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Abstract
Exploration of language specifications helps to discover errors and
inconsistencies early during the development of a programming
language. We propose exploration of language specifications via
application of existing automated first-order theorem provers (ATPs).
To this end, we translate language specifications and exploration
tasks to first-order logic, which many ATPs accept as input. However,
there are several different strategies for compiling a language
specification to first-order logic, and even small variations in the
translation may have a large impact on the time it takes ATPs to find
proofs.

In this paper, we present a systematic empirical study on how to
best compile language specifications to first-order logic such that
existing ATPs can solve typical exploration tasks efficiently. We
have developed a compiler product line that implements 36 different
compilation strategies and used it to feed language specifications to
4 existing first-order theorem provers. As a benchmark, we devel-
oped a language specification for typed SQL with 50 exploration
goals. Our study empirically confirms that the choice of a compila-
tion strategy in general greatly influences prover performance and
shows which strategies are advantageous for prover performance.

Keywords Type Systems, Formal Specification, Declarative Lan-
guage Specification, First-order Theorem Proving, Domain-specific
Languages

1. Introduction
The correct specification and implementation of programming lan-
guages is a difficult task. In a previous study, Klein et al. have found
that language specifications often contain errors, even when drafted
and reviewed by experts [18]. To uncover such errors, Klein et al.
propose lightweight mechanization (i.e. using a lightweight tool
instead of, for example, powerful interactive theorem provers such
as Isabelle [27] and Coq [10]) and exploration of language specifi-
cations via execution and automated test generation. In this paper,
we investigate an approach that is orthogonal to the one from [18]:
We propose the application of automated first-order theorem provers
(ATPs) for exploration of language specifications. To this end, we
study the compilation of language specifications from a lightweight
specification language to first-order logic.

[Copyright notice will appear here once ’preprint’ option is removed.]

We investigate five typical exploration tasks, which we formulate
as proof goals in first-order logic (here f can represent the semantics
of a language and ground(t) is true if term t is a value):

Execution of t: ∃ v. ground(v) ∧ f(t) = v?
Synthesis for v: ∃ t. ground(t) ∧ f(t) = v?
Testing of t and v: f(t) = v?
Verification of P : ∀ t. P (t)?
Counterexample for P : ∃ t. ground(t) ∧ ¬P (t)?

The technical challenge we address is how to best compile language
specifications to first-order logic such that existing ATPs can handle
the resulting problems efficiently. Our early experiments showed
that even a small change to the compilation strategy can have a large
impact on the performance of the theorem provers (how long it takes
to find a proof). This is because ATPs employ heuristics-driven proof
strategies which often behave differently on semantically equivalent,
but syntactically different input problems.

This paper presents an empirical study where we systematically
compare a number of different compilation strategies against each
other with regard to how they affect the performance of theorem
provers. In our study, we include three compilation strategies regard-
ing the syntactic sorts of a language specification (typed logic, type
guards, type erasure), four compilation strategies regarding the han-
dling of specification metavariables (unchanged, inlining, naming,
partial naming), and three compilation strategies regarding simplifi-
cations (none, general-purpose, domain-specific). To this end, we
have developed a compiler product line from language specifications
to first-order logic. We evaluated the performance of four theorem
provers (eprover [29], princess [28], Vampire 3.0, Vampire 4.0 [20])
for each compilation strategy on the five exploration tasks above.
As a benchmark for a programming language specification, we used
a typed variant of SQL. In total, we collected the running times for
6600 prove attempts.

While we focus on language specifications, the strategies we
identify and our experimental results are relevant for any project
that generates first-order proof goals. In summary, this paper makes
the following contributions:
• We propose to apply existing ATPs for exploring language

specifications by compiling the specifications to first-order logic.
• We present 36 different compilation strategies along 3 dimen-

sions. We have developed a compiler product line that imple-
ments all strategies.
• We present a specification of typed SQL with 50 exploration

proof goals as a benchmark language specification.
• We systematically evaluate the performance of each compilation

strategy on our benchmark specification for 4 existing theorem
provers. Our results confirm that the choice of a compilation
strategy greatly influences prover performance and indicate the
most advantageous of our 36 compilation strategies: typed logic
with inlining.
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2. A Language for Language Specifications
As a basis for our comparison study, we define a lightweight
core language for specifications of programming languages called
SPL. SPL contains simple constructs for specifying a language’s
syntax, dynamic semantics, static semantics, and properties. We
implemented SPL using the language workbench Spoofax [17].

2.1 Syntax and Dynamic Semantics
SPL supports closed algebraic and open data types for the definition
of a language’s syntax. For example, we would specify syntax of
the simply-typed lambda calculus like this in SPL:

open data Var
data Exp = var(Var) | abs(Var, Typ, Exp) | app(Exp, Exp)
data Typ = tvar(Var) | tfun(Typ, Typ)
consts z0: Var; z1: Var; t0: Typ

Data type Var is open, i.e. underspecified, and has no constructors.
Open data types in SPL are countably infinite. Data type Exp and Typ
are closed and have a fixed number of constructors. For example, Exp
has three constructors: var, abs, and app. Via the consts construct,
one can introduce names for instances of closed or open data types,
e.g. for describing programs of our language.

For the definition of a language’s dynamic semantics, SPL sup-
ports partial and total first-order function definitions. For example,
we can define the dynamic semantics of the simply-typed lambda
calculus as a deterministic small-step reduction function that either
returns the reduced expression or no expression if reduction is stuck.

data OptExp = noExp | someExp(Exp)

function isSomeExp: OptExp → Bool ...
partial function getExp: OptExp -> Exp
getExp(someExp(e)) = e

function reduce: Exp → OptExp
reduce(var(x)) = noExp
reduce(app(abs(x,T,e1),e2)) =
if isValue(e2)
then someExp(subst(x, e2, e1))
else let e2’ = reduce(e2) in
if isSomeExp(e2’)
then someExp(app(abs(x,T,e1), getExp(e2’)))
else noExp

reduce(...) = ...

Functions isSomeExp and reduce are total functions, that is, they
yield a result for any well-typed input. In contrast, function getExp
has been declared partial because it only yields a result for a subset
of its inputs. Note that an SPL user has to ensure herself that the
subst function used in reduce avoids variable capture - SPL currently
does not provide any auxiliary support for name binding.

2.2 Inference Rules and Properties
SPL supports the inductive definition of relations via inference rules.
In particular, one can define a language’s type system using the
inference-rule notation.

judgment tcheck(TCtx, Exp, Typ)
// we write (C ` e : T) in place of tcheck(C, e, T)
lookup(x, C) == someTyp(T)
----------------------------------- T-var
C ` var(x) : T

bind(x, S, C) ` e : T
----------------------------------- T-abs
C ` abs(x, S, e) : tfun(S, T)

C ` e1 : tfun(S, T) C ` e2 : S
----------------------------------- T-app
C ` app(e1, e2) : T

This specification introduces a ternary relation tcheck and defines
it through three inference rules. As usual, all free identifiers in an
inference rule are implicitly universally bound. Inference rules can
have overlapping patterns and the order in which the rules appear
does not matter.

