
Template Constructors for Reusable Object Initialization

Marko Martin
Technische Universität Darmstadt

MarkoMartin@gmx.net

Mira Mezini
Technische Universität Darmstadt

mezini@cs.tu-darmstadt.de

Sebastian Erdweg
Technische Universität Darmstadt
erdweg@cs.tu-darmstadt.de

Abstract
Reuse of and abstraction over object initialization logic is not prop-
erly supported in mainstream object-oriented languages. This may
result in significant amount of boilerplate code and proliferation of
constructors in subclasses. It also makes it impossible for mixins
to extend the initialization interface of classes they are applied to.
We propose template constructors, which employ template param-
eters and pattern matching of them against signatures of superclass
constructors to enable a one-to-many binding of super-calls. We
demonstrate how template constructors solve the aforementioned
problems. We present a formalization of the concept, a Java-based
implementation, and use cases which exercise its strengths.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—object-oriented languages;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—classes and objects, inheritance; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory

Keywords constructors, object initialization, reusability, mixins

1. Introduction
Reuse of and abstraction over object initialization logic is not
properly supported in mainstream object-oriented languages.

First, mainstream object-oriented (OO) languages do not sup-
port constructor inheritance. In wide-spread languages like Java [2]
and C# [11], to “inherit” the initialization logic encoded in some su-
perclass constructor BC(T1 p1, ..., Tn pn), subclasses must declare
a constructor with the same number and type of formal parameters,
SC(T1 p1, ..., Tn pn), which just makes a super-call with its for-
mal parameters as arguments. This copy-down pattern introduces
boilerplate code and a high degree of rigidity because changes to
constructors in such a hierarchy require all subclasses to adopt the
changed constructor. Multiple inheritance often even worsens the
problems of single-inheritance languages with respect to reusabil-
ity of object initialization logic: In many built-in variants of mul-
tiple inheritance, e.g. non-virtual inheritance in C++ [8, 19], each
constructor must call one constructor of each superclass, thereby
establishing a hard coupling to the superclasses and to all refer-
enced constructors. It is similar in Eiffel [14], although invocation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GPCE ’13, October 27–28, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2373-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/2517208.2517212

of superclass constructors is not enforced (which may itself result
in inconsistency problems). The situation is not better in Scala [17],
where every class has a primary constructor implicitly encoded by
the parameters and body of a class. All non-primary constructors
must transitively call the primary constructor as first statement and
only the primary constructor may call a constructor of the super-
class. Consequently, even the copy-down reuse pattern is applica-
ble to only one constructor of a superclass. Only languages that
support the notion of classes as first-class objects and constructors
as ordinary methods/features of these class-objects that are subject
to inheritance, such as Smalltalk [10] and derivatives thereof, avoid
the problems discussed so far.

Second, all languages mentioned above, including Smalltalk, do
not offer mechanisms that enable a subclass to abstract over the ini-
tialization logic of the superclass. To extend the initialization logic
of superclass constructors, a subclass needs to define constructors
that propagate some of their parameters to superclass constructors
and use the rest to initialize fields introduced by the subclass. If the
superclass defines N constructors and the subclass wants to offer
M different ways of initializing fields that it introduces, the sub-
class may end up defining N ×M constructors in order to provide
all possible initialization variants to clients, a phenomenon which
we call constructor explosion in this paper.

To quantify the significance of the problem, we analyzed the
Qualitas Corpus1 [20], a carefully maintained collection of open-
source Java systems. Altogether we analyzed 103 systems with a
total number of 68,858 classes. We found 26,946 constructors that
make a super-call with at least one argument. Of those, roughly
68% exhibit the problems outlined above: 53.3% propagate all
parameters of the superclass constructor into their own parameter
list, and another 14.6% do the same, but additionally declare some
new parameters.

Lack of support for abstraction over object initialization logic
represents an even more severe problem in languages with support
for mixins [16], also called abstract subclasses [3]. Contrary to nor-
mal subclasses with statically known superclass(es), the superclass
parameter of a mixin abstracts over an unlimited number of poten-
tial concrete superclasses to which the mixin applies.2 Since the
superclass is not statically known, for mixins it is not even possible
to copy down the constructors of the superclass, which means that
mixins have no way to extend or otherwise influence the initializa-
tion logic of their prospective superclasses.

In this paper, we propose template constructors – a linguistic
means to address the problems outlined above. Template construc-
tors support a powerful form of constructor inheritance, which goes
beyond the normal OO inheritance of methods. Typically, a sub-
class inherits the public methods of its superclass and exposes their
signatures to clients without change. An overriding method can

1 Qualitas Corpus Version 20101126, http://qualitascorpus.com.
2 In statically typed languages, an upper-bound can be given for the type of
the superclass parameter.

http://qualitascorpus.com

o
rg

.a
rc

h
iv

e
.c

ra
w

le
r.

d
e

ci
d

e
ru

le
s

o
rg

.a
rc

h
iv

e
.c

ra
w

le
r.

se
tt

in
g

s
ja

va
x.

m
a

n
a

g
e

m
e

n
t

o
rg

.a
rc

h
iv

e
.c

ra
w

le
r.

d
e

ci
d

e
ru

le
s

o
rg

.a
rc

h
iv

e
.c

ra
w

le
r.

se
tt

in
g

s
ja

va
x.

m
a

n
a

g
e

m
e

n
t

+ContentTypeNotMatchesRegExpDecideRule(eing. name : String)

ContentTypeNotMatchesRegExpDecideRule

+ContentTypeMatchesRegExpDecideRule(eing. name : String)

ContentTypeMatchesRegExpDecideRule

+MatchesRegExpDecideRule(eing. name : String)

MatchesRegExpDecideRule

+PredicatedDecideRule(eing. name : String)

PredicatedDecideRule

+ConfiguredDecideRule(eing. name : String)

ConfiguredDecideRule

+DecideRule(eing. name : String)

DecideRule

+ModuleType(eing. name : String)

ModuleType

+ComplexType(eing. name : String, eing. description : String)

ComplexType

+Type(eing. name : String, eing. value : Object)

Type

+Attribute(eing. name : String, eing. value : Object)

Attribute

+ContentTypeNotMatchesRegExpDecideRule(name : String)

ContentTypeNotMatchesRegExpDecideRule

+Attribute(name : String, value : Object)

Attribute

7 Further Classes

+Type(name : String)

Type

Figure 1. Copy-down Constructor Inheritance in Heritrix

call the overridden method of the superclass via a statically bound
method call. For flexible constructors, this overriding technique is
not sufficient for two reasons: 1. Subclasses commonly add new
state that must be initialized with new constructor parameters. Yet,
these new parameters and the associated initialization code should
usually be an extension of all superclass constructors and not only
of a single one. 2. For mixin constructors, the superclass construc-
tor to be called is not known statically.

To overcome the limitations of normal OO inheritance, template
constructors can employ template parameters to inherit/override
superclass constructors based on pattern matching over construc-
tor parameters. This way, template constructors effectively decou-
ple super-calls in a subclass from the actual superclass construc-
tors along two dimensions: A single template constructor can in-
herit/override multiple superclass constructors, and a template con-
structor can be used in a mixin to augment the initialization logic
of different dynamically determined superclasses.

