
System Description: An Infrastructure for Combining Domain
Knowledge with Automated Theorem Provers

Sylvia Grewe
Technische Universität Darmstadt

Germany

Sebastian Erdweg
Delft University of Technology

Netherlands

André Pacak
Technische Universität Darmstadt

Germany

Mira Mezini
Technische Universität Darmstadt

Germany

ABSTRACT
Computer science has seen much progress in the area of auto-
mated verification in the last decades. Yet, there are many domains
where abstract strategies for verifying standard properties are well-
understood by domain experts, but still not automated to a satisfac-
tory degree. One example for such a domain are type soundness
proofs. Being able to express domain-specific verification strategies
using domain-specific terminology and concepts can help to narrow
down this gap toward more automated verification.

We present the requirements, design, and implementation of a
configurable verification infrastructure that allows for expressing
domain knowledge about proofs and for interfacing with existing
automated theorem provers and solvers to verify individual proof
steps. As an application scenario for our infrastructure, we present
the development of a standard type soundness proof for a typed
subset of SQL.

CCS CONCEPTS
• Theory of computation → Automated reasoning; • Soft-
ware and its engineering→ Software verification;Domain specific
languages;

ACM Reference Format:
Sylvia Grewe, Sebastian Erdweg, André Pacak, and Mira Mezini. 2018. Sys-
tem Description: An Infrastructure for Combining Domain Knowledge with
Automated Theorem Provers. In The 20th International Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP ’18), September 3–5,
2018, Frankfurt am Main, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3236950.3236960

1 INTRODUCTION
Assume that you are an expert on how to verify a standard property
in a specific domain, such as proving type soundness, proving live-
ness of a state machine, proving non-interference, solving a certain
constraint-based problem etc. You know all about the general steps
that are typically needed to solve your specific problem, you have
an idea in which order to apply these steps, and you know the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6441-6/18/09.
https://doi.org/10.1145/3236950.3236960

structure of the auxiliary lemmas that you need. Your goal is to
automate proofs in your domain as much as possible. How could
you approach this task today, and how far could you get?

Firstly, automated theorem provers (ATPs) such as Vampire [11]
and SMT solvers (satisfiability modulo theories) such as Z3 [4]
are able to automatically solve a large number of first-order proof
problems from different domains. ATPs and SMT solvers typically
solve proof problems that require generating models for quantified
variables which have to satisfy given constraints. Typically, such
problems require applying the given definitions from the problem
specification in the correct order. This is a good start for trying to
automate your verification task. But what if your problems are too
complicated to be solved by ATPs or SMT solvers directly? This
could happen either because your definitions are complex enough
that the search space for proofs gets too large, or because solving
your problems needs higher-order reasoning techniques such as
induction, or because your problems require additional auxiliary
lemmas, which ATPs and SMT solvers typically cannot synthesize
by themselves.

Interactive theorem provers such as Isabelle [14] and Coq [6]
enable the mechanization of large and complex proofs in higher-
order logic, as well as the partial automation of such proofs by
writing custom code for generating proof steps, so-called tactics.
Projects that combine both of these worlds, such as Isabelle Sledge-
hammer [3] which lets Isabelle interface with different ATPs and
SMT solvers, raise the degree of automation. So you could try to
encode your domain-specific proof strategies via tactic languages
such as ltac [5] or MTac [23] in Coq or Eisbach [13] in Isabelle.

Existing tactic languages typically operate as follows: You may
match the current goal(s) on one or more goal schemas and then
apply existing general-purpose tactics to obtain another goal or set
of sub-goals. Additionally, you may use different combinators with
the existing general-purpose tactics, such as conditional applica-
tion of tactics (only applying a tactic if the current goal satisfies a
certain condition), sequential or repeated application of tactics, etc.
However, existing tactic languages typically do not enable you to
do anything beyond manipulating the current goal state. Especially,
you can neither synthesize auxiliary lemmas needed in your proof,
nor access the AST (abstract syntax tree) of a problem specifica-
tion, for example to inspect the definition of a particular function
or predicate to determine the shape of an auxiliary lemma. Yet,
both of these capabilities are crucial to approach fully automatic
proof generation in many interesting domains. Another issue with
existing tactic languages is that they require you to encode your

https://doi.org/10.1145/3236950.3236960
https://doi.org/10.1145/3236950.3236960

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany S. Grewe, S. Erdweg, A. Pacak, M. Mezini

domain language and any domain-specific strategies via general-
purpose concepts and strategies within Coq or Isabelle. That is, the
domain-specific abstractions of your problem get obfuscated by
prover-specific details.

To overcome the issues mentioned, we propose the design of a
verification infrastructure which is configurable in the input format
for problem specifications as well as in the format in which tactics
and proof strategies can be specified.We propose to implement such
a verification infrastructure within a general-purpose programming
language so that usersmay design domain-specific languages (DSLs)
or APIs for expressing their problem domains and build domain-
specific strategies to automatically construct a proof for a domain-
specific problem.

To achieve maximum flexibility when it comes to generating a
proof, we propose to strictly separate two concerns that are often
convoluted in existing systems: the construction of a proof structure
and the verification of the individual proof steps in such a proof
structure. Our infrastructure enables the generation of high-level
proof structures which consist of various lower-level proof steps,
such as performing an inductive step, equational reasoning, case
distinctions, and lemma applications. The generated proof structure
can be seen as a recommendation for a proof, i.e. it may not be fully
complete, and may even contain steps or lemmas that are not yet
fully correct. A proof structure may be interactively manipulated to
refine or correct steps. To verify a proof structure, the infrastructure
transforms the individual proof steps to prover-specific formats
for external provers. The infrastructure makes sure that a proof
structure is only marked as “verified” if all required proof steps
have been successfully proven by an external prover. We present a
concrete implementation of our design, called VeriTaS.

In summary, the contributions of this paper are:

• We propose the requirements of a configurable verification
infrastructure that enables combining domain-specific prob-
lem specifications and proof strategies with different auto-
mated theorem provers and solvers (Section 2).