In SPL, we also use the inference-rule notation to define axioms
and proof goals. For example, we can declare an axiom for the
inversion property of the type-checking relation:

axiom
C ` e : T
---------------------------------------------- T-inv
OR
=> exists x. e == var(x)

lookup(x, C) == someTyp(T)
=> exists x, e2, T1, T2. e == abs(x, T1, e2)

T == tfun(T1, T2)
bind(x, T1, C) ` e2 : T2

=> exists e1, e2, S. e == app(e1, e2)
C ` e1 : tfun(S, T)
C ` e2 : S

In the conclusion, we declare one alternative for each typing rule. If e
has type T under context C, then either e is a variable, an abstraction,
or an application. We use existential quantification to name subparts
of e and T. The bodies of the existential quantifiers are conjunctions.
The current version of SPL will automatically generate inversion
axioms for total functions (see next section), but not for relations
declared via the inference-rule notation.

Finally, we can define proof goals using the inference-rule
notation. For example, we can demand a proof of the weakening
property for variable expressions. Note that we require x is not
bound in C (first premise) because we do not rely on Barendregt’s
variable convention.

goal
lookup(x, C) == noTyp C ` var(y) : T
----------------------------------------- T-Weak-var
bind(x, S, C) ` var(y) : T

3. Compiling Specifications to First-Order Logic
To enable the exploration of language specifications via first-order
theorem provers on SPL specifications, we compile language speci-
fications from SPL to first-order logic. Technically, we translate SPL
to TPTP [31], a standardized format for problems in first-order logic.
In this section, we describe a compilation strategy to typed first-
order logic, which supports typed predicate and function symbols,
applications thereof, Boolean connectives, and typed universal/exis-
tential quantification. In Section 4, we will describe variants of the
compilation strategy from this section.

3.1 Encoding Data Types
To encode closed algebraic data types of the form

data N = c1(T1) | ... | cn(Tn)

in typed first-order logic, we first generate a function symbol
ci : Ti → N for each constructor. Second, we generate the following
axioms to specify the algebraic nature of SPL data types:

1. Constructor functions are injective:∧
k ∈ {1..n} (∀ x, y. ck(x) = ck(y)⇒

∧
i xi = yi)

2. Calls to different constructors always yield distinct results:∧
i6=j ∀ xi, xj . ci(xi ) 6= cj(xj )
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3. Each term of data type N must be of a constructor form. We call
the resulting axiom the domain axiom for data type N:

∀ t :N.
∨

i ∃ xi. t = ci(xi)

For example, for data type Exp from Section 2.1, we generate the
following function symbols and axioms in typed first-order logic:

var: Var → Exp
abs: Var × Typ × Exp → Exp
app: Exp × Exp → Exp

∀ v1:Var, v2:Var. var(v1) = var(v2) ⇒ v1 = v2
∀ v1:Var, v2:Var, t1:Typ, t2:Typ, e1:Exp, e2:Exp.
abs(v1,t1,e1) = abs(v2,t2,e2) ⇒ v1 = v2 ∧ t1 = t2 ∧ e1 = e2
∀ e1:Exp, e2:Exp, e3:Exp, e4:Exp.
app(e1,e2) = app(e3,e4) ⇒ e1 = e3 ∧ e2 = e4
∀ u:Var, v:Var, t:Typ, e:Exp, f:Exp, g:Exp.
var(u) 6 = abs(v,t,e) ∧ var(u) 6 = app(f,g) ∧ abs(v,t,e) 6 = app(f,g)

For an open data type N, we generate an axiomatization that ensures
N is countably infinite as desired:

initN : N
enumN : N → N
∀ x1:N, x2:N. x1 6 = x2 ⇒ enumN(x1) 6 = enumN(x2)
∀ x:N. initN 6 = enumN(x)

Intuitively, these axioms define that the structure of an open data
type N is isomorphic to the structure of the natural numbers (initN
corresponds to the initial element zero, enumN to the successor).

Finally, we directly translate constant symbols const x:T to
function symbols x:T in typed first-order logic.

3.2 Encoding Function Specifications
We encode partial and total SPL functions of the form

(partial) function f : T1 ... Tn → T
f(p1,1,..., p1,n) = e1
...
f(pm,1,..., pm,n) = em

in first-order logic by axiomatizing the equations. Specifically, we
apply four translation steps to subsequently eliminate condition-
als, let-bindings, equation ordering, and free variables. This way,
we produce increasingly refined formulas φk

i for equation i after
translation step k.

1. Conditionals: For each if -expression in a function equation ei
of the form f(p) = C[if c t e] for some context C, we split the
equation to handle positive and negative cases separately:
φ1
i,c := c⇒ f(p) = C[t]

φ1
i,¬c := ¬c⇒ f(p) = C[e]

2. Bindings: For each let-binding in a function equation ei of
the form f(p) = C[let x a b] for some context C, we add a
precondition representing the binding to the previously produced
preconditions pc1,b(i):
φ2
i,b := pc1,b(i) ∧ x = a⇒ f(p) = C[b]

3. Equation order: This step encodes the equation order from the
original SPL specification, ensuring that at most one function
equation is applicable for a given argument pattern no matter
how the axioms are ordered. For each function equation ei of
the form f(p) = e, we add inequalities NPC that exclude all
function patterns pj from previously seen equations j < i:
NPC (i) :=

∧
j<i p 6= pj

φ3
i,b := pc2,b(i) ∧ NPC (i)⇒ f(p) = e

The function NPC ensures that variable names in p and in pj
do not clash.

4. Quantify free variables: We close each formula by universally
quantifying over the variables a in function patterns p and over
all other free variables x that appear in φ3

i,b.
φ4
i,b := ∀a.∀x. φ3

i,b

Our implementation also ensures scope preservation for let-bound
variables. For functions that return Boolean values, after translation,
we replace equations f(p) = ei by biimplications f(p) ⇔ ei. This
step is necessary since our target format TPTP [31] does not allow
Boolean values as arguments of equalities or inequalities. For
example, we axiomatize function reduce from Section 2.1 as follows:

reduce: Exp → OptExp
∀ x: Var. reduce(var(x)) = noExp
∀ x: Var, x0: Var, T: Typ, e1: Exp, e2: Exp.

isValue(e2) ∧ app(abs(x,T,e1),e2) 6 = var(x0)
⇒ reduce(app(abs(x,T,e1),e2)) = someExp(subst(x,e2,e1))

∀ x: Var, x0: Var, T: Typ, e1: Exp, e2: Exp, e2’: Exp.
¬isValue(e2) ∧ e2’=reduce(e2) ∧ isSomeExp(e2’)
∧ app(abs(x,T,e1),e2) 6 = var(x0)
⇒ reduce(app(abs(x,T,e1),e2))

= someExp(app(abs(x,T,e1), getExp(e2’)))
∀ x: Var, x0: Var, T: Typ, e1: Exp, e2: Exp, e2’: Exp.
¬isValue(e2) ∧ e2’=reduce(e2) ∧ ¬isSomeExp(e2’)
∧ app(abs(x,T,e1),e2) 6 = var(x0)
⇒ reduce(app(abs(x,T,e1),e2)) = noExp

...

The first equation of the reduce is encoded almost “as is”, only
quantifying one single free variable. The second equation is split
into three axioms: one for the outer then branch, two for the two
branches in the outer else branch. The two axioms for the outer else
branch both contain the let-binding inside the branch as precondition.
All three axioms for the second equation contain a precondition
which excludes the previously seen function pattern. Note that here,
we could directly simplify the latter premise by applying one of the
constructor axioms (different constructors). For more complicated
pattern matching structures, the NPC inequalities are less trivial.

Additionally, we encode the inversion property of each total
function with an inversion axiom. The inversion axioms are not
always needed, but often help ATPs to prove the goals we in-
vestigate. We generate the inversion axiom from the axioms for
function equations. Concretely, the inversion axiom for the for-
mulas φi,b := ∀a.∀x. pc4,b(i) ⇒ f(p) = ei takes the form
∀pv.