With this paper, we make the following contributions: 1. We
motivate the need for more flexible constructors based on an em-
pirical investigation of the the Qualitas Corpus (Sec. 2). 2. We pro-
vide an intuitive and a formal presentation of template constructors
(Sec. 3 and 5) and an implementation of them as an extension of
CaesarJ [1] (Sec. 6). 3. We demonstrate their usefulness by several
use cases from the Qualitas Corpus and quantify potential improve-
ments they bring to systems therein (Sec. 4).

2. Problem Statement
In this section, we demonstrate the problems of constructors in
current OO languages by investigating real-world Java systems and
by illustrating the problems with mixins.

2.1 Copy-down Constructor Inheritance
We exemplify the copy-down constructor inheritance phenomenon
by its occurrence in a real system, quantify its frequency in the
Qualitas Corpus, and discuss its problems.

Figure 1 shows a simplified version of the hierarchy of Heritrix,
a Java web crawling API [15]. The class ContentTypeNotMatches-
RegExpDecideRule is at the end of a nine-classes-deep hierarchy
(the base class is Attribute, a subclass of Object). The name param-
eter of the ContentTypeNotMatchesRegExpDecideRule constructor
is – without change – propagated by the constructors of all classes
along the hierarchy up to Attribute, which handles and stores it.

The occurrences of the copy-down constructor inheritance phe-
nomenon are significant in the Qualitas Corpus. Table 1 shows

the frequencies of copy-down constructors in the Qualitas Corpus
grouped by hierarchy depths: Of all 53,937 analyzed constructors
with at least one parameter, 27,613 (51.2%) forward at least one
parameter to another constructor with a this-call or super-call. In
9,622 cases (17.8% of all), the invoked constructor forwards the
parameter again. Hierarchies with a depth of five or more are rare
(0.9%), but still appear in 22 (21.4%) of 103 analyzed systems.

The copy-down constructor inheritance results in a lot of boil-
erplate code. Consider the case, when Attribute in Figure 1 has not
only one but N constructors that need to be copied down the hier-
archy to ContentTypeNotMatchesRegExpDecideRule. For each of
these N constructors, there will be 9 ·N copies only for the inheri-
tance path in Figure 1. Depending on the depth and average fan out
of the hierarchy, the overall number of constructor copies becomes
overwhelming.

Copy-down constructor inheritance also impairs evolution.
Consider the scenario, when a new design choice requires the Type
constructor (Figure 1) to take another parameter, say description. In
the worst case, description needs to be added to the list of construc-
tor parameters of all classes down to ContentTypeNotMatchesReg-
ExpDecideRule and of classes in other inheritance paths with Type
as base. To avoid such ripple effects, changes to constructor signa-
tures are typically avoided; instead, setter methods are introduced
for new class attributes. However, a design with setter methods is
(a) error-prone because calling them is not enforced and (b) inap-
propriate in case of conceptually immutable objects because clients
get unlimited write access to fields that should rather be set only
once: during object construction.

2.2 Constructor Explosion
The constructor explosion problem refers to the phenomenon of
the exploding number of initialization variants in classes inheriting
from superclasses with multiple constructors. For illustration, con-
sider an example from Quartz3, a Java framework for job schedul-
ing. The class BaseCalendar is a basic implementation of a calen-
dar. Its subclass DailyCalendar implements a daily time pattern.
We list their constructors in Table 2. Each row lists the parameters
of one constructor, i.e., BaseCalendar has four constructors and
DailyCalendar has ten. Each of the DailyCalendar constructors
forwards as many arguments as possible to the superclass construc-
tor. For example, DailyCalendar(TimeZone timeZone, long start-
TimeInMillis, long endTimeInMillis) calls super(timeZone). Still,
DailyCalendar adds some new state that can be initialized in differ-
ent ways. By analyzing its constructors, we identify four variants:
1. String startTime, String endTime 2. int startHour, int startMinute,
int startSecond, ... 3. Calendar startCalendar, Calendar endCalendar
4. long startTimeInMillis, long endTimeInMillis

For the first two BaseCalendar constructors in the table, all
possible combinations have been declared, resulting in the first
eight constructors of DailyCalendar given in the table. For the last
two BaseCalendar constructors, only the last initialization variant
with two longs has been implemented, resulting in the last two
DailyCalendar constructors of the table. Yet, there is actually no
reason for not having the other initialization variants for those
constructors; writing them down is just tedious and error-prone.

The exploding number of constructors is not a rarity in the Qual-
itas Corpus. Table 3 shows how many superclass constructors are
extended by how many different variants of initializing the sub-
class state: Most frequently, an initialization variant of the subclass
extends exactly one superclass constructor. Yet, a significant num-
ber of initialization variants extend multiple constructors: In 3,321
cases, we found 2 subclass constructors that perform the same sub-
class initialization but call different superclass constructors, result-

3 http://quartz-scheduler.org/

http://quartz-scheduler.org/

Depth 0 1 2 3 4 5 6 7 8 9
Frequency 26324 17991 6555 1886 692 358 85 30 12 4
Accumulated 53937 27613 9622 3067 1181 489 131 46 16 4
Percentage 100.0% 51.2% 17.8% 5.7% 2.2% 0.9% 0.2% 0.1% < 0.1% < 0.1%

Table 1. Frequencies of Constructor Hierarchy Depths in the Qualitas Corpus

BaseCalendar DailyCalendar
(no parameters) String startTime, String endTime

int startHour, int startMinute, int
startSecond, int startMillis, int endHour, int
endMinute, int endSecond, int endMillis
Calendar startCalendar, Calendar endCalendar
long startTimeInMillis, long endTimeInMillis

Calendar baseCalendar Calendar baseCalendar, String startTime, String endTime
Calendar baseCalendar, int startHour, int startMinute, int

startSecond, int startMillis, int endHour, int
endMinute, int endSecond, int endMillis

Calendar baseCalendar, Calendar startCalendar, Calendar endCalendar
Calendar baseCalendar, long startTimeInMillis, long endTimeInMillis

TimeZone timeZone TimeZone timeZone, long startTimeInMillis, long endTimeInMillis
Calendar baseCalendar, TimeZone timeZone Calendar baseCalendar, TimeZone timeZone,

long startTimeInMillis, long endTimeInMillis

Table 2. Constructors of Example Classes from the Quartz Framework

Extended Constructors 1 2 3 4 5 6 7 8 9 10 11 12 13 ∑
Frequency 35492 3321 349 292 26 23 9 2 4 1 0 2 1
Possible Savings 0 3321 698 876 104 115 54 14 32 9 0 22 12 5257

Table 3. Absolute Frequency of Initialization Variants Extending a Certain Number of Constructors in the Qualitas Corpus

InputStream

-in

1

+CheckedInputStream(in : InputStream, cksum : Checksum)

CheckedInputStream

Checksum

+FileInputStream(fileName : String)

FileInputStream

+FilterInputStream(in : InputStream)

FilterInputStream

Figure 2. Extract of the InputStream Hierarchy from the Java API

ing in 6,642 constructors. In 349 cases, 3 superclass constructors
were extended in a subclass, resulting in 1047 constructors.

