
XPoints: Extension Interfaces for Multilayered Applications

Mohamed Aly⇤†, Anis Charfi⇤, Sebastian Erdweg†, and Mira Mezini†
⇤Applied Research, SAP AG
firstname.lastname@sap.com

†Software Technology Group, TU Darmstadt
lastname@informatik.tu-darmstadt.de

Abstract—Extensibility is a key requirement in modern
software applications. In the context of business applications
it is one of the major selection criteria from the customer
perspective. However, there are some challenges concerning the
specification and enforcement of extension interfaces. Extension
interfaces define the resources of the base applications that are
allowed to be extended, where and when the extension code will
run, and what resources of the base application an extension is
allowed to access. While concepts for such interfaces are still a
hot research topic for “traditional” software constructed using
a single programming language, they are completely missing
for complex consisting of several abstraction layers. In addition,
state-of-the-art approaches do not support providing different
extension interfaces for different stakeholders.

This paper attempts to fill this gap by introducing XPoints,
an approach and a language for specifying and enforcing
extension interfaces in multilayered applications. An extension
interface in XPoints defines the available extension points
on the different abstraction layers, controls the access and
visibility of the core application to the extension, and con-
strains the interplay between extension points possibly from
different abstraction layers. Several extension interfaces can
be overlaid over the same core application, hence, enabling
multiple extender views to co-exist. Using an XPoints interface,
a software provider can automatically generate the extensibility
code infrastructure to provide the extension interface for the
core application.

I. INTRODUCTION

Applications targeted for a large scale and a wide range of
customers such as business applications typically support a
set of standard business processes (e.g. sales order process-
ing, recruitment, etc.). Once an organization acquires such
an application, it has to customize and / or extend it to match
their specific needs. To achieve that, the software provider
has to design the software system to support variability
and extensibility. In the context of this paper, we focus
on extensibility. We refer to extensibility as the addition
of new functionalities to a software system to support new
requirements.

In most commercial business software systems, a software
provider does not give the source code of his applications
to the extension developers. However, the software provider
gives the extension developers access to artifacts like, e.g.,
API libraries, frameworks, etc. along with documentation,
tutorials, and other materials to help an extension developer
understand what extension possibilities exist, and how to

develop and integrate extensions. The extensions are likely
to interact with the core software (e.g. access internal data
resources) and can as well affect the main execution stream.
In the case of business applications, especially those that
implement strict legal regulations (e.g. tax calculations),
extensibility has to be controlled in a rigorous way. This is
required for example to prevent undesirable system behavior,
data inconsistencies, and restrict access to sensitive system
information. In our previous works [1], [2], we have outlined
the challenges and requirements for enabling extensibility
for complex multilayered applications.

With respect to applications that require a controlled
form of extensibility, there are two perspectives that should
be considered: the software provider perspective and the
extension developer perspective. From the perspective of the
software provider, the application consists of several logical
layers (e.g. user interface (UI), business process, business
object, database etc.) containing many artifacts that can be
made extensible for the extension developer. However, in
the context of complex business applications, a software
provider can have several kinds of extension developer
groups that can build extensions for the software (e.g. inter-
nal development teams and external partner companies). In
all cases, the software provider has to develop the necessary
mechanisms to support extensibility such that they express
and support the following for the extension developer.

• M1. Extension possibilities: the artifacts that are al-
lowed to be extended (e.g. UI forms, business process
activities, database tables, etc.).

• M2. Interdependencies: the relationships and con-
straints that exist between these extensible artifacts.

• M3. Extension types: the types of extensions that are al-
lowed to be added to these artifacts (e.g. new methods,
attributes, UI elements, process artifacts, new columns
in a database table, etc.).

• M4. Extension method: the required coding elements
and how to extend these artifacts (e.g. inheritance, plug-
ins etc.).

• M5. Extension control: what underlying application
resources are available for the extension code (e.g.
variables, methods, etc.) as well as their access rights
and usage rules.

• M6. Extension integration and execution: when and
where will the extension code run.