∨
i (∃a. ∃x. (

∧
k pvk = pk) ∧ pc4,b(i) ∧ f(pv) = ei), where

pv is a sequence of fresh variables introduced for each function argu-
ment pattern pk. The inversion property states that a total function
is fully defined by its equations and that at least one of the equations
must hold. Conversely, the conditions in pc4,b(i) introduced via
NPC ensure that at most one equation can hold for any pv. This
way our encoding retains the determinism of functions.

For functions with Boolean result type, we generate two in-
version lemmas: one that describes all possible conditions for the
function argument pattern variables pv if the function returns true,
and one that describes all possible conditions for variables pv if the
function returns false.

3.3 Encoding Inference Rules and Properties
We encode inference rules with premises prei and conclusions conj
as implications (

∧
i prei) ⇒ (

∧
j conj). The compilation of the

premises and conclusions to first-order logic is straightforward
and unsurprising. For judgment declarations, we generate function
symbols with return type Bool.

3.4 Using ATPs on Encoded Specifications
Having compiled a SPL specification to first-order logic, we can
easily use any automated first-order theorem provers for exploring
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SPL language specifications: On the one hand, we can pass the
compilation of a SPL compilation (without properties) to an ATP
and ask it to prove false to detect inconsistencies in the specification.
For example, Vampire 4.0 typically detects logical contradictions
in the specification within a few seconds. However, if the prover
cannot show false within a given time frame, this does not guarantee
the absence of inconsistencies (which is an undecidable problem
in general). On the other hand, we can pass encoded specifications
with encoded properties to an ATP.

4. Alternative Compilation Strategies
There are many alternative ways to compile an SPL specification
to first-order logic. Our initial experiments with using ATPs on
compiled SPL specifications revealed that small differences in the
compilation strategy can vastly influence whether a prover can find
a proof within a given timeout.

In this section, we describe alternative compilation strategies
to the strategy we presented in Section 3. Based on our initial
experiment, for each variation, we hypothesize why and how it
can influence the prover performance. A systematic empirical
comparison of all variants follows in the subsequent section.

4.1 Encoding of Syntactic Sorts
The first dimension for generating alternative compilation strategies
concerns the treatment of syntactic sorts like Exp and Typ. How
should we represent such sorts in first-order logic and how should
we declare function symbols that operate on syntactic sorts?

Typed logic. In Section 3, we used typed first-order logic and
represented sorts as types of that logic. We added typed signatures
for declarations of function symbols and used types in quantifiers.
The advantage of this encoding is that the theorem provers can
exploit typing information. However, as of today, many automated
theorem provers only support untyped logics and cannot handle this
encoding.

Type guards. As alternative to a typed logic, one can use type
guards as for example described in [7]. Type guards are predicates
of the form guardT(t) that yield true only if term t has sort T. In
the above encoding, we declared functions symbols for functions,
constructors, and constants. Instead of each function declaration
f:T→ U, we introduce a guard axiom that describes well-typed
usages of f:

∀ x1,...,xn.
guardT1

(x1) ∧ ... ∧ guardTn (xn) ⇔ guardU(f(x1,...,xn))

For the rest of the specification, we introduce guard calls for all
(then untyped) quantified variables as a postprocessing step. That
is, after data types and functions have been translated into formulas,
we apply the following rewritings:

∀ x:T. φ  ∀ x. guardT(x) ⇒ φ
∃ x:T. φ  ∃ x. guardT(x) ∧ φ

Using these rewritings, we replace all types from the formulas by
type guards. Accordingly, the resulting compiled SPL specification
can be passed to any theorem prover that supports untyped first-order
logic.

Type erasure. While type guards make the encoding amenable to
many theorem provers, type guards also increase the number and
size of axioms. This may slow down proof search considerably. As
an alternative strategy, we can erase typing information from the
encoding.

In general, the erasure of typing information is unsound, that
is, it does not preserve satisfiability [7]. Specifically, in a logic
with equality and for sorts with finite domain, type erasure can

lead to problems. For example, for singleton sort Unit, formula
(∀ x:Unit, y:Unit. x = y) holds whereas its erasure (∀ x, y. x = y)
does not hold in general. This problem occurs whenever a formula
is nonmonotonic, which means it puts constraints on the cardinality
of a sort’s domain. Conversely, type erasure is sound for sorts with
infinite domain [8].

Since we generate sorts from data types in SPL specifications, we
can easily distinguish between sorts with infinite and finite domains.
An SPL data type has an infinite domain if (i) it is an open data
type, which are countably infinite by definition, (ii) it is recursive,
or (iii) it refers to another data type that has an infinite domain.
Otherwise, a data type has a finite domain. Since we also know all
variants of data types with finite domains, we can fully erase all
typing information as a postprocessing of the translation described
in Section 3:

if T = c1(T1) | ... | cn(Tn) has a finite domain:
∀ x:T. φ  ∀ x. (

∨
i ∃ yi. x=ci(yi)) ⇒ φ

∃ x:T. φ  ∃ x. (
∨

i ∃ yi. x=ci(yi)) ∧ φ

if T has an infinite domain:
∀ x:T. φ  ∀ x. φ
∃ x:T. φ  ∃ x. φ

The first two rewritings eliminate quantification over finite domains
by inlining the necessary domain information. The latter two rewrit-
ings unify sorts of infinite domains. Hence, the domain axioms from
Section 3.1, point 4 become obsolete, so we drop them in addition
to this post-processing.

Like the type guard strategy, type erasure yields compiled SPL
specifications which can be used with any first-order theorem prover.
But unlike the type guard strategy, type erasure does not impose
additional axioms, and does not increase the size of axioms that
quantify over sorts of infinite domains. However, the type-erasure
strategy leads to larger axioms for sorts of finite domain.

4.2 Encoding of Variables
The second variation concerns the encoding of bound variables x = t.
Such bindings can occur in user-defined inference rules or result
from our transformations. Is it advisable to retain such equations or
should we eliminate them through inlining? Or should we rather do
the contrary and introduce bindings for all subterms?

Internally, ATPs typically apply variable elimination strategies,
which are supposed to generate the optimal internal representation.
However, even despite this fact, we observed in our initial exper-
iments that the encoding of variables can have a huge impact on
the performance of provers. This indicates that the decision how to
encode bound variables matters already on the user level.

Unchanged. In Section 3, we did not specifically consider bound
variables and left them unchanged. That is, we reproduced bindings
exactly as they occurred in the language specification and exactly
how they were generated by our transformations. Our initial com-
pilation strategy from Section 3 only introduces variable bindings
for let-bindings and for function pattern variables pv in inversion
axioms. Moreover, type erasure introduces variable bindings for
variables that have a sort with finite domain.

Inlining. We can use inlining to eliminate bound variables. This
may be beneficial for proof search because it decreases the number
of variables for which a prover has to discover a model and because
it reduces the number of literals within a formula.

The inlining and elimination of a bound variable x = t in a for-
mula φ is sound if φ ≡ (x = t) ⇒ ψ. We can then replace φ by
ψ[x := t], which eliminates the free variable x. In our implementa-
tion, we conservatively approximate the applicability condition by
supporting inlining only for implications that syntactically appear in
φ. This condition covers all inlining opportunities that occur in our
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case study. For example, in the axiomatized reduce function from
Section 3.2, inlining eliminates the bound variable e2’ = reduce(e2)
in the third axiom as follows:

∀ x: Var, x0: Var, T: Typ, e1: Exp, e2: Exp.
¬isValue(e2) ∧ isSomeExp(reduce(e2))
∧ app(abs(x,T,e1),e2) 6 = var(x0)
⇒ reduce(app(abs(x,T,e1),e2))

= someExp(app(abs(x,T,e1), getExp(reduce(e2))))

Variable introduction. While inlining reduces the number of
variables and literals in a formula, it increases the size of the
remaining literals. In particular, when subformulas occur multiple
times, instead of inlining, it may be beneficial to introduce new
variables and bind them to the subformulas. This reduces the size
of the individual literals by increasing the number of literals and
variables.