The phenomenon described here has two main problems. The
exploding number of constructors hampers understandability. Fur-
ther, it causes the subclass-specific initialization logic to be re-
peated, causing boilerplate code and hampering maintainability and
evolution.

2.3 Constructors in Mixins
The third problem we want to address is lack of support for mixin
constructors. When a new classC′ is generated by applying a mixin
M to a superclass C, it is desirable to generate constructors in C′

that combine the initialization logic of the superclass C with the
initialization logic mixed in by M .

For illustration, consider a mixin variant of the InputStream hi-
erarchy from the Java API (cf. Figure 2). FileInputStream is a ba-
sic implementation of InputStream providing access to a file. Fil-
terInputStream is the basis for decorator functionality such as the
CheckedInputStream, which calculates a checksum of the stream
content according to a Checksum object provided as a parameter to
its constructor.

An equivalent implementation with mixins would be to define
CheckedInputStream as a mixin that can be applied to any Input-
Stream. When applying it to FileInputStream, it would be desirable
that the resulting new class has a constructor with two parameters:
(a) String fileName to initialize the superclass part from FileInput-
Stream, and (b) Checksum cksum to initialize the mixin part from
CheckedInputStream. This constructor mixes the initialization logic
from the superclass with the initialization logic from the mixin.

To the best of our knowledge, no OO language currently sup-
ports mixin constructors in this fashion. Instead, existing OO lan-
guages rely on implicit policies for the initialization of a mixin (for
example, by calling setter methods) after the superclass initializa-
tion has completed.

3. Template Constructors in a Nutshell
A template constructor denotes a family of traditional Java-like
constructors. Template constructors feature template parameters
that abstract over any specific parameter list. By passing template
arguments to the super-call, a single template constructor can ex-
tend many superclass constructors simultaneously. The targets of a
super-call are determined based on pattern matching the super-call
arguments against the parameter lists of superclass constructors.
This abstraction over superclass constructors enables a single tem-
plate constructor to implement an initialization variant of the sub-
class independently of the initialization variants of the superclass.

Table 4 compares Java constructors and template constructors
with regard to parameters and arguments to super-calls. Like Java
constructors, the declaration of a template constructor contains a
comma-separated, ordered list of type/identifier pairs. Correspond-
ingly, a super-call takes an ordered list of expressions as arguments,
each with a certain type. The types of argument expressions are
matched against the types of the formal parameter list of the super-
class constructors in the order in which arguments appear.

Java Template
Constructor Constructor

Parameter identifier and type identifier and type
definition template parameter

Argument for expression expression
super-call named expression

template argument
Order of relevant relevant (except for

arguments named expressions)

Table 4. Java Constructors versus Template Constructors

class DailyCalendar extends BaseCalender {
private Calendar start;
private Calendar end;
public ? DailyCalendar(p*, Calendar start,

Calendar end) {
super(p*);
this.start = start;
this.end = end;

}
}

Listing 1. Template Constructor for DailyCalender

3.1 Template Parameters and Arguments
In addition to type/identifier parameters, template constructor dec-
larations may specify template parameters. A template parameter
consists of an identifier followed by an asterisk (*). In addition to
expression arguments, template constructors can use template ar-
guments – the counterpart to template parameters – as arguments
to a super-call. Each template parameter must appear as a template
argument in the super-call and vice versa. The template argument
matches an arbitrary list of parameters of a superclass construc-
tor and propagates these into the parameter list of the constructor
which contains the super-call. As a consequence, a super-call may
match multiple superclass constructors – thereby enabling the de-
sired one-to-many binding of constructor super-calls.

For illustration, consider the template constructor of the class
DailyCalender in Listing 1. This constructor uses a template pa-
rameter p* in its list of formal parameters and uses a template ar-
gument p* in the super-call in its body. Accordingly, the template
constructor accepts each list of arguments p* followed by two ob-
jects of type Calendar, such that there is a superclass constructor
accepting the list p*. The template constructor uses the other two
arguments to initialize two fields that the class DailyCalender in-
troduces. The question mark in the declaration of template con-
structors clarifies at a glance that there exist as many versions of
the constructor as there are superclass constructors that match the
template constructor’s super-call. Since super(p*) matches all su-
perclass constructors, one DailyCalender constructor is generated
for each constructor of BaseCalender.

3.2 Named Expression Arguments
Template constructors also support named expression arguments of
the form<name> :<expression> in super-calls. A named expres-
sion argument only matches a formal parameter with exactly the
same name and, in contrast to unnamed expressions, the positions
of the named expression and the matched parameter are irrelevant.
The motivation for this feature is as follows.

Template parameters/arguments expose all parameters of super-
class constructors as constructor parameters in subclasses. Some-
times, however, a subclass may want to set a certain parameter of
a superclass constructor and stop delegating the initialization re-

class Type extends Attribute {
public ? Type(p*) { super(p*, value : null); }

}

Listing 2. Template Constructor for Type with Named Expression

sponsibility to further subclasses or even to clients. For illustration,
consider again Figure 1. The base class Attribute has a constructor
parameter named value, which does not reappear in subclass con-
structors because it is set to a certain value by the Type constructor.
To preserve this feature, template constructors must be able to set
certain superclass parameters, while abstracting over the others.

In the example, the subclass wants to set the last parameter of
the superclass constructor. The subclass can influence the initializa-
tion of the superclass by simply passing an expression argument in
the last position of the super-call. For example, super(p*, null);

would set the last parameter to null and forward the others. How-
ever, given that template constructors are made to cope with later
changes of superclass constructors, assumptions about the position
of a parameter in the super-constructor signature may render the de-
sign fragile in the presence of evolution. If the parameter list of At-
tribute’s constructor is modified by removing, adding, or reordering
parameters, the subclass constructor setting only the value param-
eter should not break as long as the value parameter is still present
in the modified list; instead, it should set the value parameter as
before and forward the other – possibly new – parameters to sub-
class constructors. With a named expression argument, a parameter
can be set regardless of its position in the superclass constructor.
Listing 2 demonstrates this for the example of the value parameter,
which is set to null.

It should be mentioned that named-based parameter matching,
of course, requires stability of parameter names in superclass con-
structors. This means, in contrast to Java, programmers do not have
to be careful with changes concerning the order of parameters but
with changes concerning their names.

3.3 Instantiating Template Constructors
We call constructors that can be executed by a Java virtual machine
concrete to distinguish them from template constructors. Template
constructors are written to the binary class files during compila-
tion. When the containing class is loaded, they are converted to
concrete constructors. This two-step procedure allows a class C
to adopt initialization variants of superclass C′ without recompi-
lation, which is particularly relevant if the source code of C is
not available. We call the process of converting template to con-
crete constructors constructor generation; it is specified by Algo-
rithm 1 and executed when loading a class C with superclass C′.
match(Con, Con’) matches the super-call arguments of a construc-
tor Con against the formal parameter list of a concrete superclass
constructor Con’ and produces a matching σ as an output, if one
exists. σ maps template arguments in the super-call of Con to pa-
rameters of Con’.