An extension interface specifies the extensibility of a
source code artifact according to M1–M6 above. The ex-
tension developer, on the other hand, has to understand the
extension interface of the system as well as its correct usage
to successfully develop and integrate his extension with the
core software.

Turning to object-oriented languages (e.g. Java), there
are two kinds of mechanisms related to the implementa-
tion of extension interfaces: those geared towards enabling
extensibility (e.g. inheritance and overriding), and those
geared towards controlling extensibility, e.g., modifiers that
enable the developer of a class to control what methods can
be overridden or attributes that can be accessed(c.f. [3]).
In addition to these mechanisms, a software provider can
use advanced means (e.g. design patterns, aspect-oriented
programming, plug-in architectures, etc.) to implement the
required extension interface for the software system.

In this paper we argue that the state-of-the-art approaches
have several limitations for realizing the extension interfaces
of complex multilayered applications. First, the technical
realization of the extension interface is coupled with the
functional code of the core software. Second, these con-
ventional means for controlling extensibility e.g., via Java
modifiers, are not expressive enough to enable fine-grained
control on what can be extended and how. Third, it is not
possible to provide different extension interfaces to different
groups of extension developers. Fourth, software applica-
tions are nowadays extremely complex and involve several
architectural layers, demanding extension interfaces that cut
across these layers; support for the latter is also lacking.
Moreover, most approaches focus on language or layer-
specific extensibility mechanisms and thus do not support
the needs of multilayered applications. Last but not least,
to generate an extension interface of a complex software
with many extensibility constraints, a developer has to be
experienced with advanced development techniques.

The need and the challenges related to providing well-
defined extension interfaces for object-oriented systems are
documented in the literature [4], [5], [6], [7]. As a variation
on this theme, several proposals for aspect-based extension
interfaces have been published recently [8], [9], [10], [11],
[12]. Yet, as we will elaborate in related work, these ap-
proaches do not address the limitations mentioned above.

This paper contributes the following. First, we further
elaborate on the limitations identified above through a
simplified example of a business application consisting of
three layers (Section II). Second, we introduce XPoints,
an approach and a language that enables an explicit and
declarative expression and control of extensibility by well-
defined extension interfaces in multilayered applications,
including cross-layer dependencies. XPoints introduces an
additional abstraction layer, which separates the declaration

of extension interfaces from their realization (e.g., using
design patterns or plug-ins). By decoupling the extension
interface from the application, XPoints enables different
extension interfaces for different groups of extension de-
velopers. Moreover, a developer can realize the extensibility
interface of a software system by automatically generating
the extensibility supporting code from an XPoints interface
(Section III). Third, we report on one particular instantiation
of the approach in business applications consisting of three
layers: business object, UI, and business process. We also
report on an implementation of XPoints in this context (Sec-
tion IV). Finally, we discuss the advantages and limitations
of our approach (Section V) and compare our approach with
related work (Section VI).

II. PROBLEM STATEMENT

In this section, we first introduce an exemplary business
application that we use throughout the paper. Then, we
analyze the limitation of current works with respect to
extensibility and extension interfaces.

Example Business Application. We consider a business
application spanning three logical layers: the business pro-
cess layer, the business object layer, and the UI layer. A busi-
ness process defines the flow of activities that are required to
achieve a specific business objective such as creating a sales
order, ordering goods, or hiring a new employee. Business
objects [13] represent entities that are meaningful within a
specific business process like sales order, invoice, customer,
and employee. A business object encapsulates attributes,
behaviour, constraints, and relationships to other business
objects. UIs provide means to support the end users to
accomplish the different activities within a business process
via a graphical interface.

Figure 1. Sales quotation business process

We introduce a simple sales quotation management mod-
ule as an example of multilayered business applications that
spans the three layers mentioned above. Figure 1 shows
the sales quotation business process (layer 1) defined in
the Business Process Modeling Notation (BPMN) [14]. The
process starts upon receiving a request for a quotation for a
specific set of products from a customer. A sales represen-
tative analyzes the request and creates a sales quotation and
fills in the necessary data. Then, she sends the quotation for
approval to her manager. The manager can either approve
the quotation or request a revision. Based on that decision,
the sales representative may have to edit the quotation and

Figure 2. User interface for sales quotation creation

resubmit it for approval. At the end, the approved sales
quotation is sent to the inquiring customer.