The variable-introduction strategy introduces fresh variables
names and bindings for all subformulas, similar to static single
assignment. We make sure to reuse the same name for syntactically
equivalent subformulas, such that reoccurring subformulas are
bound by the same variable. For example, this encoding introduces
names for the third axiom of function reduce as follows:

∀ x: Var, x0: Var, T: Typ, e1: Exp, e2: Exp, e2’: Exp.
v1: Exp, v2: Exp, v3: Exp, v4: OptExp, v5: Exp,
v6: Exp, v7: OptExp.
¬isValue(e2) ∧ e2’=reduce(e2) ∧ isSomeExp(e2’)
∧ v1 = abs(x,T,e1) ∧ v2 = app(v1,e2) ∧ v3 = var(x0)
∧ v2 6 = v3 ∧ v4 = reduce(v2) ∧ v5 = getExp(e2’)
∧ v6 = app(v1, v5) ∧ v7 = someExp(v6)
⇒ v4 = v7

Parameters and result variables. Inlining and variable introduc-
tion represent two extremes of variable handling. There are several
compromises between these two extremes. We tried several alter-
natives, including common subformula elimination, and ultimately
chose to include the strategy that seemed to have the largest effect
on our benchmark specification (see Section 5) into our study: The
strategy leaves variable bindings from the specification unchanged
and introduces variable bindings for function parameters and results
that appear in conclusions of implications. For example, the third
axiom of function reduce then becomes:

∀ x: Var, x0: Var, T: Typ, e1: Exp, e2: Exp, e2’: Exp.
arg: Exp, result: OptExp.
¬isValue(e2) ∧ e2’=reduce(e2) ∧ isSomeExp(e2’)
∧ app(abs(x,T,e1),e2) 6 = var(x0) ∧ arg = app(abs(x,T,e1),e2)
∧ result = someExp(app(abs(x,T,e1), getExp(e2’)))
⇒ reduce(arg) = result

4.3 Simplifications
The third variation of our encoding concerns logical simplifications.
Just like for the encoding of variables, theorem provers also inter-
nally conduct general-purpose simplifications. Again, we observed
during our initial experiments that in some cases, applying logical
simplifications before passing the problems to a first-order theorem
prover affected prover performance and decided to study the effects
of simplification systematically.

No simplification. In Section 3, our encoding did not apply any
simplifications. Consequently, the resulting formulas may be unnec-
essarily large or contain superfluous quantified variables. Without
further simplification in the encoding, we rely on the preprocessing
of the theorem provers.

General-purpose simplifications. This encoding exhaustively per-
forms basic general-purpose simplifications like the following ones
on all formulas (fv(φ) denotes the set of free variables in φ):

x = x  true
true ∧ φ  φ
false ∧ φ  false
φ ∧ φ  φ
false ∨ φ  φ
true ∨ φ  true
φ ∨ φ  φ
∀ x. φ  ∀ (x ∩ fv(φ)). φ
∃ x. φ  ∃ (x ∩ fv(φ)). φ
...

Domain-specific simplifications. We can use domain-specific
knowledge about a language’s SPL specification to simplify the gen-
erated formulas. Since theorem provers are unaware of the original
specification, such simplifications are impossible for them or may
require non-local reasoning.

For this study, we focus on investigating domain-specific sim-
plifications for algebraic data types. Specifically, we introduce the
following simplifications for equations (and analogously for inequal-
ities) over constructors, where c, c1, and c2 are constructor names:

c(a1,...,an) = c(b1,...,bn)  a1 = b1 ∧ ... ∧ an = bn
c1(a1,...,am) = c2(b1,...,bn)  false if c1 6 = c2

These rewritings are justified by the axiomatization we give in
Section 3.1 for algebraic data types. A theorem prover can do
such rewritings itself, but it needs non-local reasoning to find
and apply the data-type axiom. Our domain-specific simplification
can in particular reduce the size of formulas that encode the
pattern matching of functions. For example, our simplification yields
the following axioms for the third equation of function reduce,
eliminating the inequalities that NPC generates:

∀ x: Var, T: Typ, e1: Exp, e2: Exp.
¬isValue(e2) ∧ isSomeExp(reduce(e2))
⇒ reduce(app(abs(x,T,e1),e2))

= someExp(app(abs(x,T,e1), getExp(reduce(e2))))

4.4 A Compiler Product Line
We have presented alternative compilation strategies along three
dimensions: 3 alternatives for encoding syntactic sorts, 4 alternatives
for handling variables, and 3 alternatives for simplification. Since
the three dimensions are independent, this amounts to 3∗4∗3 = 36
different compilation strategies.

We have implemented all compilation strategies in a compiler
product line. Our compiler takes a SPL specification as input and
produces a set of axioms and goals using the standardized TPTP
format [31] that is used in theorem-prover contests and supported by
a great number of automated first-order theorem provers. By default,
our compiler translates the specification using each of the 36 differ-
ent compilation strategies in turn. However, the compiler can also ac-
cept a description of the desired configuration space, such that it only
applies a subset of the available compilation strategies. The source
code of our compiler is publicly available at https://github.
com/stg-tud/type-pragmatics/tree/master/Veritas.

5. Benchmark: Typed SQL
SQL is a data-base query language that traditionally is not stati-
cally typed. Hence, SQL queries that access non-existent attributes
or compare attributes of incompatible types fail at run time. We
use typed SQL as a benchmark for investigating the exploration
of language specifications via compilation to first-order logic and
application of ATPs. We chose SQL as a benchmark since on the
one hand, it is a language of practical relevance with non-trivial
reduction and typing rules. On the other hand, SQL has no sophisti-
cated binding constructs for variables, which typically complicates
formal reasoning about a language specification, as investigated
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open data Name // attribute + table names
data AttrL = aempty | acons(Name, AttrL) // attribute list

open data Val // cell values
data Row = rempty | rcons(Val, Row) // row of cell values
data RawTable = tempty | tcons(Row, RawTable) // list of rows
data Table = table(AttrL, RawTable) // header + body of a table

data Exp = constant(Val) | lookup(Name) // constants + attr. lookup
data Pred = ptrue | and(Pred, Pred) | not(Pred) // predicates

| eq(Exp, Exp) | gt(Exp, Exp) | lt(Exp, Exp)
data Select = all() | some(AttrL) // select all or some attributes
data Query = tvalue(Table) // table values
| selectFromWhere(Select, Name, Pred) // select from where
| union(Query, Query) | intersection(Query, Query) // set ops
| difference(Query, Query)

Figure 1. Part of the abstract syntax of SQL specified in SPL.