We formalize the matching semantics in Sec. 5. For an initial
intuition, here we discuss some examples for matching super-calls
against formal parameters of a superclass constructor (cf. Table 5).
The first two columns denote the input to the matching procedure:
The Arguments column shows the arguments of the super-call; the
Parameters column shows the formal parameters the super-call is
matched against. The column Matching shows the output of the
matching procedure: either the possibly empty (∅) mapping from
template arguments to parameters, or “–” if the matching fails.

Rows 1 and 2 in Table 5 show examples that are equivalent to
method parameter matching in Java. Examples with a named argu-
ment are given in rows 3 (matching is successful but empty because

Algorithm 1 ConstructorGeneration(C, superclass C′)
if C′ contains template constructors then

call ConstructorGeneration(C′, superclass(C′))
end if
for all template constructors Con in C do

for all concrete constructors Con′ in C′ do
σ ← match (Con,Con′)
if matching succeeded then

CCon← instantiate (Con,Con′, σ)
Add CCon to C.

end if
end for
Remove Con from C.

end for

Arguments Parameters Matching
1 5, 0 int x, int y ∅
2 5, 0 int x -
3 x:5, 0 int x, int y ∅
4 x:5, 0 int a, int b -
5 p* int x, int y p*/(x, y)
6 p*, y:0 int x, int y p*/(x)
7 p*, y:"s" int x, int y -
8 p*, c:4, String a, p*/(a)

3 int b, int c

Table 5. Examples of Constructor Matching

there are no template arguments to be mapped) and 4 (matching
fails due to wrong name). Rows 5 to 8 illustrate template argu-
ments: The super-call argument <name>* as in row 5 generally
matches every possible parameter list completely. The pattern in
row 6 uses one named argument (y) so that all other parameters (x)
are mapped to the template argument p*. The matching in row 7
fails because the pattern requires parameter y to have type String,
which is not true. Row 8 demonstrates the irrelevant position of
named expressions. As the value 4 is assigned to parameter c, the
residual argument list p*, 3 is matched against the residual param-
eter list String a, int b; hence, p* is mapped to a.

If the matching is successful, instantiate(Con, Con’, σ) (cf. Al-
gorithm 1) instantiates a template constructor Con with a matching
σ and a referenced superclass constructor Con’ to a concrete con-
structor CCon in the following manner: 1. Replace each template
parameter p∗ ofCon by the formal parameter list σ (p). 2. For each
template argument p∗ of Con, add instructions which load the ar-
guments provided for the parameters σ (p). 3. Bind the super-call
to Con′.

If there is no superclass constructor matching the super-call of
a template constructor, the template constructor is just removed. If
there are multiple matching superclass constructors, one concrete
constructor is generated for each of them.

4. Template Constructors in Action
In this section, we discuss the benefits of template constructors on
the design of programs.

4.1 Avoiding Copy-down Constructor Inheritance
In Sec. 2.1, we discussed two problems with the design of pro-
grams that employ copy-down constructor inheritance: Abundance
of boilerplate code and fragility in the presence of evolution, be-
cause a change to a constructor signature may entail many cascad-
ing changes to subclass constructors. We first discuss how the ap-
plication of template constructors fosters evolution.

For illustration, consider a version of the Heritrix example from
Sec. 2.1, where all direct and indirect subclasses of Type (Figure 1)
use template constructors. For example, the template constructor
for ContentTypeNotMatchesRegExpDecideRule looks as follows:

public ? ContentTypeNotMatchesRegExpDecideRule(p*) {
super(p*);

}

As a result, signature changes of Type’s constructors automati-
cally propagate to the subclasses, which do not need to be adapted
manually any more. Only clients of these classes that call the con-
structors still have to be adapted to provide the correct arguments
to the constructor calls. This is unavoidable, given that the interface
of the class used by these clients has changed. Compile-time errors
can indicate instantiation sites in the code where modifications are
necessary.

In the example of the ContentTypeNotMatchesRegExpDecide-
Rule hierarchy, only one constructor is defined in the base class
Type and entailed through the whole hierarchy. If there are more
than one, template constructors are even more effective: Only one
template constructor – analogous to the one above – has to be de-
fined per class in order to expose all constructors of the superclass.

In the current design, a subclass developer has to define the triv-
ial template constructor manually to enable constructor inheritance
(see, e.g., the template constructor ContentTypeNotMatchesReg-
ExpDecideRule again). An alternative design is to generate such
a “trivial” template constructor by default. The former alternative
resembles Java’s strategy not to inherit constructors by default.
The latter resembles Smalltalk’s strategy to do so. There are trade-
offs related to these alternatives: The explicit template constructors
strategy enables subclass developers to decide on whether to expose
superclass constructors in the instantiation interface of the subclass
or not. When generating the trivial template constructor by default,
the developer of the subclass does not have such control and the ini-
tialization interface may become wide, bearing the risk that clients
are more exposed to constructor changes in the hierarchy.

There is another aspect of object instantiation in the presence
of template constructors that needs closer consideration. In Java,
the signatures of available constructors are explicitly specified in
a class. Without dedicated tool support for template constructors,
the programmer of a client class has to look at super-calls in the
implementation of constructors in order to know which concrete
constructors will be generated. While type safety is ensured by
compiler checks at class instance expressions (cf. Sec. 6), lack of
an explicit instantiation interface may impair understandability and
modular reasoning. We believe these problems can be resolved by
presenting a view of the concrete constructors to the programmer
at class instantiation sites in an IDE.

4.2 Avoiding Constructor Explosion
Template constructors enable a subclass to define initialization vari-
ants for the fields it introduces as deltas that apply to all construc-
tors (initialization variants) of its superclass. Four template con-
structors – two of them shown in the listing below – are, thus, suffi-
cient to preserve all possible initialization variants of DailyCalen-
dar from Sec. 2.2 in the combination with the superclass BaseCal-
endar: When DailyCalendar is loaded, the constructor generation
process produces all 16 possible constructor variants automatically.

public ? DailyCalendar(p*, String start, String end) {
super(p*);
// initialize with Strings start and end

}
public ? DailyCalendar(p*, Calendar start, Calendar end){

super(p*);
// initialize with Calendars start and end

}
// similarly for the other two initialization variants

The example demonstrates how template constructors avoid an
exploding number of constructors and the need for adapting con-
structors in subclasses to modifications of constructors in super-
classes. To quantify the potential of template constructors to re-
duce the number of constructors in a larger scale, reconsider Table
3. The last row shows the number of constructors that could have
been saved if the systems in the Qualitas Corpus used template con-
structors. For example, half of the constructors that combine the
initialization logic of a subclass with two superclass constructors
can be saved (3,321) because one template constructor can capture
them both. In total, 5,257 constructors could have been saved, i.e.,
11.7% of all 44,779 constructors in classes with a non-Object su-
perclass in the analyzed systems of the Qualitas Corpus.

Template constructors also enable DailyCalendar to automati-
cally adapt to changes in the constructor interface of the superclass
BaseCalendar. If only a new constructor is added to BaseCalen-
dar, no changes are required neither to DailyCalendar nor to its
clients; yet, the new constructor is automatically inherited by Daily-
Calendar in all four combinations with its initialization variants. If
the signatures of existing constructors change, only places in code,
where DailyCalendar is instantiated, possibly have to be adapted
to the new constructor signatures inherited from BaseCalendar.

