simply run the analysis with every
build and register exact dependencies dynamically.

Tup [15] features Make-like build rules that declare file
dependencies statically. However, the static dependencies
do not need to mention non-generated required files. Tup
monitors the file system in the working directory to infer the
files read and written during a build-script run. Tup compares
the actually required and provided files to the statically
declared ones and, similar to pluto, raises an error if there
are any hidden dependencies. By monitoring the file system,
Tup also detects changed files (including changed build
scripts) and feeds this information into its rebuild algorithm
to identify inconsistent build results quickly. However, in
contrast to pluto , Tup requires static dependencies and does
not support custom file stamps or cycles.

Vesta [7] is an integrated version-control and build system
that tracks file changes and supports incremental building.
Vesta works on immutable snapshots of source-code repos-
itories. Thus, a Vesta build script is a purely functional pro-
gram operating on immutable data. Vesta’s build algorithm
evaluates the build scripts and uses a dynamic analysis for
fine-grained dependency analysis [8]. These dependencies
are not restricted to files but record requirements on function
arguments as well. As such, Vesta implements incremental
evaluation for a purely functional build-script language on
top of an immutable file system. Unlike Vesta, pluto places
no constraints on its environment and supports regular file
systems by checking file consistency explicitly and regular
programming languages by dynamically enforcing soundness.
While Vesta infers precise functional dependencies of called
build-script functions, pluto builders can declare fine-grained
dependencies using file stamps.

SBT11 is a build system for Scala and Java source files.
SBT aims at capturing precise dependencies between source
files in order to support incremental recompilation. To this
end, SBT intercepts dependency information generated by
the Scala compiler and constructs a dependency graph that
only contains source files but no generated files. When a
source file changes, SBT computes the transitive closure of

11 http://www.scala-sbt.org/

all source files that are potentially affected by the change
and recompiles all of them at once. In contrast, pluto also
tracks requirements on generated files and triggers rebuilds
incrementally, because a rebuild may or may not lead to
subsequent inconsistencies.

Bazel12 is a new build system developed by Google that
advertises incrementality and correctness. While Bazel did
not influence the design of pluto , Bazel’s dependency graphs
turned out to have the same form as the dependency graphs
of pluto: Builders require other builders, and builders require
and provide files. In contrast to pluto, Bazel does not sup-
port dynamically discovered dependencies. Instead, Bazel
operates in three phases, where it first loads the build con-
figurations, then constructs the complete dependency graph,
and finally triggers builders as required. pluto interleaves
dependency analysis and builder execution to allow the latter
to influence the former.

8. Conclusions and Future Work
We presented pluto, a build system with sound and optimal
incremental building. pluto ensures soundness through a dy-
namic analysis that enforces invariants on the dependency
graph. To support good incrementality, pluto provides mech-
anisms for fine-grained dependency description, in particular,
dynamic dependency discovery, custom file stamps, metade-
pendencies, and cycles. We have verified pluto’s soundness
and optimality and demonstrated its practical applicability
and incrementality benefits.

In future work, we want to support parallel builds on
top of incremental building, which should be easy since we
already model dependencies precisely. Moreover, we want
to investigate support for the automated inference of file
dependencies and file stamps. Finally, we want to explore
tools for migrating existing build scripts to pluto, which
should be easy because dependencies in pluto subsume
dependencies in other build systems.

Acknowledgments
We thank Mira Mezini, Klaus Ostermann, and the anonymous
reviewers for helpful feedback on this work. This work
was supported in part by Oracle Labs and by the European
Research Council, grant No. 321217.

References
[1] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Poly-

morphic bytecode: Compositional compilation for java-like
languages. In Proceedings of Symposium on Principles of
Programming Languages (POPL), pages 26–37. ACM, 2005.

[2] M. Christakis, K. R. M. Leino, and W. Schulte. Formalizing
and verifying a modern build language. In Proceedings of
Symposium on Formal Methods, volume 8442 of LNCS, pages
643–657. Springer, 2014.

12 http://bazel.io/

103

http://www.scala-sbt.org/
http://bazel.io/

[3] S. Erdweg. Extensible Languages for Flexible and Principled
Domain Abstraction. PhD thesis, Philipps-Universiät Marburg,
2013.

[4] S. Erdweg and K. Ostermann. Featherweight TeX and parser
correctness. In Proceedings of Conference on Software Lan-
guage Engineering (SLE), volume 6563 of LNCS, pages 397–
416. Springer, 2010.