function reduce : Query TStore -> OptQuery
reduce(tvalue(t), ts) = noQuery
reduce(selectFromWhere(sel, name, pred), ts) =

let mTable = lookupStore(name, ts) in
if (isSomeTable(mTable))
then let filtered = filterTable(getTable(mTable), pred) in

let mSelected = selectTable(sel, filtered) in
if (isSomeTable(mSelected))
then someQuery(tvalue(getTable(mSelected)))
else noQuery

else noQuery
reduce(union(tvalue(table(al1, rt1)), tvalue(table(al2, rt2))), ts) =

someQuery(tvalue(table(al1, rawUnion(rt1, rt2))))
reduce(union(tvalue(t), q2), ts) =

let q2’ = reduce(q2, ts) in
if (isSomeQuery(q2’))
then someQuery(union(tvalue(t), getQuery(q2’)))
else noQuery

reduce(union(q1, q2), ts) =
let q1’ = reduce(q1, ts) in
if (isSomeQuery(q1’))
then someQuery(union(getQuery(q1’), q2))
else noQuery

...

function filterTable : Table Pred -> Table
function selectTable : Select Table -> OptTable
function rawUnion : RawTable RawTable -> RawTable

Figure 2. Part of the reduction semantics of SQL.

for example in the context of the POPLMARK challenge [1]. We
specified the syntax, type system, and reduction semantics of a
typed variant of SQL queries in SPL. We left out data manipulation,
joins, crossproducts, and some nesting in our model of SQL, but
these features could be easily added in SPL. The source code of our
case study is also available at https://github.com/stg-tud/
type-pragmatics/tree/master/Veritas.

Syntax. Figure 1 shows part of our syntactic model for SQL. We
model tables (sort Table) as a list of attribute names (AttrL) and a
lists of rows, which are in turn lists of field values. SQL queries
(Query) evaluate into table values (constructor tvalue). Constructor
selectFromWhere models projection of all or some attributes of a
named table, where each row is filtered using the predicate of the
where-clause. The remaining variants of Query model set operations.

Reduction semantics. Figure 2 shows an excerpt of the dynamic
semantics of SQL and the signatures of the most important auxiliary

judgment tcheck(TTContext, Query, TT)

matchingAttrL(TT, al)
welltypedRawTable(TT, rt)
---------------------------- T-tvalue
TTC ` tvalue(table(al, rt)) : TT

lookupContext(tn, TTC) = someTType(TT)
tcheckPred(p, TT)
selectType(sel, TT) = someTType(TT2)
-------------------------------------- T-selectFromWhere
TTC ` selectFromWhere(sel, tn, p) : TT2

TTC ` q1 : TT
TTC ` q2 : TT
------------------------ T-union
TTC ` union(q1, q2) : TT

...

function matchingAttrL : TType AttrL -> Bool
function welltypedRawTable : TType RawTable -> Bool
function tcheckPred : Pred TType -> Bool
function selectType : Select TType -> OptTType

Figure 3. Part of the typing rules of typed SQL.

functions. We modeled the dynamic semantics as a small-step
structural operational semantics. The reduction function reduce takes
a query and a table store (TStore), which maps table names to tables
(Table). The reduction function proceeds by pattern matching on the
query.

A table value is a normal form and cannot be further reduced. A
selectFromWhere query is processed in three steps:

1. From-clause: Lookup the table referred to by name in the query.
Since the name may be unbound, the lookup yields a value
of type OptTable. Reduction is stuck if no table was found.
Otherwise, we receive the table through getTable(mTable).

2. Where-clause: Filter the table to discard all rows that do not
conform to the predicate pred. We use the auxiliary function
filterTable whose signature is shown at the bottom of Figure 2.
We modeled filtering such that it always yields a RawTable and
cannot fail: We discard a row if the evaluation of pred fails.
The type system will ensure that this can never actually happen
within a well-typed query.

3. Select-clause: Select the columns of the filtered table in accor-
dance with the selection criteria sel, using auxiliary function
selectTable. We modeled selection such that it fails if a column
was required that does not exist in the table. Also here, the type
system will ensure that this cannot happen within a well-typed
query.

For union queries, reduce defines one contraction case and two
congruence cases. For the union of two table values, we use the
auxiliary function rawUnion that operates on header-less tables and
constructs the union of the rows. In the two congruence cases
of union, we try to take a step on the right and left operand,
respectively. The reduction of intersection and difference queries
is defined analogously to union.

Typing. The static semantics of our variant of SQL ensures that
well-typed queries do not get stuck but evaluate to table values. We
define the type of an SQL query as the type of the table that the
query evaluates to. The type of a table TT is a typed table schema
that associates field types to attribute names. Type checking uses a
table-type context TTC, which maps table names to table types.
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Figure 3 shows an excerpt of the typing rules of SQL and the
most important auxiliary functions used. A table value has table
type TT if both define the same attribute list and all rows in the
table adhere to the table schema as checked by welltypedRawTable.
A selectFromWhere query is well-typed if the table name tn is bound
to TT in the table-type context TTC, the predicate pred is well-typed
for TT, and the attribute selection selectType succeeds. Like the
other set operations, a union query is well-typed if both subqueries
have the same type.

6. Empirical Study of Compilation Strategies
To study the effect of different compilation strategies on prover
performance, we designed an empirical study based on the SQL
language specification from Section 5. To this end, we defined
10 proof goals in each of 5 goal categories (execution, synthesis,
testing, verification, counterexample). Our study aims to answer the
following research questions:

RQ1 Do small differences in the compilation strategy affect prover
performance? If yes, how much?

RQ2 Does the strategy for encoding of syntactic sorts influence
prover performance? If yes, how?

RQ3 Does the strategy for encoding variables influence prover
performance? If yes, how?

RQ4 Do simplifications influence prover performance? If yes, how?
RQ5 When do domain-specific simplification have an influence on

prover performance?
RQ6 Is there a compilation strategy that performs best for all goal

categories? Otherwise, what is the best compilation strategy
for each goal category?

6.1 Goal Categories for Specification Exploration
In our study, we distinguish 5 goal categories that explore a language
specification in different ways. Below we introduce the 5 categories
in greater detail.

Execution. The first category describes goals that execute part of
the language specification on some input in order to retrieve the
execution result. In principle, using ATPs for this goal category
permits the inspection of semantics that are not directly executable,
such as indeterministic and denotational semantics. We do not
exploit this possibility in our case study, since we focus on the
comparison of compilation strategies in this paper.

For executing a function f on some input t, we encode an
execution goal in first-order logic as follows:

∃ v. ground(v) ∧ f(t) = v?

That is, we ask whether there is some value v such that f(t) com-
putes v. Since mathematical functions are total and always produce a
result, an obvious candidate for v would be f(t) itself. If f(t) is un-
defined in the original SPL specification, this answer does not yield
any insight into the language specification. Therefore, we require
that f(t) is equivalent to a ground term: A term satisfies predicate
ground if it solely consists of calls to data-type constructors and ref-
erences to constants. This way, we force the ATP to always inspect
the axioms that define f .

For our study, we defined 10 execution goals that probe different
parts of the dynamic semantics of SQL. Representatively, we show
one goal here that explores the auxiliary function rawUnion:

local { different consts r1, r2, r3, r4 : Row
goal
t1 == tcons(r1, tcons(r2, tcons(r4, tempty)))
t2 == tcons(r2, tcons(r3, tempty))
----------------------------------- execution-2
exists result. rawUnion(t1, t2) == result }

To formulate the goal, we use a built-in feature of SPL to introduce
four constants r1 through r4 that represent pair-wise distinct rows.
We use a local block to limit the scope of these constants. We then
define an execution goal that introduces two raw tables t1 and t2 and
calls rawUnion on them. Note that the name of the goal is significant
and the prefix reveals it is an execution goal. We automatically
introduce ground requirements for existentially quantified variables
like result in execution goals.