Template constructors can also be used to reduce the number of
constructors within one class with this-calls. Traditionally, a class
that has n independent, optional parameters, requires 2n distinct
constructors. With template constructors, we can reduce the num-
ber of required constructors to n+ 1: We need one constructor for
the default instantiation that takes no optional arguments, and then
one template constructor for each optional argument. For example,
for BaseCalendar we define:
public BaseCalendar() { /* empty constructor */ }
public ? BaseCalendar(p*, Calendar baseCalendar) {

this(p*);
setBaseCalendar(baseCalendar);

}
public ? BaseCalendar(p*, TimeZone timeZone) {

this(p*);
setTimeZone(timeZone);

}

Constructor generation will produce four concrete constructors for
BaseCalendar: no arguments, single Calendar argument, single
TimeZone argument, two arguments Calendar and TimeZone. If we
add one more optional class argument to BaseCalendar, we get four
more constructors. For generated constructors that involve multiple
arguments, the order of constructor arguments is defined by the
order of template constructors. If two optional class arguments have
the same type, constructor generation favors the argument whose
template constructor precedes the other.

4.3 Template Constructors and Mixins
Template constructors are particularly suitable for mixins. While
mixins abstract over a concrete superclass, template constructors
abstract over both a concrete superclass and the constructors of the
superclass. For example, we can define a template constructor for
the mixin CheckedInputStream (cf. Sec. 2.3) in order to extend the
constructor signature of the class that the mixin is applied to. For
example, we can add an additional parameter chksum:
public ? CheckedInputStream(p*, Checksum chksum) {

super(p*);
this.chksum = chksum;

}

The main application of template constructors in the context
of mixins is to propagate and extend parameter lists of superclass
constructors. We do not allow mixins to set parameters of the
superclass constructor. That is, template constructors of mixins
always have the following form:

e ∈ E expressions
v ∈ V variable names
t ∈ T types
<: ⊆ T × T subtyping relation
τ : E → T mapping to most specific type

p ∈ P ::= v : t formal parameters
a ∈ A ::= e

| v : e
| v∗

expression argument
named expression argument
template argument

Figure 3. Syntax and notation for constructor matching

public ? C(<NewParams1>, p*, <NewParams2>)
{ super(p*); /* ... */ }

The super-call contains one single template argument, which prop-
agates the constructor parameters of the unknown superclass.
<NewParams1> are added before existing constructor parameters
and <NewParams2> are added after them.

The design decision not to allow template constructors to set
parameters of superclass constructors is motivated by the following
two reasons:

1. A mixin does not know the semantics of superclass construc-
tor parameters because it does not know its actual superclass.
Hence, guarantees regarding positions and/or names of con-
structor parameters as required for setting super-constructor pa-
rameters (see Sec. 3) are hard to enforce for all classes that a
mixin is possibly applied to.

2. When combining multiple mixins, it may quickly become con-
fusing for the programmer which parameter is set by which
mixin and which parameters are actually left for being set.
Composabilty is fostered if mixins are only allowed to extend
constructors of superclasses with new parameters but not to re-
move parameters by setting them.

5. Formalization of Constructor Matching
We presented some examples of constructor matching in Table 5.
In this section, we formalize constructor matching with a calculus.

5.1 Definitions and Notations
Figure 3 introduces syntax relevant for constructor matching. We
denote formal parameters P of a concrete constructor by their name
and type v : t. For constructor arguments A, we distinguish simple
expression arguments e, named expression arguments v : e, and
template arguments v∗ as illustrated in Section 3.

Based on these definitions, we define an instance of the con-
structor matching problem as a list of arguments to be matched
against a list of formal parameters:

a1, . . . , an
.
= p1, . . . , pk

The result of the constructor matching problem, if successful, is a
matching function σ ∈ V ⇀ V ∗ which provides a mapping from
names of the template arguments in a1, ..., an to names of matched
formal parameters in p1, ..., pk. Note that we write M∗ to denote
the free monoid on a set M , thus the mapping retains the order of
matched parameters V ∗. We write ε for the empty sequence.

In addition, we require the following auxiliary definitions. We
define the union of partial functions f , g : A ⇀ B as follows:

f ∪ g : A ⇀ B : x 7→

f (x) if x ∈ D (f)

g (x) if x ∈ D (g), x /∈ D (f)

undefined otherwise

D (f) denotes the set of values for which the partial function f is
defined. For the empty partial function f with D (f) = ∅, we write
∅. For the partial function f with finite D (f) = {x1, ..., xn} and
values vi = f (xi), we write {x1/v1, ..., xn/vn}.

5.2 Constructor Matching Calculus
We present constructor matching calculus through inference rules
that relate a constructor matching problem to a matching function:

L ::= a1, . . . , an
.
= p1, . . . , pk 7→ σ

We define L̄ as the subset of words in L that are derivable by the
matching calculus.

Figure 4 displays the inference rules of the constructor matching
calculus. Rule type (1) describes usual method parameter match-
ing: Expression e can be used for a parameter with type t if the
type of e is t or a subtype thereof. Since the mapping resulting
from constructor matching maps template argument names to the
corresponding constructor parameters, the reverse mapping of pa-
rameters to expressions is not recorded in the mapping. Rule empty
(2) defines that the empty argument list matches the empty parame-
ter list. Rule template (3) expresses that a single template argument
matches an arbitrary list of formal parameters with mutually dif-
ferent labels (S1). Rule name (4) matches named expression argu-
ments. A named expression argument can occur anywhere in the ar-
gument list and can match a constructor parameter of the expected
name at any position. We delegate the type checking of the named
expression to rule type. Rule compos (5) allows lists of arguments
to match lists of formal parameters whose labels must be disjunct
again. The side condition (S2) ensures that the first argument pat-
tern always matches the longest possible sequence of formal pa-
rameters, and (S3) essentially expresses that each template argu-
ment may occur only once in a pattern list.

The calculus defines a matching which has a slight similiarity to
unification: It aims at finding a substitution for template arguments
to match the formal parameters. Yet, it is more than unification
because it mixes matching with and without respecting the order
of parameters – the order is ignored for named parameters whereas
it is important for the others. Also, contrary to pure unification, the
calculus respects types and names.

5.3 Properties of the Matching Calculus
The following two theorems lay down two key properties of the
constructor matching calculus. Their proofs are available online.4

THEOREM 1 (Matching correctness). If for an instance E =
a1, . . . , an

.
= p1, . . . , pk of the constructor matching problem

E 7→ σ is derivable, then applying σ to the template arguments
in a1, . . . , an and aligning the named expression arguments in
a1, . . . , an with the corresponding constructor parameters yields
a valid argument list for the formal parameters p1, . . . , pk.

THEOREM 2 (Matching uniqueness). If for an instance E of the
constructor matching problem E 7→σ is derivable, then the match-
ing function σ is unique, i.e., for all σ′ with σ′ 6= σ, E 7→σ′ is not
derivable.