• We formally define the conceptual model for a verification
infrastructure that satisfies the requirements we propose.
Our verification infrastructure is based on generic proof
graphs for structuring proofs (Section 3).

• We present a flexible Scala implementation of our conceptual
model (Section 4), called VeriTaS. Our implementation allows
for customization to domain-specific needs.

• We illustrate how the generic parts of our implementation
can be instantiated for verifying properties of specifications
that use algebraic datatypes and recursive functions (Sec-
tion 5).

• We illustrate how this instantiation of our infrastructure
can be used to develop a progress proof of a typed subset of
SQL (Section 6).

2 REQUIREMENTS
Our goal is to design and implement a verification infrastructure
which flexibly allows developers who want to automate proofs in
a specific domain (e.g., type soundness proofs) to encode domain-
specific proof strategies while at the same time enabling the use of
existing ATPs or SMT solvers for solving individual steps within a

proof. We start by deriving seven concrete requirements for such
an infrastructure.

2.1 Decoupled Proof Construction and Step
Verification

We want to automatically derive as much of a proof as possible
with the domain knowledge that we have in mind for the chosen
domain. In particular, we do not want our domain-specific proof
strategies to get “stuck” at the first step that cannot be immediately
verified. Rather, we would like to allow the generation of proof
steps that are not yet fully correct or not yet fully refined, but can
nevertheless provide a good base for generating further dependent
steps.

We achieve this by requiring the verification infrastructure to
strictly decouple the generation of a proof structure from the verifi-
cation of the individual proof steps within the structure using an
external prover. Hence, our infrastructure shall allow the genera-
tion of incorrect or incomplete proof steps (for which verification
might of course fail).

2.2 Interactive Proof Manipulation
Due to our first requirement that the generation of a proof structure
and the verification of its steps shall be decoupled from each other,
we might end up with a proof that has steps that cannot be verified
by an external prover, either because the step is not yet sufficiently
refined, or simply because the step itself is wrong. To complete such
a proof, we want to be able to interactively manipulate a generated
proof, i.e. correct faulty steps or refine steps.

2.3 Structured Proofs
If we have to interactively correct a generated proof, we need to be
able to inspect the entire proof in order to fix the issues. Hence, the
verification infrastructure should allow for a structured, hierarchical
representation of proofs. Furthermore, the representation of proofs
should allow for an intuitive visualization of a proof structure.

2.4 Combination of different ATPs and SMT
solvers

Different automated theorem provers and solvers have different
strengths. For example, SMT solvers are typically very strong at
solving large, mostly ground problems, while ATPs typically handle
quantified problems more elegantly [2]. To obtain a high degree of
automation, we want to be able to combine different ATPs and/or
SMT solvers within one proof. This requirement is similar to one of
the core concepts behind Isabelle Sledgehammer [3]. To meet this
requirement, the verification infrastructure shall provide interfaces
for connecting or calling various theorem provers.

2.5 Configurable Format for Specifications and
Proof Obligations

Many domain-specific proof strategies (e.g. for lemma generation)
may need to query domain concepts from the specification. If all
problem specifications are given in a hard-coded general-purpose
format, such queries may be difficult to implement for developers
focusing on a particular domain: They would have to deal with

Combining Domain Knowledge with ATPs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

all the details of the AST of a general-purpose format to obtain
the desired information for implementing domain-specific proof
strategies. One way to get around such difficulties is to use a custom
format for problem specifications in a particular domain which fa-
cilitates querying the information needed by domain-specific proof
strategies. Such a format could contain special specification con-
structs that capture the domain knowledge required by particular
strategies.

To allow developers for specifying custom formats, the verifi-
cation infrastructure shall be parametric in a format for problem
specifications as well as proof obligations.

2.6 Persistent Proofs and Verification States
When developing a proof, one usually wants to share either the
finished proof or an intermediate state of the proof so that others can
either inspect the proof to persuade themselves of its correctness,
or complete the proof.

To this end, we require that proof structures as well as verifi-
cation states of individual proof steps can be stored persistently.
Storing of verification states should not only include a simple tex-
tual status of the form “proved” or “not proved”, but also the prover
used and its configuration (e.g. timeout, parameters...) that yielded
this status, along with evidence for the proof. This allows other de-
velopers to complete inconclusive steps efficiently and to persuade
themselves of the correctness of proved steps.

2.7 Expressive Language for Strategy
Implementation

We want to be able to implement powerful and flexible proof strate-
gies which, on the one hand, transform proof obligations, but, on
the other hand, are also able to generate auxiliary lemmas needed
within the proof by analyzing the present proof obligation as well
as the problem specification. Hence, the language in which such
strategies are implemented has to be expressive enough to allow
for these kind of tasks.

We interpret this requirement on a technical level: We require
the verification infrastructure to be completely implemented as a
library within a general-purpose programming language, so that
any proof strategy can also be implemented within this language.
This way, the language for proof strategies automatically allows for
the maximum flexibility and expressiveness. Also, developers do
not need to work with different languages on different abstraction
levels in order to implement proof strategies, but only with a single
library within a single language.

3 CONCEPTUAL MODEL
To meet the requirements from the previous section, we represent
proof structures via proof graphs, a format inspired by previous
work on proof planning, notably on the work of Richardson and
Bundy [17]. However, in our notion of proof graphs, we shift the
focus away from tactic-based proof plans toward proof structures
represented primarily by the intermediate subgoals that are gener-
ated during a proof. We discuss the differences to Richardson and
Bundy’s work further in Section 7.

3.1 Definition of Proof Graphs
We start with formally defining the core concepts and terminology
of our notion of proof graphs. Section 6 shows an example of a
visualized proof graph. The nodes of our proof graphs are proof
obligations.

Definition 3.1 (Proof obligation). A proof obligation consists of a
problem specification, i.e. a set of definitions and axioms together
with a conjecture to prove. A proof obligation pD,G is parametric
in a format D for definitions and in a format G for proof goals/con-
jectures. We denote a set of proof obligations parametric in D and
G with PD,G .