1 class SalesQuoteForm extends JPanel {
2 ...
3 private CustomerInfo customerInfo;
4 private double discount;
5 private SalesQuote salesQuote;
6 ...
7 public SalesQuoteForm() {...}
8 ...
9 private void initializeForm() {...}

10 private void onSendToApprovalButtonClick() {...}
11 private void savetoSalesQuoteBusinessObject() { ... }
12 ...}

Listing 1. Sales quotation form source code

Figure 2 shows the UI (layer 2) associated with the sales
quotation creation activity. An excerpt of the source code
associated with this UI is shown in Listing 1. Using this UI,
a sales representative can enter the customer information,
define the sales quotation, and specify the payment details.
An excerpt of the source code of the sales quotation business
object (layer 3), which holds the data and business logic of
the sales quotation, is shown in Listing 2. The sales quotation
module involves other UIs and business objects, as well as
classes that support the execution of the business process
which is not shown for brevity.

1 class SalesQuote
2 {
3 protected CustomerInfo customerInfo;
4 private List<ProductQuote> products;
5 protected String comment;
6 private double total;
7 protected double discount;
8 private double tax;
9 ...

10 public final SalesQuote readSalesQuote(...){...}
11 public final SalesQuote createSalesQuote(...){...}
12 private void saveSalesQuote(){...}
13 protected double calculateTotal(){...}
14 protected void calculateDiscount(double discount){...}
15 protected void sendToApproval(){...}
16 ...}

Listing 2. Sales quotation business object source code

Problem Analysis. Let us first consider the business
object layer. Each class in Java has two interfaces: a usage
interface and an extension interface. The usage interface
allows a client of the class to call all methods and access all
attributes that are not declared as private (including methods
and attributes declared as final). The extension interface, via
subclassing, allows the developer to override all methods that
are not declared as private or final (like calculateTotal()),
and introduce new methods and attributes. Moreover, the
extension interface allows the extending subclass to access
all attributes and to call all methods of the parent class
that are not declared as private. The subclass has a read
only access to the final attributes of the parent class. In
the following, we discuss several limitations of the usage
and extension interface in Java to express complex extension
interfaces for software systems.

The first problem is the lack of means to express and
constrain the extension types (M3). For example, it is not
possible to express that an extension developer is allowed
to add new methods to the class SalesQuote() but he is
not allowed to add any new attributes (e.g. to prevent them
from being persisted in the database behind the business
object). Further, it is not possible to express that an extension
developer is allowed to add custom business logic only if the
original method is called by the overriding one. By allowing
the extension developer to override a method arbitrarily,
such property cannot be guaranteed (M6). While this second
example can be realized with workarounds (e.g., using the
template method design pattern) we argue that it is necessary
to have declarative means for the specification of extension
possibilities. Such declarative specification is beneficial for
both the software provider and the extension developer; The
provider would be able to express extension possibilities in
a declarative way without thinking about how to enforce
them (e.g., through applying a design pattern), whereas the
extension developer will be able to directly understand the
extension interface of the class without going through all its
methods and related classes.

The second limitation is the limitation of the usage
interface to express fine-grained overriding and access rights
to the methods and attributes of the extended class (M5).
For example, the modifier protected of the attribute discount
gives the extension developer full access (i.e. read and
write) to that attribute. To give the extension developer read
only access to that attribute one could declare it as final
and protected. However, in that case the class SalesQuote
will not be allowed to modify the discount value anymore.
Without a workaround like using a protected getter and a
private setter method, there is no possibility to restrict the
access right of extension developers to the attributes of the
parent class. Moreover, by using getters and setters, the
extension possibilities are not expressed declaratively and
the focus is again shifted from what extension possibilities
are available to how these possibilities are enforced.