5.4 Solving the Constructor Matching Problem
Now that we have defined the constructor matching calculus, how
can we apply it to the constructor matching problem? In formal
terms, the matching procedure is specified by the sub-language L̄,
consisting of the subset of words inLwhich can be derived with the
constructor matching calculus. The theorems about the properties
of the calculus show that the matching function σ is correct and

4 https://github.com/tud-stg-lang/caesar-jastadd/blob/mixin-constructors/
doc/TemplateConstructors%20-%20Matching%20Calculus.pdf?raw=true

uniquely determined by a constructor matching problem instance
E . Moreover, it is easy to obtain an algorithmic implementation,
for example, by resolving all named expressions first.

Figure 5 gives an example for the application of the calculus to
the following instance of the constructor matching problem:

a∗, z : 4, 3
.
= x : String, y : int, z : int

Since a derivation exists, a matching is possible, namely with
the matching function in the root of the derivation tree: {a/ (x)}.

The example illustrates that the position of named expressions
is indeed arbitrary: With rule name in the last step of the tree, the
argument z : 4 is inserted between the other arguments whereas the
formal parameter z : int is located at the last position. The unnamed
expression 3 is assigned to the last formal parameter except for z,
namely y, and the template argument a* covers the rest, namely x.

6. Implementation
We have implemented template constructors in CaesarJ [1], a Java
extension, which among other features also supports mixin-based
inheritance. More specifically, the implementation extends the
static type checking and the Java byte code generation phases of the
JastAdd compiler [7] of CaesarJ. We exploit a custom class loader
and the ASM bytecode toolkit [4] for applying transformations
specific to template constructors. The implementation is available
at GitHub; its main building blocks are detailed below.

Type Checking. The integration of template constructors affects
the static type checking in two places of the abstract syntax tree
generated by JastAdd: (a) class instance expressions (new C(...))
and (b) super-calls within constructors.

At class instance expressions, the implementation checks whether
there is an appropriate constructor available for the class to be in-
stantiated. To perform the check, the implementation partially ex-
ecutes the constructor generation process (cf. Sec. 3) only for the
signatures of the template constructors. The check succeeds if one
of the generated signatures or one of the non-template constructors
contained in the class match the instance expression; otherwise, a
compiler error is produced.

At super-calls within constructors, the implementation distin-
guishes between super-calls contained (a) in a template construc-
tor and (b) in a non-template constructor. For super-calls of non-
template constructors, the implementation checks whether they re-
fer to an existing non-template constructor in the superclass. If this
is not the case, a compiler error is produced. In contrast, super-calls
of template constructors are not checked immediately, but rather at
class instance expressions (see above).

Bytecode Generation. Figure 6 visualizes the process of compil-
ing template constructors and loading them from a class file by
means of the example in Listing 2. The compiled class file is saved
with a special suffix that is recognized during class loading. The
process of bytecode generation for template constructors (left part
of the figure) deviates from that for normal Java constructors in fol-
lowing ways. First, the method signature does not declare any pa-
rameters. Second, the method code does not contain a super-call5.
However, the super-call is prepared by loading the expression argu-
ments of the super-call onto the stack. In the example, an instruc-
tion for loading null onto the stack is written to the code attribute
(marked as 1 in Figure 6) because null is assigned to the parame-
ter value in the super-call. The name value of the named argument
expression is ignored in the code attribute as well as template argu-
ments are. Third, a special template constructor attribute (marked

5 In standard bytecode, the code for super-calls is located between argument
loading instructions and remaining constructor instructions.

https://github.com/tud-stg-lang/caesar-jastadd/blob/mixin-constructors/doc/TemplateConstructors%20-%20Matching%20Calculus.pdf?raw=true
https://github.com/tud-stg-lang/caesar-jastadd/blob/mixin-constructors/doc/TemplateConstructors%20-%20Matching%20Calculus.pdf?raw=true

type
e
.
= v : t 7→ ∅

τ (e) ≤ t (1) empty
ε
.
= ε 7→ ∅

(2)

template
v∗ .= v1 : t1, ..., vn : tn 7→ {v/ (v1, ..., vn)}

n ≥ 0
(S1)

(3)

name
e
.
= vk : tk 7→ ∅ a1, ..., aq−1, aq+1, ..., am

.
= p1, ..., pk−1, pk+1, ..., pn 7→ σ

a1, ..., aq−1, vk : e, aq+1, ..., am
.
= p1, ..., pk−1, vk : tk, pk+1, ..., pn 7→ σ

m, n ≥ 0
1 ≤ q ≤ m
1 ≤ k ≤ n
(S1)

(4)

compos
a1

.
= p1, ..., pk 7→ σ1 a2, ..., am

.
= pk+1, ..., pn 7→ σ2

a1, ..., am
.
= p1, ..., pn 7→ σ1 ∪ σ2

m ≥ 2
n ≥ k ≥ 0
(S1), (S2), (S3)

(5)

(S1) : ∀i, j ∈ {1, ..., n} : i 6= j ⇒ vi 6= vj where px = vx : tx
(S2) : ∀i ∈ {k + 1, ..., n} : ∀σ′1, σ′2 ∈ V ⇀ V ∗ :(

((a1
.
= p1, ...,pi),σ

′
1) /∈ L̄ ∨

((a2, ..., am
.
= pi+1,...,pn),σ′2) /∈ L̄

)
(S3) : D (σ1) ∩ D (σ2) = ∅

Figure 4. Rules of the Constructor Matching Calculus

(2)

(1) (
4
.
= z : int

)
, ∅

(5)

(4) (
a∗ .=

x : String) ,
{a/ (x)}

(1) (
3
.
= y : int

)
,

∅(
a∗, 3 .

= x : String, y : int
)
, {a/ (x)}(

a∗, z : 4, 3
.
= x : String, y : int, z : int

)
, {a/ (x)}

Figure 5. Applying the Constructor Matching Calculus

as 2 in Figure 6) is defined, which contains all the template con-
structor information that cannot be expressed in the code attribute:
the parameters of the template constructor (p* in the example), in-
cluding identifiers of parameters and template parameters, and a
complete list of the super-call arguments, which contains for each
argument the type signature if it is a named or unnamed expression
and the name if it is a named expression or a template argument.

Class Loading. Loading classes with template constructors is
done by our custom classloader (cf. right-hand side of Figure 6).
The template constructor attribute (2) contains all the information
needed to perform constructor matching against superclass con-
structors at class load time. The constructor generation procedure
(cf. Sec. 3) is now completely executed, resulting in zero, one or
more concrete constructors for each template constructor. The pro-
cess of matching a template constructor against a superclass con-
structor is as follows: First, the constructor signature (in the exam-
ple name : String) is created using the full parameter list (p*) con-
tained in the template constructor attribute and the mapping of tem-
plate arguments to the matched parameters of the superclass con-
structor ({p∗/ (name)}). Second, instructions are created to load
the arguments to be forwarded to the superclass constructor (3);
these instructions are interleaved with instructions for loading ex-
pression arguments already generated in the bytecode (1). Finally,
instructions for invoking the matched superclass constructor are in-
serted (4) – the binding step of the constructor generation process.
The remaining instructions are retained from the bytecode (5).