Since proof obligations are parametric in a format for defini-
tions D and in a format for proof goals G, we meet requirement
2.5 (enabling a configurable format for specifications and proof
obligations). To avoid notational clutter, we omit the subscripts D
and G from now on and just write p (occasionally with numerical
subscripts) for proof obligations and P for a set of proof obligations
parametric in D and G.

Proof obligations are connected to each other via directed proof
edges.

Definition 3.2 (Proof edge). A proof edge is a triple (p1, l , p2) from
a proof obligation p1 to another proof obligation p2. A proof edge
additionally carries an edge label l from a set of possible edge labels
L. We denote a set of proof edges labeled with elements of L with
EL .

Since proof edges are directed, a proof obligation can have chil-
dren, or sub-obligations. The semantics of sub-obligations is that
proving the parent obligation may require proving some or all of
the sub-obligations, or, differently put, that the proof of the parent
obligation may depend on proving the sub-obligations.

Edge labels may be used for different purposes, for example
to propagate proof-relevant information from parent obligations
to sub-obligations. Such proof-relevant information could include
fixed variables or induction hypotheses from the parent obligation
which also apply for proving the sub-obligations.

Proof obligations and proof edges serve as the basic ingredients
of proof graphs.

Definition 3.3 (Proof graph). A proof graph is a directed, acyclic
graph (DAG) (P, EL), i.e. with nodes from a set of proof obligations
P and edges from a set of labeled proof edges EL . We denote the
set of all proof graphs, i.e. the type of proof graphs, with PG.

Note that proof graphs have to be acyclic in order to represent
correct proofs. We use graphs instead of trees in order to allow
for proof obligations to be reused within a proof. For example, a
sub-obligation may consist of an auxiliary lemma which is required
in different parts of a proof. Rather than duplicating the proof
obligation within a tree (including the sub-tree which models the
proof of the auxiliary lemma), we allow for sub-obligations to have
more than one parent obligation.

By representing proofs via proof graphs, we easily meet require-
ment 2.3 of structured proofs: Proof graphs enable a structured and
hierarchical representation of proofs and can easily be visualized.

Proof graphs can have one or more root obligations, i.e. proof
obligations without a parent obligation. Root obligations model the

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany S. Grewe, S. Erdweg, A. Pacak, M. Mezini

theorems one wants to prove. Leaf obligations are proof obligations
without any sub-obligation. A leaf obligation models a theorem
or lemma which trivially follows from the definitions within the
problem specification of the leaf obligation.

3.2 Constructing Proof Graphs
Next, we introduce concepts and terminology for the manual and/or
automated construction of proof graphs. We may apply a tactic to
a proof obligation in order to add a single proof step to that proof
obligation.

Definition 3.4 (Tactic). A tactic t is a function of type

(P × EL) → (P × EL),

where P denotes the set of all proof obligations1 and EL denotes
the set of all labeled edges. We denote the set of all tactics with T .

That is, a tactic takes a proof obligation and a list of proof edges
(the incoming edges of the given proof obligation) as an argument
and returns a list of pairs of a proof obligation and a proof edge.

Applying a tactic to a proof obligation deterministically gener-
ates a list of sub-obligations with corresponding proof edges to
each of the sub-obligations. The tactic requires the list of incoming
edges to the given proof obligation in order to generate new proof
edges and correctly propagate information if necessary. A tactic
may also return an empty list. For example, the simplest tactic,
which we name Solve, simply declares that a proof obligation can
be proven directly via its problem specification. Hence, applying
Solve does not generate any further proof obligations. Additionally,
if the tactic is not applicable to the given parent obligation, the
function t also returns the empty list.

Definition 3.5 (Proof step). A proof step s is a triple (p, t , (p, eL)).
We denote a set of proof steps with S.

The leftmost element of the triple represents the parent obliga-
tion p, the second element the tactic t applied to p, and the last
element the list of sub-obligations with corresponding labeled proof
edges eL generated by t for p and its incoming edges. For each
parent obligation p in a proof graph, there may be at most one proof
step.

Applying a tactic t within a proof graph pg1 to a parent obliga-
tion p generates a proof step for p and returns a proof graph pg2
augmented by the proof edges and sub-obligations generated by
applying t to p and its incoming edges, together with the generated
proof step s; formally:

Definition 3.6 (Tactic application). The function applyTac of type

(PG × P ×T) → (PG × S)

is defined so that applyTac(pg1,p, t) = (pg2, s), where
• pg1 = (P1, EL,1)
• pg2 = (P2, EL,2)
• t(p, eL) = ((p1, eL,1), ..., (pn , eL,n))
• s = (p, t , ((p1, eL,1), ..., (pn , eL,n)))
• P2 = P1 ∪ {p1, ...,pn }
• EL,2 = EL,1 ∪ {eL,1, ..., eL,n },

1All proof obligations for a given format for definitions D and a given format for
goals G.

if p ∈ P1. Otherwise, pg1 = pд2, i.e. the given proof graph remains
unchanged.2

Tactics can only ever be used to construct a single proof step out
of a given proof obligation. Proof strategies heuristically generate
entire proof graphs:

Definition 3.7 (Proof strategy). A proof strategy Str is a function
PG → PG, i.e. a function from a proof graph to a proof graph.

Initially, a proof strategy may be applied to a proof graph that
only consists of one or more root obligations without any sub-
obligations. Proof strategies may apply other proof strategies and/or
tactics in order to construct proof graphs. But most importantly,
a proof strategy may operate globally on a proof graph and the
problem specifications within its proof obligations, while tactics
only ever operate locally on a given proof obligation. Thus, proof
strategies may for example heuristically generate sub-obligations
that contain auxiliary lemmas and insert them into certain points
of the given proof graph.

Users may manually apply tactics as well as single proof strate-
gies to refine a proof graph. Thereby, our model meets requirement
2.2 (enabling interactive proof manipulation).

3.3 Verifying Proof Graphs
The proof graphs constructed by proof strategies and/or via tactic
application represent suggested proof structures and may contain
unprovable proof obligations and incorrect proof steps. To actually
verify a proof graph, each of its proof obligation has to be verified
with an external verifier. We formally define what “verifying a proof
obligation” means.