The third limitation is that Java provides a one-size-fits-all
extension interface (M1). It is not possible to have different
extension interfaces for different groups of extension devel-
opers, which is often required. For instance one extension
developer group (e.g., external developers without partner
status) can be restricted to only perform validation of the
sales quotation by providing them with read only access
to attributes as well as the possibility to add some custom
business logic before the method saveSalesQuote(). Another
group of extension developers (e.g., extenders from partner
companies) can be allowed to perform validations and, in
addition, update selected attributes of the SalesQuote class.
This second group will have write access to some attributes
of the SalesQuote in addition to the extension possibilities
given to the first group. A third group (e.g., extenders at
the software provider side who are building an industry-
specific solution on top of the standard application) can
be allowed to realize advanced extensions that go beyond
simple validations such as extending the quotation process
to include a second approval step, e.g., for sales quotations
that exceed a predefined amount. In addition to the extension
possibilities given to the second group, this third group
will have the possibility to define new attributes for the
class SalesQuote and to add custom business logic after the
method sendToApproval().

There is no simple workaround for this third limitation.
One solution could be to provide a variation of the proxy
pattern, in which different proxy classes are offered for each
extension developer group. The proxy provides access only
to the methods and attributes that are part of extension
interface. However, such a realization is very complex.
For example, one could just consider the work required to
provide three proxy classes for the three extension devel-
oper groups mentioned above for this example. The more
the number of extensibility offerings and constraints, the
more effort and time will be needed for implementing the
extension interface.

Using workarounds as suggested in the discussion brings
in a lot of disadvantages. First, the extension interface is
realized implicitly rather than explicitly. In other words, the
technical realization of the extension interface is coupled
with the functional code of the core software (e.g. the
design pattern suggested to realize the proxy classes to
support multiple groups of extension developers will have
to be adhered to by the functional code). The extensibility
decisions and intents taken by the application provider are
lost. When the complexity of an application increases, more
code is required for realizing an extension interface, which
leads to maintainability problems. It will be very difficult
for the software provider (without, e.g., a comprehensive
documentation) to find out the exact methods, classes, and
interfaces that comprise the extension interface. Second, an
extension developer will have a hard time identifying the
extension possibilities as they are not expressed directly. In-

stead he will have to read documentation and tutorials and to
understand the whole provided APIs to assess the feasibility
of some extension scenario. This gets even more difficult
as the functional API of the class and its extensibility API
are mixed. Third, the design and implementation complexity
for the core software provider increases and high developer
expertise becomes necessary (e.g. with design patterns). The
more complex the system and the extensibility constraints
are, the more difficult the realization of extension interfaces
will be.

In the discussion above, we focused on the businss ob-
ject layer. However, modern software applications such as
business applications (e.g. SAP Business Suite 1) involve
multiple layers and multiple artifacts on these layers (e.g.
UI models, business process models, code artifacts, database
tables, etc.). The extensibility problems discussed above on
the code level arise also on the other layers. An extension
can typically span several layers which makes it important
to support extensibility on all these layers. For example, a
software provider can make a certain database table extensi-
ble by allowing the addition of new columns. He can make a
certain UI form extensible by allowing extension developers
to embed their custom UI elements at a predefined location.
He can also make a business process model extensible by
allowing the extension developer to add custom activities.
We argue that the extension possibilities have to be ex-
pressed directly on the different layers of the application.
Most state-of-the-art approaches express these possibilities
in the implementation (i.e., on the code layer). As a result, an
extension developer cannot assess the feasibility of some UI
form extension or some business process extension without
diving deeply into the implementation and the provided APIs
on the code layer.