Synthesis. The second goal category is dual to the Execution
category: Here, we explore whether a specifically given result v
value is producible via an execution, by asking the ATP to prove
that there is a function argument t which produces the result v:

∃ t. ground(t) ∧ f(t) = v?

As before, we are only interested in ground terms t. For our study,
we defined 10 synthesis goals that explore different parts of the
dynamic and static semantics of SQL. Representatively, we show
one goal here that synthesizes a query q and a table store ts such
that q is not a value and the reduction of q in ts is stuck:

goal
---------------------------------- synthesis-4
exists ts, q. !isValue(q)

reduce(q, ts) = noQuery

Testing. In the third goal category, a user already has an expecta-
tion about a concrete input t and output v of a function f and wants
to test whether this expectation is met by the specification. This
amounts to a quantifier-free proof goal in first-order logic:

f(t) = v?

Here, we rely on the user to make appropriate restrictions about the
groundness of t and v. Again, just as for the Execution category, our
approach allows for testing of specifications that are not directly exe-
cutable. For our study, we defined 10 test goals that explore different
parts of the dynamic and static semantics of SQL. Representatively,
we show one goal here that tests that the type checking of a selection
of column b from a table with columns a and b yields a table with a
single column b:

local { consts a, b : Name
ft1, ft2 : FType
n : Name

goal
TT == ttcons(a, ft1, ttcons(b, ft2, ttempty))
TTC == bindContext(n, TT, emptyContext)
sel == some(acons(b, aempty))
TT2 == ttcons(b, ft2, ttempty)
--------------------------------------- test-7
TTC ` selectFromWhere(sel, n, ptrue) : TT2 }

Verification. In the fourth goal category, we consider showing that
some property universally holds for a language specification:

∀ t. P (t)?

We formulated 10 verification goals to ensure properties of the
dynamic and static semantics of SQL. Naturally, since we only use
ATPs, we cannot prove arbitrary properties just like this, especially if
they require higher-order reasoning, i.e. induction or the application
of auxiliary lemmas. One can work around this restriction by
explicitly passing axioms which encode necessary lemmas, such as
induction hypotheses [11]. For example, we can prove the inductive
step of a theorem stating that intersection preserves typing:

local { consts RT : RawTable

axiom
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rt1 == RT
welltypedRawtable(tt, rt1)
welltypedRawtable(tt, rt2)
rawIntersection(rt1, rt2) == rt3
---------------------------- proof-10-IH
welltypedRawtable(tt, rt3)

goal
rt1 == tcons(r, RT)
welltypedRawtable(tt, rt1)
welltypedRawtable(tt, rt2)
rawIntersection(rt1, rt2) == rt3
---------------------------- proof-10
welltypedRawtable(tt, rt3) }

We introduce constant RT as induction variable and provide an
induction hypothesis stating that the theorem holds for rt1 == RT.
From this, we aim to show that the theorem also holds when adding
another row rt1 == tcons(r, RT). The proof of this goal can be
derived by a first-order theorem prover.

For our study, we mostly used simple goals whose prove does
not require any inductive reasoning.

Counterexample. In the fifth and final goal category, we aim at
finding a counterexample t for a property P as an explanation why
the property does not hold:

∃ t. ground(t) ∧ ¬P (t)?

Like above, we require that the counterexample t is a ground term.
We defined 10 counterexample goals that disprove statements about
the dynamic and static semantics of SQL. For example, we can show
that table difference on well-typed tables is not commutative:

goal
------------------------------------ counterexample-6
exists rt1, rt2, tt.
welltypedRawtable(tt, rt1)
welltypedRawtable(tt, rt2)
rawDifference(rt1, rt2) != rawDifference(rt2, rt1)

6.2 Automated Theorem Provers
For the purpose of this study, we focus on investigating the perfor-
mance of automated first-order theorem provers that use saturation-
based methods or variants of the sequent calculus to solve problems
in first-order logic with equality. We considered various theorem
provers which competed in the last two CASC competitions1. Out
of these, we identified four provers which were able to solve a larger
number our proof goals for at least some compilation strategies:
Vampire version 3.0 and Vampire version 4.0 [20], eprover [29],
and princess CASC version [28]. All of these provers support the
standardized TPTP format [31] for theorem provers.

We do not consider SMT (satisfiability-modulo-theory) solvers
such as Z3 [26], since the supported input format (SMT-lib [2])
differs considerably from TPTP. Hence, the encoding of our different
compilation strategies in SMT-lib would already differ considerably
from the TPTP encoding, rendering sensible comparisons between
compilation strategies difficult. However, it would be an interesting
direction for future work to create different compilation strategies
using the SMT-lib format and to compare the performance of SMT
solvers for the different strategies.

6.3 Experimental Setup
We apply the 36 compilation strategies from Section 4.2 to the 50
proof goals from Section 6.1. We run all of these input problems on
the four theorem provers we selected for our study, which yields a

1 http://www.cs.miami.edu/~tptp/CASC/24/ and http://www.cs.
miami.edu/~tptp/CASC/25/

total of 6600 prover calls (and 600 unsupported calls to eprover when
using typed logic). We run our complete study with a prover timeout
of 120 seconds, calling Vampire in CASC mode and eprover in auto
mode. We chose this particular timeout since it yielded the best
overall results on our benchmark for all the four provers we used. A
lower timeout was particularly disadvantageous for princess, while a
higher timeout did not yield substantially better results. We execute
all prover calls on the Lichtenberg High Performance Computer at
TU Darmstadt2 with Intel Xeon E5-4650 (Sandy Bridge) 2.7GHz
CPUs, allocating 64 cores to each group of calls to one prover (i.e.
so that about 64 prover calls in parallel are processed) and 2GB
RAM per core.

As a measure for prover performance, we use the success rate
of the prover on the given category of proof goals for the timeout
of 120 seconds. The success rate for a given goal category indicates
how many of the goals in the category the prover could prove within
the given timeout. We deliberately excluded both the time it takes
the provers to find a proof and the time our compiler takes to compile
the specification as a measure for prover performance: We observed
that the compilation strategies which yield lower execution times for
successful proofs are not necessarily the same strategies that also
yield high success rates. For the purposes of this study, we decided
to focus on investigating how the choice of the compilation strategy
affects the overall success rates of the provers.

7. Results of the Empirical Study
In this section, we answer the research questions from Section 6 with
the data from our experiment. We address each question individually.

General effect on prover performance (RQ1) We evaluate the
general effect of different compilation strategies on prover perfor-
mance by comparing the distribution of success rates for our 36
compilation strategies, separately considering every prover and ev-
ery goal category. Figure 4 visualizes the distribution of success
rates for all 36 compilation strategies for the 4 provers we used.
Each individual boxplot contains 36 success rates, one for each com-
pilation strategy we consider - except for the boxplot for eprover,
which contains 24 success rates since eprover does not support typed
first-order logic as input. We observe that the difference between
the smallest and the largest success rate is quite large in almost
every goal category and for every prover, with success rates some-
times ranging between 10 percent and 100 percent (e.g. Vampire
3.0, Execution category).

We conclude that prover performance depends dramatically
on the compilation strategy, regardless of the prover chosen and
regardless of the goal category used. This observation confirms
that it is worthwhile to study the effects of different compilation
strategies on prover performance more closely.