Firstly, to verify a proof obligation, one has to attach a proof step
to the proof obligation via a tactic application. Next, an external
verifier has to verify the attached proof step. A proof step is verified
by first encoding the proof step as a proof problem in a verifier
format V and then applying a verifier onto the proof problem in
order to obtain a step result.

Definition 3.8 (Encoding proof problems). A function enc of type
S → V encodes a proof step into a proof problem in a verification
formatV .

Definition 3.9 (Step result). A step result is a triple (s, stat, ev) ,
where s is a proof step, stat is a proof status label that has one of
the textual values {Proved, Disproved, Inconclusive}, and ev is any
kind of evidence for the verifier’s result. We denote a set of step
results with R.

The evidence for a proof result may, for instance, be a proof (for
Proved results), a counterexample or contradiction (for Disproved
results), or it can also be empty (e.g. for Inconclusive results). For
example, some TPTP provers [21] produce proofs in the TSTP
format [20], which we could use as evidence for Proved results.

Most importantly, we will use the given evidence for a proof to
persist the current state of a proof as suggested in requirement 2.6.

Definition 3.10 (Verifier). A verifier is a function ver of type
V → R that produces a step result (s, stat, ev) when given a proof
problem in a verification formatV .
2An actual implementation of applyTac may return appropriate messages.

Combining Domain Knowledge with ATPs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

Definition 3.11 (Verifying a proof step). A proof step s is verified
if, for a verifier ver and an encoding function enc,

ver(enc(s)) = (s, Proved, ev).

The verification of a proof step is only the first part of verifying
a proof obligation. To fully verify a proof obligation, we recursively
have to verify all its sub-obligations:

Definition 3.12 (Verifying a proof obligation). A proof obligation
p in a proof graph (P, EL) (i.e. p ∈ P) is verified if both of the
conditions below hold:

(1) The unique proof step s = (p, t , ((p1, e1), ..., (pn , en))) is
verified.

(2) All the sub-obligations of p are verified, i.e. p1, ..., pn .

A proof graph only represents a fully correct proof if all its proof
obligations are verified. The proof graph itself only serves as a
means to structure and assemble the individual proof problems
within a proof. By making this distinction, we meet requirement 2.1
(decoupling proof construction and step verification). The individ-
ual proof problems represented by the proof steps may be verified
by different ATPs and SMT solvers, as formulated in requirement
2.4.

4 IMPLEMENTATION
We implemented the configurable verification infrastructure that we
suggest in Section 3 as a Scala [15] library that we named VeriTaS.
Our implementation is publicly available at https://github.com/
stg-tud/type-pragmatics/tree/master/Veritas.

We chose Scala because it is well-suited for creating and pro-
gramming with embedded DSLs. An embedded DSL can utilize
the syntax and semantics of Scala to provide domain-specific con-
structs [10]. This way, our users can create and employ domain-
specific formats for problem specifications and obligations within
VeriTaS. And of course, developers of domain-specific proof strate-
gies benefit from the full expressivity of the Scala language to query
specification ASTs and to program strategies. Hence, VeriTaS meets
requirement 2.7 (expressive language for strategy implementation).

Figure 1 summarizes themain Scala traits3 of our core API, listing
the most important API methods for illustration. We also imple-
mented an example instantiation of the traits shown in Figure 1,
which we describe in Subsection 4.2. All components of the core
API are parametric over a format for definitions (type parameter
Def) and over a format for proof obligations (type parameter Goal),
as formalized in Section 3. The main components of VeriTaS are
the two traits IProofGraph and ProofGraph.

The trait IProofGraph (= immutable proof graph) defines the
components of a proof graph and groups all read-only methods on
proof graphs. The trait defines type members for proof steps, proof
obligations, and step results. Each of these type members extends a
corresponding generic trait (prefix Gen), which defines a few basic,
minimal fields for proof steps, obligations, and step results. Concrete
implementations of trait IProofGraph may provide custom data
structures to instantiate the type members of IProofGraph. We
will see example instantiations in Subsection 4.2.

3For readers not familiar with Scala: Traits are similar to Java’s interfaces.

One of our design conventions is that all main obligations of a
proof, and especially all root obligations, are stored with a string
name. One can access a map of all stored obligations and their
names via method storedObligations and access a single obliga-
tion via its string name using method findObligation. Given an
obligation, one can access its proof step via method appliedStep,
if the obligation has a proof step attached. Given a proof step, one
can access the attached edge labels and sub-obligations via method
requiredObls. Methods isStepVerified and isOblVerified al-
low for querying whether a proof step resp. a proof obligation in
a proof graph is verified or not. Trait IProofGraph also contains
further API methods which we omitted in Figure 1, for example
methods which allow for accessing the parents of an obligation.

Trait ProofGraph extends IProofGraph with methods for modi-
fying a proof graph. One may add a new proof obligation to a proof
graph via method storeObligation, assigning a custom name to
the obligation object. Most importantly, one can grow a proof graph
by applying a Tactic to one of the graph’s Obligations (method
applyTactic). This will add a proof step and sub-obligations to the
graph, but it will not yet verify that step. This way, we implement
requirement 2.1 of decoupling proof construction and step verifica-
tion: Proof strategies can construct the entire structure of a proof
before any potentially unsuccessful verification is started. Thus,
one may program proof strategies that do not get immediately stuck
if a single verification step fails along the way. The verification of
a proof obligation and potential correction of a generated proof
graph is prover-specific and may require user intervention.

One can verify a proof step via method verifyProofStep. This
method takes the proof step to verify and a verifier as arguments.
A verifier has to implement trait Verifier, which has a type pa-
rameter VerifierFormat that can be instantiated as needed for a
specific verifier. Trait Verifier consists of a method verify that
has to produce a step result, i.e. an instance of GenStepResult.
GenStepResult contains a field evidence that the verifier has to
deliver. The format for evidence is prover-specific and so are evi-
dence checkers. We store the evidence for each proof step in the
graph, such that it becomes possible to check proofs developed by
others. A concrete implementation of Verifier may for example
consist of a custom verifier implemented within Scala, or call exist-
ing external ATPs and SMT solvers, translating their results into
an instance of GenStepResult. We will see examples of concrete
Verifier instantiations in Subsection 5.