[5] S. Erdweg and F. Rieger. A framework for extensible languages.
In Proceedings of Conference on Generative Programming and
Component Engineering (GPCE), pages 3–12. ACM, 2013.

[6] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen,
I. Narasamdya, and B. Livshits. Automated migration of build
scripts using dynamic analysis and search-based refactoring.
In Proceedings of Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), pages
599–616. ACM, 2014.

[7] A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta approach
to software configuration management. Technical Report 168,
Compaq SRC, 2001.

[8] A. Heydon, R. Levin, and Y. Yu. Caching function calls
using precise dependencies. In Proceedings of Conference on
Programming Language Design and Implementation (PLDI),
pages 311–320. ACM, 2000.

[9] L. C. L. Kats and E. Visser. The Spoofax language workbench:
Rules for declarative specification of languages and IDEs. In
Proceedings of Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 444–
463. ACM, 2010.

[10] A. Kuhn, G. C. Murphy, and C. A. Thompson. An exploratory
study of forces and frictions affecting large-scale model-driven
development. In Proceedings of Conference on Model Driven
Engineering Languages and Systems (MoDELS), volume 7590
of LNCS, pages 352–367. Springer, 2012.

[11] E. T. Kumfert G. Software in the DOE: The hidden overhead of
"The Build". Technical report, Lawrence Livermore National
Laboratory, 2002.

[12] S. McIntosh, B. Adams, and A. E. Hassan. The evolution of
ANT build systems. In Proceedings of Conference on Mining
Software Repositories (MSR), pages 42–51, 2010.

[13] N. Mitchell. Shake before building: Replacing make with
Haskell. In Proceedings of International Conference on
Functional Programming (ICFP), pages 55–66. ACM, 2012.

[14] A. Neagu. What is wrong with Make? Available at http://
freecode.com/articles/what-is-wrong-with-make,
2005.

[15] M. Shal. Build system rules and algorithms. Available
at http://gittup.org/tup/build_system_rules_and_
algorithms.pdf, 2009.

[16] R. M. Stallman, R. McGrath, and P. D. Smith. GNU Make
Manual. Free Software Foundation, 2014.

[17] E. Visser, Z.-E.-A. Benaissa, and A. P. Tolmach. Building
program optimizers with rewriting strategies. In Proceedings of
International Conference on Functional Programming (ICFP),
pages 13–26. ACM, 1998.

A. Proofs and Auxiliary Lemmas for Section
5

Lemma A.1. If require(b, i, ω0)= (u, ω), then path(u) ∈
Pconsistent and readU (path(u), ω) = u after the call.

Proof. require returns from one of the following lines:
Lines 14, 18 or 24: The function terminates with a call to

execute, which puts path(u) in Pconsistent and writes it
to ω.

Line 16: Since path(u) = b.path(i) by Assumption 4.1,
path(u) already in Pconsistent and ω0.

Line 29 Line 28 puts path(u) in Pconsistent and path(u)
already in ω0.

Lemma A.2. During a single run of build, whenever
path(u) is added to Pconsistent and (breq b i) ∈ u.reqs , then
b.path(i) ∈ Pconsistent .

Proof. Either Line 28 or Line 33 was executed to add u to
Pconsistent .
Line 28: Since (breq b i) ∈ u.reqs , require(b, i, ω) was

executed in Line 26.
Line 33: Since (breq b i) ∈ u.reqs , b.build(i) called

require(b, i, ω).
In both cases, b.path(i) ∈ Pconsistent by Lemma A.1.

Lemma A.3. During a single run of build, whenever
path(u) is added to Pconsistent and the current file system is
ω, then path(v) ∈ Pconsistent for all u requires∗ω v.

Proof. By induction on the build-requirements structure of u,
using Lemma A.2.

Lemma A.4. Let u be a build unit. Then its summary file
path(u) is written at most once during a build run.

Proof. A summary file is only written in line 32. Then line
33 is executed too and thus path(u) ∈ Pconsistent . No
unit is ever removed from this set. Thus, any subsequent
call to require with b.path(i) = path(u) terminates in
Line 16.

Lemma A.5. If require(b, i, ω0)= (u, ω), then u.builder =
b and u.input = i.

Proof. By Lemma A.1, u ∈ Pconsistent . Thus, either Line 28
was executed and u.builder = b and u.input = i holds by
Line 17, or Line 33 was executed and u.builder = b and
u.input = i holds by Assumption 4.1.