Effect of sort encoding strategy (RQ2) We compare the success
rates of the 3 different alternatives for sort encoding against each
other for all categories: Figure 5 visualizes, for each prover, the
success rates of our three alternatives for sort encoding. Each boxplot
contains 60 success rates, and for eprover, we have no data for typed
logic (see above). We observe that the success rates for the strategies
that use type guards are significantly lower than the success rates
for the other two strategies, regardless of which prover was used.
Comparing strategies with typed logic and with type erasure against
each other, there is no clear evidence from the date whether either of
the two alternatives is clearly better. We observe the same tendency
if we look at the individual results for each goal category.

We conclude that one should avoid using type guards. A possible
explanation for this is that type guards cause an immense blow-up
of the formulas.

2 http://www.hhlr.tu-darmstadt.de/hhlr/index.en.jsp
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Overview, prover timeout 120 sec
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Figure 4. Answer to RQ1: Prover success rates vary with compilation strategy in every goal category and for every prover.

Comparison of sort encoding alternatives: All goal categories, prover timeout 120 sec
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Figure 5. Answer to RQ2: Using type guards for sort encoding significantly lowers prover performance.

Effect of variable encoding strategy (RQ3) We compare the
success rates of different alternatives for variable encoding against
each other for all categories: Figure 6 visualizes, for each prover,
the distribution of success rates for each of our four variable
encoding alternatives. For Vampire and princess, each boxplot
contains 45 success rates, for eprover, 30. We observe that, for
all provers, variable inlining and “unchanged” variable encoding
yield better results than the other two variable encoding strategies
in all categories. The difference in performance between the two
naming strategies and the other two variable encoding alternatives is
significant for some Vampire 4.0 and eprover, but not for the other
two provers. Comparing variable inlining and “unchanged” variable
encoding against each other, we observe a slight, but not significant,
advantage of inlining for all provers. We observe similar tendencies
if we look at the individual results for each goal category.

We conclude that one should avoid variable naming, and that
variable inlining is a good strategy for most cases. A possible
explanation for this result is that inlining, at least on our problem
specification, often reduced the overall size of formulas (removing
additional premises).

Effect of simplification strategy (RQ4) We compare the success
rates of different alternatives for simplification against each other
for all categories: Figure 7 shows the distribution of success rates
for each of our three simplification alternatives. For Vampire and
princess, each boxplot contains 60 success rates, for eprover, 45. We
observe that there is almost no difference between the three different
simplification alternatives for all provers. For Vampire 4.0 and 3.0
and eprover, domain-specific simplification seems to be slightly
more advantageous than the other two strategies, but the difference

in performance is not significant. We observe similar tendencies if
we consider look at the individual results for each goal category.

We conclude that applying simplification strategies to the input
problem does not have any particular effect on prover performance.

Effect of domain-specific simplification (RQ5) Despite the re-
sults for RQ4, we are interested in discovering whether there are
situations in which applying domain-specific simplifications makes
a difference. Comparing many different setups to each other, we
discovered one such situation, visualized in Figure 8: Here, we focus
on combinations of simplification strategies with strategies that we
already identified as advantageous above. Additionally, we compare
the results for different prover timeouts to each other. The figure
depicts success rates for the different simplification strategies for all
provers together except princess (which had very low success rates
for lower timeouts). Every boxplot contains 50 success rates. We
observe that for lower prover timeouts, domain-specific simplifica-
tions indeed increase prover performance compared to the other two
simplification strategies, notably for a timeout of only 10 seconds.
However, as the timeout increases, the advantage of domain-specific
strategies shrinks away.

We conclude that domain-specific simplification increases prover
performance for lower prover timeouts when combined with other
advantageous encoding strategies.

Best overall compilation strategies (RQ6) We compare the suc-
cess rates obtained for each individual compilation strategy across all
goal categories and all provers we used: Figure 9 depicts a boxplot
diagram with one boxplot for each of the 36 compilation strategies
we investigated. The individual boxplots contain 20 success rates
(strategies with untyped logic) or 15 success rates (strategies typed
logic, not supported by eprover).
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Comparison of variable encoding alternatives: All goal categories, prover timeout 120 sec
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Figure 6. Answer to RQ3: Variable inlining slightly improves prover performance.

Comparison of simplification alternatives: All goal categories, prover timeout 120 sec
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Figure 7. Answer to RQ4: Simplification strategies hardly influence prover performance for a timeout of 120s.

Comparison of simplification alternatives when combined with type erasure/typed logic and inlining/unchanged variable encoding:
All goal categories, Vampire 3.0, 4.0, and eprover with different prover timeouts
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Figure 8. Answer to RQ5: Domain-specific simplifications are advantageous for lower timeouts.

We observe that the compilation strategy that uses typed logic
to encode sorts, inlines variable names, and does not apply any
simplification (“tinn” in the graph in Figure 9) clearly outperforms
all other strategies. This result is mainly due to Vampire 3.0, which
almost always proves all of our goals when used with strategy “tinn”
and with a timeout of 120 seconds. Vampire 4.0 with strategy “tinn”
also yields very high success rates for more than half of our 5 goal
categories, but performs less well for the other half. Among the
strategies that do not use typed logic, there is no clear candidate for
which strategy performs best; however the strategies with inlining
and type erasure seem to have a slight advantage. Looking at the
results of individual goal categories and/or lower prover timeouts,
we observe mostly similar tendencies. In some cases, the difference
between the performance of the “tinn” strategy and other strategies

is not as clear as in Figure 9. For example, in category Testing, also
strategies “tnpn” to “tup” yield success rates as high as “tinn”.

We conclude that there is a single best compilation strategy for all
goals, namely typed logic and inlining, or type erasure and inlining
(if typed logic cannot be used). Our results for the previous RQs
also apply in combination.

Summary Our results show that firstly, it is worthwhile to study
the effects of different compilation strategies on prover performance,
even if the strategies only produce subtle differences in the encoded
problems, and even if the strategies apply optimizations which
overlap with what ATPs may do internally. This result is very likely
to hold beyond our case study and our exploration proof goals.
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Performance of all individual compilation strategies
(all provers and all goal categories, timeout 120 sec)
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Key for compilation strategy abbreviations
strategy := sort variable simplification
sort := b | g | t

b: type erasure, g: type guards, t: typed logic
variable := in | ne | np | u

in: inlining, ne: naming, u: unchanged
np: naming of parameters and results

simplification := l | n | p
l: general-purpose, n: none, p: domain-specific

Figure 9. Answer to RQ6: Prover success rates are best for typed
logic (if available) and inlining (at least for Vampire versions and
timeout 120s).

Secondly, we identified which strategies perform best, at least for
our case study: typed logic and inlining. There is no guarantee that
these strategies will also perform best in other case studies. However,
we believe that the compilation of other SPL specifications to first-
order logic would yield axiom sets similar in shape and distribution
to the ones from our SQL study, hence our results are very likely to
carry over to other case studies.

The complete raw data which we used and obtained during our
study is available at http://www.st.informatik.tu-darmstadt.
de/artifacts/comp-fol-study/: all compiled input problems,
the complete logs of all provers on the problems, result summaries,
and additional graphs compiled from our raw data.

8. Related Work
We compare our work to 1) a selection of other approaches for
lightweight mechanization and exploration of language specifica-
tions 2) systems which also encode proof problems to first-order
logic and/or employ tools for first-order logic for solving them
and could hence benefit from the results we present here, and to
3) similar studies which compare different compilation strategies
to first-order logic against each other with regard to prover perfor-
mance.

Lightweight mechanization and specification exploration Re-
dex [18] provides a lightweight specification and exploration en-
vironment for programming languages. Redex can visualize test
executions and offers randomized testing support for checking be-
havioral properties. The approach we propose, i.e. lightweight mech-
anization and exploration of language specifications via compilation

to first-order logic and application of ATPs, is orthogonal to Redex’
features and could be added to Redex or similar systems.