Method verifyProofStep in trait ProofGraph calls method
verifyStep within the Tactic instance stored in the given proof
step. Method verifyProofStep passes the given verifier on to
verifyStep, along with the parent edges that may contain infor-
mation which could be needed for verifying the proof step, such
as induction hypotheses or fixed variables. Method verifyStep
first translates a proof problem in format Def and Goal to the
VerifierFormat of the given verifier, then finally calls method
verify of the given verifier and passes the translated problem.

4.1 ProofGraph extensions
To augment the proof graph core API with additional function-
ality, we created further utility traits and classes: First, we cre-
ated a trait ProofGraphVisualizer for visualizing a given proof

https://github.com/stg-tud/type-pragmatics/tree/master/Veritas
https://github.com/stg-tud/type-pragmatics/tree/master/Veritas

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany S. Grewe, S. Erdweg, A. Pacak, M. Mezini

+ storedObligations: Map[String, Obligation]
+ findObligation(name: String): Option[Obligation]
+ appliedStep(obl: Obligation): Option[ProofStep]
+ requiredObls(step: ProofStep): Iterable[(Obligation, EdgeLabel)]
+ isStepVerified(step: ProofStep): Boolean
+ isOblVerified(obl: Obligation): Boolean
...

type ProofStep <: GenProofStep[Def, Goal]
type Obligation <: GenObligation[Def, Goal]
type StepResult <: GenStepResult[Def, Goal]

IProofGraph[Def, Goal]

+ storeObligation(name: String, obl: Obligation): Option[Obligation]
+ applyTactic(obl: Obligation, tactic: Tactic[Def, Goal]): ProofStep
+ verifyProofStep(step: ProofStep, verifier: Verifier[Def, Goal]): StepResult
…

ProofGraph[Def, Goal]

+ apply[Obligation](....): Iterable[(Obligation, EdgeLabel)]
+ verifyStep[Result <: GenStepResult[Def, Goal]] (..., edges: ..., verifier: ..., ...): Result
+ allRequiredOblsVerified(...): Boolean

Tactic[Def, Goal]

+ verify[Result <: GenStepResult[Def, Goal]]
 (...): Result

type V <: VerifierFormat
Verifier[Def, Goal]

+ evidence: Evidence
...

GenStepResult
[Def, Goal]

Figure 1: Overview of core API for proof graphs within VeriTaS

graph. This trait contains methods for encoding obligations, proof
steps, and edges into a format that can be visualized. As an ex-
ample, we implemented trait ProofGraphVisualizer via class
GraphVizVisualizer, which translates a given proof graph into
the dot format so that the graph can be visualized using GraphViz.4

Second, we created a trait ProofGraphTraversals, which ex-
tends ProofGraph with additional traversal methods for traversing
obligations and proof steps, as well as for applying fold and map
operations on obligations etc.

Third, we created a class ProofGraphUI, which allows for aug-
menting more convenient access of inner sub-obligations of a proof
graph: One can pass a function when instantiating ProofGraphUI
which calculates a string for a given obligation, and then one can
access obligations within a given proof graph via the calculated
name.

4.2 Reference Implementation of ProofGraph
We implemented trait ProofGraph using the Java database Xodus5
for persisting proof graphs. Xodus is a transactional schema-less
databases developed by JetBrains: The class ProofGraphXodus im-
plements obligations, proof steps, and step results as entities within
a Xodus database with links among each other. The fields of obli-
gations, proof steps, and step results either become properties of
the corresponding entities, or separate entities. For example, the
goal of an obligation becomes a property of an obligation entity.
However, we create separate entities for specifications, which in
turn save the actual specification within a property. An obligation
entity then links to a specification entity within the database. This
has the advantage that we can link to one specification entity from
4http://www.graphviz.org/
5http://jetbrains.github.io/xodus/

many different obligation entities and hence improve on the overall
size of the database: It is likely that for many problems, specifica-
tions will be large and that many obligations within a single proof
graph will have the same specification. Hence, it makes sense to let
several or even all obligations share a specification internally.

We implemented the methods inherited from trait IProofGraph
via read-only transactions and the additional methods from trait
ProofGraph via regular transactions. By using transactions, we
ensure that edits of a proof graph do not lead to an inconsistent
state, even processing a proof graph concurrently.

5 INSTANTIATING VERITAS
To illustrate the flexibility of our verification infrastructure, we
present possible instantiations of the configurable parts of Veri-
TaS, namely a basic embedded DSL for problem specifications and
proof obligations, the implementation of some standard tactics, and
different concrete verifier instances that connect several existing
ATPs and SMT solvers to our infrastructure.

5.1 Specification DSL
We implemented an embedded DSL in Scala that allows for specify-
ing algebraic datatypes (ADTs), recursive functions, and properties
in first-order logic as well as inference rules. Concretely, we first
created a number of Scala classes for representing the abstract syn-
tax trees (ASTs) of such specifications. All of these classes have a
common superclass. To construct proof graphs for proving proper-
ties specified in our embedded DSL, we simply instantiate the type
parameters Def and Goal of an implementation of ProofGraph (e.g.
class ProofGraphXodus) with this superclass.