Definition A.6 (Well-formedness invariant). Let reqsf (u) =
{p|(freq p _) ∈ u.reqs} be the function, which extracts all
paths to required files for a u ∈ U . Then we call the following
conditions the well-formedness invariant:

a) The set of units located at the paths Pconsistent is a ω-
well-formed dependency graph,

b) Preq =
⋃

p∈Pconsistent
reqsf (readU (p, ω)) and

104

http://freecode.com/articles/what-is-wrong-with-make
http://freecode.com/articles/what-is-wrong-with-make
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf

c) Gen(p′) =

{
u if ∃p ∈ Pconsistent .p

′ ∈ readU (p, ω).gens

⊥ otherwise

Lemma A.7. Let u ∈ U and path(u) /∈ Pconsistent . If the
well-formedness invariant holds for some ω, and for all
v 6= u with u requires∗ω v we have path(v) ∈ Pconsistent ,
then the well-formedness invariant holds for ω after a
non-aborting execution of validate(u, path(u), ω) and
Pconsistent := Pconsistent ∪ {path(u)}.

Proof. We only add u to Pconsistent . Thus, it suffices to show
that u does not introduce a violation of the invariant. First,
the execution of validate adds entries to Preq and Gen in
accordance with the invariant, satisfying conditions b) and c).
Condition a) holds because u retains the well-formedness of
the dependency graph induced by Pconsistent :

1. Pconsistent is still closed under requiresω because we
assumed that the path of all units required by u is already
in Pconsistent .

2. validate checked that path(u) does not overlap with
existing paths in Pconsistent .

3. validate checked that u.gens does not overlap with
previously generated files, all of which are in Gen .

4. validate checked that no p ∈ u.gens was previously
required and for all files p required by u, if p was previ-
ously generated by v, then u requires v through a build
requirement that occurs before the file requirement of p.

Proof for Lemma 5.1. By induction on the recursive struc-
ture of require.

Base Case: Let require(b, i, ω0) = (u, ω) not make any
recursive call, neither directly or indirectly through execute.
If path(u) ∈ Pconsistent before the call, Pconsistent , Preq ,
Gen are unchanged and ω = ω0. Thus, the invariant still
holds. Otherwise, require returns by an execute call or
from line 29. In both cases, since there is no recursive call to
require, Pconsistent , Gen and Preq are unchanged before
line 33 and 27, respectively. Moreover, u does not have any
build requirements. Therefore, we can apply A.7 and the
invariant holds in both cases.

Inductive Case: Let require(b, i, ω0) = (u, ω). If path(u) ∈
Pconsistent before the call, Pconsistent , Preq , Gen are un-
changed and ω = ω0. Thus, the invariant still holds. Oth-
erwise, require may make a series of recursive calls, all
of which retain the well-formedness invariant due to the in-
duction hypothesis. At last, require returns by an execute
call or from line 29. In both cases, by Lemma A.3, all units
transitively required by u are in Pconsistent . Therefore, we
can apply A.7 and the invariant holds in both cases.

Lemma A.8. During a single run of build, whenever
path(u) is added to Pconsistent and the current file system
is ω, then u is internally consistent in ω. Moreover, all
other units v with path(v) ∈ Pconsistent remain internally
consistent.

Proof. Either Line 28 or Line 33 was executed to add u to
Pconsistent .
Line 28: u is internally consistent because all generated

and required files are up-to-date and, by Lemma A.5,
the required build units have fields builder and input
correctly set.

Line 33: u was generated by the build function and is inter-
nally consistent due to Assumption 4.1.

In each case, function validate was executed to ensure
that u does not invalidate any previously added units v with
path(v) ∈ Pconsistent .

Proof of Lemma 5.2. By induction on the build-requirements
structure of u, using Lemmas A.4 and A.8, u and all v with
u requires∗ω v are internally consistent. So u is totally con-
sistent.

Proof of Theorem 5.3. By induction on the number of ele-
ments in the sequence (b, i). The base case is trivial. For the
step case, assume we already have results 〈u1, . . . , un and
build request (bn+1, in+1) next.

(S1) By the induction hypothesis, the dependency graph in-
duced by 〈u1, . . . , un〉 is ω-well-formed. By Lemma 5.1,
we get that dependency graph induced by 〈u1, . . . , un+1〉
is ω′-well-formed as required.

(S2) By the induction hypothesis, all results 〈u1, . . . , un〉
have fields builder and input correctly set. By Lemma A.5,
result un+1 also the right fields.