Ott [30] is a lightweight metalanguage for specifying program-
ming languages. Additionally, it offers consistency checks of speci-
fications and can translate specifications to code for various proofs
assistants (among them, Isabelle[27] and Coq[10]). However, Ott
does not provide support for lightweight exploration of a specifica-
tion: One can use the generated proof assistant code, but of course,
the entry barrier for a non-expert is relatively high. The approach
we suggest could easily be added to Ott to lower the entry barrier,
since the syntax of our core language SPL is already very close to
Ott’s syntax (notably, the syntax for inference rules). Note that our
focus is on the investigation of compilation strategies to first-order
logic from a core language for language specifications, not on the
language for specifications itself. Hence we chose a language which
is simpler than Ott’s or Redex’ language, focusing on core concepts.

Solving problems using first-order logic There are a number of
general-purpose tools and proof assistants which translate proof
problems to first-order logic and apply automated theorem provers
on them. We discuss a selection of them:

The intermediate verification language Boogie 2 [14, 16] trans-
lates problems into the SMT-lib [2] format understood by SMT
solvers such as Z3 [26]. Dafny [15] is a programming language
and an automatic program verifier which uses SMT solvers through
Boogie 2. Dafny also supports functions and algebraic datatypes,
but does not encode function inversion axioms or domain axioms for
data types, since such axioms “give rise to enormously expensive
disjunctions” [15]. In our study, we did not observe problems in
prover performance with such axioms. However, it would be inter-
esting to study the effects of such axioms on prover performance
for larger specifications. Sledgehammer [6] is a tool for automating
proof steps within the interactive theorem prover Isabelle [33] using
automated theorem provers as well as SMT solvers. Sledgehammer
encodes general higher-order problems from Isabelle/HOL to first-
order logic and SMT-lib. The concrete encodings are described in
detail in [4, 24]. Our encodings differ from the ones that Sledgeham-
mer uses mostly in the details whose effect we study in this paper:
handling of variable encoding and simplification strategies. Addi-
tionally, like Dafny, Sledgehammer does not explicitly encode func-
tion inversion or domain axioms. The higher-order resolution-based
theorem prover Leo-II [3] cooperates with automated first-order
theorem provers such as the ones we used by encoding higher-order
clauses to first-order clauses. HipSpec [9] is a system that targets
the automatic derivation and proving of properties about Haskell
programs. To this end, HipSpec internally compiles definitions and
properties from Haskell programs to first-order logic and applies
ATPs on them.

All of these tools could benefit from the results of our study for
improving their translations to first-order logic or for reevaluating
detailed design decisions within their encoding processes. We
believe that our results regarding the encoding of variables may
be particularly useful and merit further study: For example, both
Dafny and Sledgehammer often introduce auxiliary variables into
the first-order compilation to bind subformulas which are used
multiple times in the specification. Our results indicate that inlining
such variables often increases prover success rate. However, we
conducted our study on a particular set of problems. It would be
interesting to further study for which cases our observation about
variable inlining applies in more general settings. For example, one
could suspect that inlining variables is indeed beneficial for smaller
problem specifications, but not for large ones.

The Alloy Analyzer [13] is a solver that takes constraints of
a specification of a model in the Alloy language and tries to
find sample structures or counterexamples for these constraints.
To achieve this, the Alloy Analyzer reduces a problem to SAT
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(satisfiability checking) by encoding it to first-order relational logic,
which combines elements from first-order logic and relational
calculi [12]. Nitpick [5] applies the Alloy Analyzer for finding
counterexamples for Isabelle/HOL theorems. The Alloy Analyzer
and Nitpick both use the relational model finder Kodkod [32].
In contrast, we investigated using automated first-order theorem
provers for exploring whether counterexamples exist. It would be
interesting to compare the performance of automated first-order
provers for detecting the existence of counterexamples against tools
such as Nitpick on a larger set of counterexample goals.

In previous work, we proposed the design of Veritas [11], an ap-
proach for lightweight mechanization of type system specifications
which aims at using ATPs for automating proof steps of soundness
proofs of type systems and for applying optimization strategies to
type system specifications for generating efficient type checker im-
plementations. In our prototype of Veritas, we use a specification
language similar to SPL. While experimenting with Veritas, we ob-
served that small encoding variations have a large affect on prover
performance, which led us to conduct a systematic study presented
here.

Comparing different compilation strategies for first-order logic
Leino and Rümmer [16] empirically compare two different vari-
ants of how to translate Boogie 2 types into SMT-lib. They also
observed that type guards significantly lower the performance of
SMT solvers. Meng and Paulson [24] and Blanchette et al. [4, 7] also
investigate different encodings of sorts for Sledgehammer, notably
different variations of partial type erasure. Our type erasure encod-
ing and our guard encoding is similar to their encoding variants, but
slightly adapts them to our domain. In their studies, the authors of
the cited papers also observe that full type guards decrease prover
performance, a result which we empirically confirm in our work.
Additionally, Meng and Paulson [24] and Blanchette [4] also com-
pare different encodings of lambda abstractions against each other,
which is outside of the focus of our study.

In a different study [25], Meng and Paulson investigate axiom
selection for problems encoded by Sledgehammer. We deliberately
did not include any axiom selection in our study, since we wanted
to focus on studying the effects of different encodings without
any interference from axiom selection strategies. Interestingly, we
are able to obtain high success rates in at least four of our five
goal categories even though we do not apply any axiom selection
strategies. Axiom selection strategies as for example described
in [21, 25] are likely to improve prover performance further.

Kotelnikov et al. [19] investigate the encoding of a number of
constructs which typically occur in language semantics specifica-
tions constructs directly within the Vampire theorem prover. Con-
cretely, they adapt the internal input language and calculi of Vampire
to support first class Boolean sorts, let-bindings, and if-then-else
expressions. They compare the performance of their encoding strate-
gies with the pure first-order encoding used by Vampire and observe
that their encoding increases prover performance for problems which
use such constructs. In contrast, we investigate many different com-
pilation strategies for language specifications systematically against
each other, including, but not limited to, let-bindings and if-then-
else expressions. Another main difference between our work and the
one of Kotelnikov et al. is that we treat first-order theorem provers
as “black boxes”, while they aim at increasing prover performance
by changing the provers internally. The two methods are likely to
be complementary, and it will be interesting to further study and
compare both directions.

9. Conclusion
We proposed applying existing ATPs for exploring language specifi-
cations, by compiling specifications to first-order logic. To this end,

we described and compared 36 alternative compilation strategies
along 3 different dimensions (sort encoding, variable encoding, and
simplification) against each other with regard to how they affect
prover performance. We conducted a systematic empirical study
on a benchmark specification of a typed SQL variant with explo-
ration tasks in 5 different categories (execution, synthesis, testing,
verification, and discovery of counterexamples).

Our results firstly confirm that even small, seemingly insignifi-
cant differences in the choice of a compilation strategy has a great
influence on prover performance. Secondly, our results showed that
using either a type erasure strategy or typed logic (if supported by a
theorem prover) together with variable inlining yields the highest
prover performances. Applying simplification strategies in addi-
tion is advantageous when using lower prover timeouts, but hardly
influences prover performance for higher timeouts.

Our results can inform future applications of automated first-
order theorem provers for reasoning about language specifications
and type systems. We plan to apply ATPs for automatically proving
type soundness of a language’s dynamic semantics [11], of desug-
aring transformations [22, 23], and of program transformations in
general.
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