We use Scala’s implicits for introducing a more comfortable
syntax for using our AST classes: We implemented implicit methods

http://www.graphviz.org/
http://jetbrains.github.io/xodus/

Combining Domain Knowledge with ATPs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

objec t Ex amp l e S p e c i f i c a t i o n {
/ / some impor t d e c l a r a t i o n s f o r making DSL
/ / c o n s t r u c t s a v a i l a b l e omi t t ed here
val NatType =
da t a (' nat) o f
' z e ro |
' succ (' nat)

val p l u s f u n c t i o n =
f un c t i o n (' p l u s . > > (' nat , ' nat) −> ' nat) where
(' p l u s (' x , ' z e ro) : = ' x) |
(' p l u s (' x , ' succ (' y)) : = ' succ (' p l u s (' x , ' y)))

val commuta t i v i t y =
(' p l u s (' x , ' y) === ' z)
=== >(" a dd i t i o n −commutat ive ")
(' p l u s (' y , ' x) === ' z)
}

Figure 2: An example specification in our embedded specifi-
cation DSL.

and implicit classes which have the names of the operands we want
to provide, and which convert the given arguments into the correct
AST class.

Figure 2 shows a small example specification in our embedded
DSL: Natural numbers and a recursive function for addition, to-
gether with the property “addition is commutative”, given in an
inference rule notation whose semantics is that all free variables
are implicitly universally quantified. Here, operands such as “of,
>>, − >, ===, ===>” are methods within implicit classes which
return instances of the corresponding AST classes.

With this small specification DSL, we may already generate a
number of very interesting specifications and prove properties on
them. For example, we may use the format to specify the syntax,
reduction semantics, and type systems of small DSLs (see Section 6).
Instead of the specification DSL we presented here, we can easily
generate other embedded DSLs for specifying proof problems and
instantiate ProofGraph with them. One could for example create
DSLs for specifying state automata, hardware primitives, crypto-
graphic protocols etc. Developers may also create custom formats
with for example domain-specific annotations, which then can be
used to extract certain domain-specific information from specifica-
tions.

5.2 Implementing Tactics

We implemented a number of standard proof tactics with which
one can prove simple properties given in our specification DSL.
When implementing tactics in our verification infrastructure, the
usage of a modern object-oriented general-purpose programming
language allows us to employ any kind of advantageous software en-
gineering techniques, for example in order to increase the reusabil-
ity of the implemented tactics.

To illustrate how this may look like, we first defined a lightweight
trait SpecEnquirer for querying specific information from problem
specifications. The trait is, like all the other parts of our core API
described before, parametric in a format for problem specifications
and proof obligations. Trait SpecEnquirer contains methods for
querying basic information from a specification format, such as for
example “is a given proof obligation universally quantified?”, “does
a given variable in a given term have the type of a closed ADT?” etc.
Additionally, it contains constructor methods for building proof
obligations.

Next, we implemented basic tactics such as structural induction
and case distinction as generic tactics that are again parametric in
a format for problem specifications (Def) and in a format for proof
obligations (Goal). The implemented tactics make no assumptions
about how a specification format looks like, but employ solely the
query methods from trait SpecEnquirer to obtain relevant infor-
mation from parts of the given specification and the constructor
methods of SpecEnquirer to build sub-obligations and proof edges.

Finally, we implemented trait SpecEnquirer for our specifica-
tion DSL from Section 5.1.

This design allows the tactics we implemented to be reused with
other specification formats beyond the onewe showed in Section 5.1.
To reuse the tactics with a custom format, developers only have to
implement the SpecEnquirer trait for their own format.

Note that, in accordance with our requirement 2.1 of decoupled
proof construction and step verification, tactic applications on proof
graphs need not necessarily represent correct proof steps. A tactic
only has to create a proof problem that can be passed to an external
verifier, which then has to attempt the actual verification of the
proof step. For example, the tactic for structural induction creates
base cases, step cases, and induction hypotheses for a given proof
obligation and a given induction variable, based on the type of this
variable. The associated proof step consists of the induction cases
and hypotheses and the parent obligation. To verify such a step, a
verifier has to confirm that the generated induction cases conform
to a valid induction scheme.

5.3 Connecting ATPs and SMT solvers
To connect different automated theorem provers (ATPs) and SMT
solvers to VeriTaS, we need to

(1) implement a translation from the specification format for
definitions and proof obligations that we use to an input
format supported by the prover/solver we want to connect,

(2) parse the output or logs of the prover and translate them
into the StepResult used by the ProofGraph instantiation
that we use,

(3) implement the Verifier trait with a verifier that calls the
external prover with the translated problem and parses its
output.

We implemented different translations from our custom speci-
fication DSL into different TPTP dialects [21], which is supported
by many different ATPs, and also into the SMT-LIB format6, which
allows us to connect SMT solvers such as Z3 [4]. Concretely, we
implemented a translation pipeline which gradually translates the
higher-level language constructs from our specification DSL such
6http://smtlib.cs.uiowa.edu/

http://smtlib.cs.uiowa.edu/

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany S. Grewe, S. Erdweg, A. Pacak, M. Mezini

as inference rules and abstract datatypes to lower-level language
constructs, i.e. axioms with explicitly universally quantified vari-
ables. We describe different variants of this translation process
in detail in a previous publication [7]. Ultimately, the last step of
our translation pipeline simply translates the intermediate version
of the problem specification that uses only lower-level language
constructs into the target format (TPTP dialects FOF and TFF, or
SMT-LIB).

We implemented Verifiers which call different versions of Vam-
pire [11], and Verifiers which call Eprover [19], and princess [18].
We parse the results of these provers into StepResults. Vampire
hands back TSTP [20] proofs, which we use as prover evidence.

6 CASE STUDY
We use our embedded specification DSL from Section 5.1 for mod-
eling a typed subset of SQL that includes projection on columns,
selection of rows based on simple predicates, and constructing the
union, intersection, and difference of tables. We specify a small-step
reduction semantics for queries, which reduces nested queries to
simpler queries and ultimately to table values. We define a sim-
ple type system which checks that an SQL query adheres to the
typed schemas of the tables it refers to, i.e. that column projections
only project on existing columns, that predicates for row selection
always receive values of the expected type, and that union/inter-
section/difference is only applied to tables with the same table
schema.

We use VeriTaS to prove a progress property for our type system.
Progress is part of proving type soundness [16]. Intuitively, progress
demands that a correctly typed program expression (in our case, an
SQL query) either already is a value (in our case, a table value), or
can be reduced at least one step further by the reduction semantics.