(S3) By induction hypothesis, all previous results are totally
consistent. By Lemma A.1, path(un+1) ∈ Pconsistent

after the call require(bn+1, in+1, ω) = (un+1, ω
′). By

Lemma 5.2, un+1 is totally consistent in ω′, as are all
other 〈u1, . . . , un〉.

Proof of Lemma 5.4. By Lemma A.1, u ∈ Pconsistent after
require(b, i, ω0) = (u, ω1) and readU (path(u), ω1) =
u. Thus, any subsequent call require(b, i, ω2) will return
(u, ω2).

Lemma A.9. Let P0 := Pconsistent before and P1 :=
Pconsistent after a call require(b, i, ω0) = (u, ω1). Then,
for every p ∈ P1\P0 with v = readU (p, ω1), u requires∗ω1

v.

Proof. By induction on the build-requirements structure of u.

Base Case: If u does not have any build requirements, than
P1 \ P0 ⊆ {path(u)}, which is reflexively required by u.

105

Inductive Case: Let u have build requirements 〈r1, . . . , rk〉
that produce units u1, . . . , uk and add paths Q1, . . . , Qk

to P0. By induction hypothesis, each uj requires all units
referenced in Qj . Furthermore, u requires all u1, . . . , uk, and
thus transitively all units referenced in Q1, . . . , Qk. We have
P1 \P0 ⊆

⋃
Qj ∪{path(u)}, all of which are required by u.

Proof of Lemma 5.5. By structural induction on the se-
quence (b, i), using Lemma A.9.

Proof of Lemma 5.6. execute is only called by require.
require calls execute in the following lines:

Line 14: Here it is that, because ω = ω0, readU (b.path(i), ω) =
⊥, so case 1. of the lemma.

Line 18: Then u = readU (b.path(i), ω) is defined but be-
cause of the if condition u.builder 6= b or u.input 6= i,
thus case 2. of the lemma.

Line 24: This call is made because an outdated file require-
ment (freq p _) is detected. Then either Gen(p) = ⊥
or Gen(p) = pv. Because of (S1) from Theorem 5.3,
if p was generated by a unit v located at at pv, then
Gen(p) = pv 6= ⊥. If Gen(p) = ⊥ case 3. of the
lemma applies, because the file at p did not changed dur-
ing build, because it is not generated, so outdated in ω0.
Otherwise by (S1) again, there was a build dependency to
v before the file dependency. From (S3) and Lemma 5.2
follows, that v is totally consistent. And by Lemma A.4
and A.1, readU (pv, ω) = v is totally consistent. Because

p has been generated, it will not be overwritten, thus is
outdated in ω. So the 4. case of the lemma applies.

This covers all calls to execute.

Proof of Theorem 5.7. Lemma 5.4 shows, that a build unit
is at most build once during a build call. Then Lemma 5.5
shows, that every unit in Pconsistent is in the dependency
graph DG induced by ū. Lemma A.1 shows that as a result
of each require call a path is put in Pconsistent . Hence, only
build units are required, which are in DG. This means, that
no builders for units are executed, which are not used in the
end and that no builder is executed twice for the same input.
Lemma 5.6 shows finally, that a builder is only executed, if
no existing build unit is found or the existing build unit u
must be internally inconsistent. So the builder needs to be
executed to make u totally consistent.

Proof of Theorem 5.8. From 5.5 we know that every call to
require will result in a build unit u ∈ DG. Because of 5.4
the number of require calls, which does not terminate in
line 16, is |DG|. Only if require(b, i, ω0) returns from line
14, readU (b.path(i), ω0) = ⊥. Let the number of these calls
be M . Then the number of consistency checks N ′ is

N ′ = |DG| −M

= |{v ∈ DG}| − |{v ∈ DG|readU (path(v), ω0) = ⊥}|
= |{v ∈ DG|readU (path(v), ω0) 6= ⊥}|
= N

106

	Introduction
	Existing Build Systems
	Building with pluto
	The Builder API
	A Builder for Latex and Bibtex
	Discussion
	API for Handling Build Cycles

	A Formal Model of pluto Dependencies
	A Two-Layered Dependency Graph
	File Stamps and Build-Unit Consistency
	Sound Build Systems
	Incremental Build Systems
	Metabuilding: Building Builders
	Cyclic Dependencies

	The pluto Incremental Build Algorithm
	Properties of pluto
	Supporting Cycles
	Practical Considerations

	Case Studies
	From Ant to pluto: The Spoofax Builder
	Implementing Compilers with pluto

	Related Work
	Conclusions and Future Work
	Proofs and Auxiliary Lemmas for Section 5