Since a template constructor can match multiple superclass con-
structors, the code generated for it is replicated and each replica is
provided with specific super-call invocation instructions for each
matching superclass constructor.

7. Related Work
Parameterized inheritance in C++ (PI) [18, 21] is a method to
support mixins in C++: The mixin is defined as a subclass, which

is parameterized by the superclass by using C++ templates. This
approach has considerable restrictions regarding abstraction over
initialization logic [6]. Mixins have to pass all initialization param-
eters of the original superclass as well as parameters of previously
applied mixins. Hence, mixin constructors hard-code assumptions
about constructors of their yet unknown superclasses/super-mixins.
This restricts their applicability: One would have to define different
constructors for different sets of possible superclasses and different
orders of composition. Hence, constructor reusability is not prop-
erly supported, if at all only at the cost of a very complex design.

PI with virtual inheritance [6] is proposed as a countermea-
sure to the above problem with PI. Changing the inheritance mode
of mixins to virtual inheritance makes it possible to abstract over
the order in which mixins are applied (since, with virtual inheri-
tance, the implementing subclass – instead of the mixin – is re-
sponsible for initializing them all). The drawback is that an im-
plementing subclass together with all necessary calls to superclass
constructors has to be written explicitly for every desired combina-
tion of mixins, yielding high design complexity. Also, the solution
inherits the general weaknesses of virtual inheritance: Constructor
invocations in mixins are ignored; particularly, mixins do not have
any possibility to modify arguments passed to a superclass.

PI with argument class [19] is another workaround for the
problems of the PI approach. The constructors of classes/mixins,
which may be part of a (multiple) inheritance hierarchy, take an in-
stance of an argument class as a parameter. The latter encapsulates
data needed in any class/mixin, enabling a uniform constructor in-
terface. Each mixin constructor can select the data it needs from the
argument object and pass it through to the next superclass. This ap-
proach achieves flexibility at the cost of increasing design complex-
ity and losing declarative expression of design intent. When many
mixins exist, which may eventually not all be used in a certain hi-
erarchy, the size of the argument class may constitute a significant
overhead in memory. Also, the argument class must be extended
for every new feature which is needed by any constructor of any
mixin, completely defeating the open-closed principle [14].

The typed argument list approach [12] – like the argument
class approach – is based on a standardized constructor interface;
however, the type of the expected constructor parameter is now a
heterogeneous value list. Based on C++ templates, the type of each
list is generated automatically by the compiler, so that it defines
the number and types of expected list elements according to the
expected parameter types of the mixin and the inherited parameter
types from other mixins. Constructor reusability is now achieved
for mixins because changing the superclass of a mixin will not

Code

Java Bytecode Runtime

Class Type

Constructor method Type(name : String)

Instructions

Load null onto stack

Remaining instructions

Super constructor call

public cclass Type extends
Attribute

public ? Type(p*) {
super(p*, value : null);
// remaining code

}

Classfile class Type

Constructor method Type()

Code attribute

Template constr. attribute

LoadingCompilation

2

3

4

5

Load null onto stack
1

Parameters: p*

super(p*, value: Object)

Remaining instructions Load name onto stack

used for
matching

Figure 6. Process of Compiling and Loading the Template Constructor of the Example in Listing 2

render its constructor useless: The correct type of a heterogeneous
value list is automatically generated for each possible hierarchy of
mixins, which also makes the approach type-safe. The drawback is,
however, the overhead for defining the mixins and the infrastructure
needed to use the heterogeneous value lists. Design complexity
remains high and design intent is still implicit.

Scala traits can have a parameterless default constructor en-
coding arbitrary initialization logic in the body of the trait after
the opening bracket {. The order of trait constructor invocations is
defined by the order in which traits are mixed in. The key disadvan-
tage is that traits cannot be initialized with constructor parameters.
Hence, initialization methods have to be used when creating trait-
based objects. Also, traits cannot initialize their superclass, since
super constructor calls are not allowed. Like with virtual inheri-
tance in C++, if a trait extends a class without a default constructor,
subclasses of the trait must explicitly invoke the superclass con-
structor. Unlike virtual inheritance, constructor reusability is, at
least partially, achieved: A composition of a class with several traits
can be created with one line of code, thereby reusing constructors
of the class and parameterless constructors of mixins.

Object initializers in C# are a convenient notation to initialize
object properties directly after object creation. An object initializer
can set any combination of class properties without the necessity
of defining a constructor for each combination. However, it is only
syntactic sugar because it can be equivalently replaced by setting
the properties on the object reference after creating the object: The
constructor is entirely executed before the object initializer and
can, thus, not perform initialization actions based on the values set
in the object initializer. Therefore, object initializers do not bring
advantages concerning constructor flexibility compared to Java.

CZ extends Java with multiple inheritance, but avoids the prob-
lems of diamond hierarchies [13]. In addition to extends, it in-
troduces a new subtyping relationship, requires. Classes requiring
other classes are abstract: They are not allowed to invoke construc-
tors of required classes, but they can use their features as if they
were subclasses. If a class A extends B and B requires C, A must
require or extend C or a subclass of C. This ensures that B can rely
on the existence of C in a concrete implementation. Superclass de-
coupling is simulated by only requiring, but not extending a certain
class. E.g., B in the example above can be composed with any direct
or indirect subclass of C. A weakness is that combining multiple
classes always requires defining a new one, which must explicitly
invoke constructors of all extended classes: There may be many of
them if many classes requiring some other classes are extended. As

with Scala traits, the restriction that constructors of required classes
may not be called limits expressiveness of constructors.

Object initialization in Common Lisp Object System (CLOS)
[5] shares some similarity with template constructors. Basic con-
structors for setting object fields by name can be generated auto-
matically. :before, :after, or :around method qualifiers – applied
to the initialization function initialize-instance – can define ad-
ditional constructor logic to be executed before, after, or around
basic object initialization; in the latter case the arguments can also
be modified. With the &key keyword, arguments can be extracted
by name, and with the &rest keyword, other arguments can be for-
warded to the wrapped initialization method called with the call-
next-method keyword. Similarly to template parameters of template
constructors, Lisp’s &rest keyword enables forwarding some parts
of the argument list to the next method, whereby the &rest con-
cept applies to any method.6 Its disadvantages in the context of
object initialization are the quite complex syntax for forwarding
and modifying arguments and the inherent lack of safety: With the
&key keyword, argument names are conceptually contained in the
list of arguments. Setting the argument of a method call is thus
equivalent to adding the name of the argument to be set and its
value to the list of arguments. A simple typo may leave the desired
argument undefined. Also, other – possibly unknown – :around-
qualified methods of a generic function may silently change the
argument list. Hence, there is no safe way for a subclass-specific
object initializer to fill an object slot with a certain value.

The Racket class system [9] circumvents many constructor pit-
falls with its design to force exactly one initialization variant per
class or mixin; unlike Java, multiple variants cannot be encoded in
the form of multiple constructors. This is also the greatest drawback
because it limits expressiveness of class definitions: For example, a
class cannot create a file when a file name is provided for construc-
tion, and initialize an output stream when a stream is provided.