Figure 3 shows part of the visualized proof graph of an inter-
mediate state of the progress proof: We visualize proof obligations
with rectangles, and the proof steps with diamonds. Proof steps
contain as labels the tactics applied within the steps. The edges
are labeled with case names generated by the tactic applications.
The verification state of each proof obligation and each proof step
is marked by color: Verified proof obligations and proof steps are
marked in green, inconclusive ones in red.

We obtain the intermediate proof state from Figure 3 by applying
Vampire 4.1 in CASC mode with a timeout of 120 seconds to all
proof steps resulting from tactic applications except for the ones
from StructuralInduction applications. For verifying the struc-
tural induction steps, we employed a small verifier which produces
the used induction scheme as evidence for user inspection. This is
just for illustration purposes - in principle, we could for instance
attach a general-purpose interactive theorem prover such as Is-
abelle/HOL [1], e.g. via the Scala library libisabelle7 and ask it to
verify that our induction step indeed uses a valid induction scheme.

The root of the proof graph, SQLProgress, contains the progress
propertywewant to prove.We first apply the StructuralInduction
tactic, which generates the induction cases (all labeled sub, with la-
beled proof edges that contain generated case names). The leftmost
induction case (SQLProgressicase0) represents the first base case,
the case in which a query already is a table value and for which

7https://lars.hupel.info/libisabelle/tutorial.html

progress hence trivially holds. This case is easily solved by Vampire
4.1.

The next case, SQLProgressicase1, represents the second base
case: A typical SELECT _ FROM _ WHERE _ query. Note that in
our subset of SQL, we model neither joins nor nested SELECT
_ FROM _ WHERE _ queries, hence this case represents a base
case. Nevertheless, it is a very complicated base case, since these
queries potentially modify the input table a lot: They first look up
a given table in the table store, then select rows for which a given
predicate holds, and finally project on the given columns. Each of
these steps may fail, causing the reduction of the query to become
stuck. Hence, we need a number of auxiliary lemmas to prove that
the individual selection/projection steps will not get stuck for a well-
typed query. Part of the corresponding sub-proof graph is shown
in Figure 3 below SQLProgressicase1. As we can see, Vampire
4.1 proves most of the basic proof steps (the steps marked with
the Solve tactic) and fails for some of the complex steps, e.g. for
the application of four auxiliary lemmas (LemmaApplication) at
the top of the proof. The remaining induction cases (of which only
one is shown in Figure 3, namely SQLProgressicase2) refer to
the cases of union, intersection, and difference of tables. For these
queries, we allow nesting in our subset, hence these cases contain
sub-cases which require applying the induction hypotheses, which
is propagated along the edges of the proof graph.

This example firstly illustrates that it is beneficial to combine dif-
ferent automated verifiers with different abilities within a complex
proof. Secondly, it illustrates how proof graphs help with visualiz-
ing a structured proof and locating the points within a proof where
the applied automated verifiers fail. Next, we may either try to
apply different verifiers to these proof steps, or refine the steps
within the proof graph until the used verifiers find proofs for them.

So far, we constructed the current proof graph by manually ap-
plying the basic tactics from Section 5.2. However, our verification
infrastructure would allow us to implement flexible proof strategies
which exploit domain concepts for proof construction and lemma
generation. In this paper, we focus on the design of a verification
infrastructure which provides the means for implementing such
strategies. The actual implementation of such a strategy is future
work.

7 RELATEDWORK
We first compare our verification infrastructure against existing in-
teractive theorem provers. In the interactive theorem prover Coq [6],
tactics for constructing proofs can either be written in OCaml, in
the internal tactic language ltac [5], or in the dependently-typed
and more recent internal tactic language Mtac [23] (a monad for
typed tactic programming in Coq). In the interactive theorem prover
Isabelle [14], tactics for constructing proofs can either be written in
Isabelle/ML, or via a recent collection of tools for a “proof method
language” called Eisbach [13], which allows for defining proof meth-
ods via Isabelle’s Isar syntax [22]. Isabelle Sledgehammer [3] allows
for using ATPs and SMT solvers within Isabelle for discharging
subgoals. For Dafny [12], which is a programming language and
program verifier for the .NET platform, there is a tactic language
called Tacny [9].

https://lars.hupel.info/libisabelle/tutorial.html

Combining Domain Knowledge with ATPs PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

Figure 3: Excerpt of the proof graph of an intermediate state of the progress proof for a typed subset of SQL.

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany S. Grewe, S. Erdweg, A. Pacak, M. Mezini

While the tactic languages just mentioned differ in how one
can express and combine tactics and in which higher-order syntax
constructs one may use for programming a tactic, they all have
in common that they only allow for inspecting and querying the
current goal state within a proof, and then manipulate that state by
applying other available tactics to it. In general, tactic languages do
not allow for querying the AST of a problem specification in order
to for example inspect the different cases of a function definition.

Most importantly, existing tactic languages do not allow for the
approximate construction of subgoals or auxiliary lemmas: Any
intermediate goal can only ever arise from the successful application
of the tactics from before. That means existing tactic languages
cannot lay out an approximate proof structure, but only provide a
plan for the steps to be executed to prove a goal. In the verification
infrastructure that we propose in this paper, we deliberately take
a different view on proof automation: We focus on representing a
proof structure by explicitly forcing the generation of approximate
subgoals and putting them into the center of how we represent
a proof structure. The steps that have to be taken to get from
one generated subgoal to another link these subgoals. We believe
that this shift in focus enables a different, structural form of proof
automation from which proof domains with very structured proofs
such as type soundness proofs may benefit substantially.

Next, we compare the concept of proof graphs upon which our
verification infrastructure is based to other graphical approaches for
proof construction.We got the inspiration for proof graphs from the
concept of proof planning by Richardson and Bundy [17]. Notably,
in their work, Richardson and Bundy distinguish between themeta-
level logic, i.e. the (possibly heuristic) logic used for constructing a
proof plan, and the object-level logic, i.e. the formal system in which
the actual proof is constructed. Reasoning at the meta level does
not need to be sound, but reasoning at the object level needs to be
sound. This corresponds to our requirement of decoupling proof
construction and step verification (see Section 3). However, proof
plans (which may be visualized via executable directed graphs, see
for example the work of Grov et al. [8] on the Tinker tool) again
consist of tactic nodes and thus are similar to tactic languages:
Proof plans get stuck if a tactic gets stuck on the way, making it
impossible to inspect the remaining hypothetical proof beyond the
failure. In contrast, we base our proof graphs on intermediate proof
obligations as nodes, which may be constructed as well as inspected
even if a proof step further up in the proof graph is not verifiable.

8 CONCLUSION
We presented the design and implementation of a verification in-
frastructure that facilitates the automation of proofs by combining
domain-specific proof strategies with automated theorem provers
and SMT solvers. Our infrastructure allows for organizing proofs in
proof graphs, whose nodes form the (intermediate) proof obligations
that are connected via proof steps. The proof steps form independent,
individual proof problems that can be passed to automated theorem
provers and SMT solvers for verification. Most importantly, our
infrastructure decouples the construction of a proof structure from
the verification of its proof steps, which we believe is crucial for
facilitating the implementation of domain-specific proof strategies:
Within our infrastructure, such strategies do not need to construct

only fully correct sub-obligations and proof steps, but may approx-
imate steps. Good approximate steps may inspire proof developers
towards finding the actually needed proof step, and hence are po-
tentially more useful than missing steps. Nevertheless, we achieve
soundness by making sure that a root obligation in the proof graph
will only be marked as fully verified as soon as all dependent proof
steps have been verified by external provers.

In the future, we plan to apply our verification infrastructure for
automatically generating type soundness proofs of type systems
for DSLs. We believe that the concepts presented in this paper will
be useful in the future for automating proofs in different domains.

REFERENCES
[1] 2014. Isabelle documentation. http://isabelle.in.tum.de/documentation.html.
[2] Jasmin Christian Blanchette. 2012. Automatic proofs and refutations for higher-

order logic. Ph.D. Dissertation. Technical University Munich.
[3] Jasmin C. Blanchette and Lawrence C. Paulson. 2016. Hammering Away - A User’s

Guide to Sledgehammer for Isabelle/HOL. Technical Report. http://isabelle.in.tum.
de/dist/doc/sledgehammer.pdf

[4] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 337–340.

[5] David Delahaye. 2000. A Tactic Language for the System Coq. In Proceedings of
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). 85–95.

[6] Cop development team. 2014. The Coq proof assistant reference manual.
[7] Sylvia Grewe, Sebastian Erdweg, Michael Raulf, and Mira Mezini. 2016. Explo-

ration of language specifications by compilation to first-order logic. In Proceedings
of International Symposium on Principles and Practice of Declarative Programming
(PPDP). 104–117.

[8] Gudmund Grov, Aleks Kissinger, and Yuhui Lin. 2013. A Graphical Language for
Proof Strategies. In Proceedings of Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR). 324–339.

[9] Gudmund Grov and Vytautas Tumas. 2016. Tactics for the Dafny Program Verifier.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
36–53.

[10] Paul Hudak. 1996. Building Domain-Specific Embedded Languages. ACMComput.
Surv. 28, 4es (1996), 196.

[11] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and
Vampire. In Proceedings of International Conference on Computer Aided Verification
(CAV). Springer, 1–35.

[12] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR). 348–370.

[13] Daniel Matichuk, Toby C. Murray, and Makarius Wenzel. 2016. Eisbach: A Proof
Method Language for Isabelle. J. Autom. Reasoning 56, 3 (2016), 261–282.

[14] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg.

[15] Martin Odersky, Lex Spoon, and Bill Venners. 2011. Programming in Scala: A
Comprehensive Step-by-Step Guide, 2Nd Edition (2nd ed.). Artima Incorporation,
USA.

[16] Benjamin C. Pierce. 2002. Types and programming languages. MIT press.
[17] Julian Richardson and Alan Bundy. 1999. Proof planning methods as schemas. J.

Symbolic Computation 11 (1999), 1–000.
[18] Philipp Rümmer. 2008. A Constraint Sequent Calculus for First-Order Logic with

Linear Integer Arithmetic. In Proceedings of Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). Springer, 274–289.

[19] Stephan Schulz. 2013. System Description: E 1.8. In Proceedings of Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR) (LNCS), Vol. 8312.
Springer, 735–743.

[20] Geoff Sutcliffe. 2010. The TPTP World - Infrastructure for Automated Reasoning.
In Proceedings of the 16th International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer-Verlag, 1–12.

[21] Geoff Sutcliffe. 2017. The TPTP Problem Library and Associated Infrastructure.
From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59, 4 (2017),
483–502.

[22] Markus Wenzel. 2002. Isabelle, Isar - a versatile environment for human read-
able formal proof documents. Ph.D. Dissertation. Technical University Munich,
Germany.

[23] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski,
and Viktor Vafeiadis. 2013. Mtac: a monad for typed tactic programming in
Coq. In Proceedings of International Conference on Functional Programming (ICFP).
87–100.

http://isabelle.in.tum.de/documentation.html
http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf

	Abstract
	1 Introduction
	2 Requirements
	2.1 Decoupled Proof Construction and Step Verification
	2.2 Interactive Proof Manipulation
	2.3 Structured Proofs
	2.4 Combination of different ATPs and SMT solvers
	2.5 Configurable Format for Specifications and Proof Obligations
	2.6 Persistent Proofs and Verification States
	2.7 Expressive Language for Strategy Implementation

	3 Conceptual model
	3.1 Definition of Proof Graphs
	3.2 Constructing Proof Graphs
	3.3 Verifying Proof Graphs

	4 Implementation
	4.1 ProofGraph extensions
	4.2 Reference Implementation of ProofGraph

	5 Instantiating VeriTaS
	5.1 Specification DSL
	5.2 Implementing Tactics
	5.3 Connecting ATPs and SMT solvers

	6 Case Study
	7 Related Work
	8 Conclusion
	References