Instead, a class defines exactly one list of initialization argu-
ments that must be provided during initialization. (Arguments with
default values can be left out.) The arguments can be provided ei-
ther by subclasses when calling the superclass initialization (super
-new), or by clients when instantiating the class, which means that
initialization arguments are aggregated down the inheritance hier-
archy until they are set. As a consequence, subclasses and mixins

6 In our approach, we restricted template parameters to constructors because
we do not have evidence from existing systems that their main use case –
abstracting over possibly multiple other constructors – is transferrable to
normal methods. Nevertheless, further investigation of template parameters
for normal methods might be an interesting aspect for future research.

Solution C
on

st
r.

in
he

ri
ta

nc
e

C
on

st
r.

ab
st

ra
ct

io
n

N
o

su
pe

rc
l.

co
up

lin
g

E
xp

re
ss

iv
en

es
s

Sa
fe

ty

Pe
rf

or
m

an
ce

E
as

e
of

us
e

Java, C# – – – + + + 0
Smalltalk + – – + + + +
C++ default inherit. – – – + + + 0
C++ virtual inherit. – – – 0 0 + 0
PI default inherit. – – + + + + 0
PI virtual inherit. – – + 0 0 + 0
PI argument class – – + + – – 0
PI heter. val. lists + + + 0 + + –
Scala classes – – – + + + 0
Scala traits – – + – 0 + +
CZ extends relation – – – + + + 0
CZ requires relation – – + 0 + + +
CLOS + + + + 0 + 0
Racket + + + 0 + + +
Template constr. + + + + + + 0

Table 6. Comparison of Object Initialization Solutions

do not need to be aware of the initialization arguments of the su-
perclass; if they do not set them, clients or subclasses will do.

Summary. Table 6 summarizes the advantages and weaknesses
of various solutions for object initialization. “Constructor inheri-
tance” refers to the ability of classes to inherit constructors from
the superclass and to expose them to instantiating clients and sub-
classes. “Constructor abstraction” pertains to abstracting from su-
perclass constructors in a way which allows to extend them with
new parameters. “No superclass coupling” denotes the possibility
to write constructors which are not restricted for application to a
particular superclass. “Expressiveness” denotes the possibilities –
even of mixins – to have constructors with parameters, to influence
the initialization of the superclass, and to define multiple initializa-
tion variants per class. “Safety” indicates that super-calls are not
ignored as for example with virtual inheritance and that initializa-
tion methods need not to be called separately because this is unsafe
in the sense that it is not enforced by the compiler. “Performance”
generally refers to a good runtime performance and requires that
the solution does not impose a significant memory overhead. “Ease
of use” indicates that boilerplate code is avoided and the particular
solution is comfortable to use and does not require a large infras-
tructure to be applied. A “+” in the table indicates that the respec-
tive criterion is fulfilled (nearly) perfectly, “0” indicates partial va-
lidity, and “–” indicates that the criterion does not apply. Template
constructors are rated with “0” concerning ease of use because the
trivial template constructor, which just emulates constructor inher-
itance, must be written manually by the programmer. The reason
was discussed in Sec. 4.1.

8. Summary
In this paper, we presented template constructors as a means to ad-
dress the problems of object initialization in object-oriented pro-
gramming languages. Template constructors abstract over concrete
superclass constructors by employing named expressions and tem-
plate arguments for use in super-calls besides unnamed expres-
sions that are used in super-calls in mainstream OO languages such

as Java and C++. Template parameters/arguments support match-
ing super-calls against superclass constructors and abolish the need
for static coupling super-calls to superclass constructors. A formal
foundation of constructor matching was given and applicability and
usefulness was shown by several use cases. The discussion in Sec.7
(cf. Tab. 6) indicates that from all existing solutions for object ini-
tialization, template constructors provide the best reusability with-
out sacrificing other properties, such as safety and performance.

Acknowledgments
We would like to thank Vaidas Gasiunas for discussion on template
constructors, and the anonymous reviewers for their helpful feed-
back.

References
[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An overview of

CaesarJ. In Transactions on Aspect-Oriented Software Development,
LNCS, pages 135–173. Springer, 2006.

[2] K. Arnold, J. Gosling, and D. Holmes. Java(TM) Programming Lan-
guage, The (4th Edition). Addison-Wesley Professional, 2005.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA/E-
COOP, pages 303–311. ACM, 1990.

[4] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation
tool to implement adaptable systems. In Adaptable and extensible
component systems, 2002.

[5] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object System:
An overview. In ECOOP, pages 151–170. Springer, 1987.

[6] U. Eisenecker, F. Blinn, and K. Czarnecki. A solution to the
constructor-problem of mixin-based programming in C++. In
GCSE’2000 Workshop on C++ Template Programming, 2000.

[7] T. Ekman and G. Hedin. The JastAdd system – modular extensible
compiler construction. Sci. Comput. Program., 69(1-3):14–26, 2007.

[8] M. A. Ellis and B. Stroustrup. The annotated C++ reference manual.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[9] M. Flatt, R. B. Findler, and M. Felleisen. Scheme with classes, mixins,
and traits. In APLAS, pages 270–289, 2006.

[10] A. Goldberg and D. Robson. Smalltalk-80: the language and its im-
plementation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[11] A. Hejlsberg, M. Torgersen, S. Wiltamuth, and P. Golde. C# Program-
ming Language. Addison-Wesley Professional, 4th edition, 2010.

[12] J. Järvi. Tuples and multiple return values in C++. Technical report,
Turku Centre for Computer Science, 1999.

[13] D. Malayeri and J. Aldrich. CZ: multiple inheritance without dia-
monds. In OOPSLA, pages 21–40, 2009.

[14] B. Meyer. Eiffel: A language and environment for software engineer-
ing. Journal of Systems and Software, 8(3):199–246, 1988.

[15] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic. Introduction
to Heritrix, an archival quality web crawler. In International Web
Archiving Workshop, 2004.

[16] D. A. Moon. Object-oriented programming with flavors. In OOPLSA,
pages 1–8. ACM, 1986.

[17] M. Odersky, L. Spoon, and B. Venners. Programming in Scala.
Artima, 2008.

[18] Y. Smaragdakis and D. S. Batory. Mixin-based programming in C++.
In GCSE, pages 163–177. Springer, 2001.

[19] B. Stroustrup. The design and evolution of C++. ACM Press/Addison-
Wesley Publishing Co., 1994.

[20] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. Qualitas corpus: A curated collection of
Java code for empirical studies. In APSEC, 2010.

[21] M. VanHilst and D. Notkin. Using role components in implement
collaboration-based designs. In OOPSLA, pages 359–369. ACM,
1996.

	Introduction
	Problem Statement
	Copy-down Constructor Inheritance
	Constructor Explosion
	Constructors in Mixins

	Template Constructors in a Nutshell
	Template Parameters and Arguments
	Named Expression Arguments
	Instantiating Template Constructors

	Template Constructors in Action
	Avoiding Copy-down Constructor Inheritance
	Avoiding Constructor Explosion
	Template Constructors and Mixins

	Formalization of Constructor Matching
	Definitions and Notations
	Constructor Matching Calculus
	Properties of the Matching Calculus
	Solving the Constructor Matching Problem

	Implementation
	Related Work
	Summary