Furthermore, when supporting extensibility on different
layers, it is necessary to capture the dependencies (M2)
between the extension possibilities available on these layers.
For example, if the extension interface of the SalesQuote on
the UI layer allows an extension to bring in a new button
that triggers a particular function, and a text field to display
a new attribute, an extension developer has to also consider
the extension possibilities available on the code layer (i.e.,
the Java class SalesQuote) and to add a new attribute to
that class and implement the necessary logic. In addition,
he has to consider the extension possibilities available on
the database layer and to extend the table that stores the
SalesQuote data. As this example illustrates, an extension
can span multiple layers within an application. These inter-
layer dependencies impose constraints on the way extension
possibilities are expressed and also on the way an extension
is developed.

1http://www.sap.com

III. XPOINTS

XPoints is a generic approach and a language for express-
ing extension interfaces of multilayered applications. Using
an XPoints interface, a software provider can define and
generate an extension interface supporting the mechanisms
(M1-M6) outlined in Section I. In an XPoints interface, the
software provider separately specifies the required exten-
sion possibilities (M1), interdependencies (M2), supported
extension types (M3), and control constraints (M5) that are
offered by the core software. Several XPoints interfaces can
be defined for a software system. The XPoints compiler
takes the defined XPoints interfaces and the source code of
the core software, and generates the required system exten-
sion interface (i.e. extensibility framework and code artifacts
(M4, M6)) on the code level using advanced techniques
(e.g. design patterns, aspect oriented programming, plug-ins,
etc.). Using the XPoints interface, a software extender can
identify the available extension possibilities and use it as a
guide to identify the right coding elements generated by the
XPoints compiler to develop an extension.

Language Concepts. Within an XPoints extension in-
terface, several layers can be defined corresponding to the
logical layers of the base application. Each layer consists
of one or more extensible artifacts (M1) that are made
available to an extender. This concept declares the base
code artifacts that are extensible (e.g. classes, methods, com-
ponents, etc.). Extension possibilities within each artifact
are declared through extension points (M3, M6). Extension
artifacts can be seen as containers of extension points. Each
extension point has a type and a set of parameters, which
specify the base class artifacts that are needed to generate
the appropriate extension interface. With this concept, we
declare extension possibilities as first class entities and hence
we can explicitly express extension possibilities.

Listing 3 shows an example of a very simple extension
interface on the business object layer. The interface declares
the SalesQuote business object as an extensible artifact
with the extension point EXP1 of type afterMethodCall
that allows the extender to insert his custom logic after the
execution of the sendToApproval method.
1 extensioninterface example{
2 layer BusinessObject{
3 extensibleartifact "com.sap.SalesQuote"{
4 afterMethodCall EXP1 ("void sendToApproval()") permission=per;
5

6 permissionset per{
7 attributepermission("double total",READ);
8 methodpermission("*",HIDDEN);}
9 }

10 }
11 }

Listing 3. XPoints interface example

Extension points can be further grouped within the same
or a different layer via extension point groups (M2). A group
of extension points simply implies that the extension possi-
bilities offered by these extension points are related. Groups

can be used in XPoints with or without control constraints.
The control constraints (M5) on extensible artifacts and
extension points restrict the access, visibility, and usage of
the base application artifacts by the extenders. The purpose
of this concept is to provide a fine grained access control of
the extensions to the core application resources. The example
in Listing 3 shows a control constraint for EXP1 in the form
of a permission set per that allows the extender a READ
access to the total attribute and hides all methods of the
class from him.

The control constraints can also be defined on a group
to (M2) control how an extension realizing the member
extension points within a group should be implemented. In
some extension scenarios where an extension spans several
layers (e.g. UI and business object), a valid extension
can require the implementation of several extension points
from the same or multiple layers. Figure 3 summarizes the
language concepts.

ExtensionPointGroup

ExtensionInterface

ExtensionPoint

ControlConstraint

Layer

ExtensibleArtifact

1
1..*

10..*

1 1..*

1

0..*

1

0..*

1
0..*

1 1..*

1

0..*

Figure 3. Language concepts of XPoints

Example. In the following, we demonstrate how XPoints
can be applied in a simplified context of business appli-
cations (see Section II). The concrete instantiation of the
concepts is described later in Section IV. We first consider
two extension scenarios for two kinds of extension developer
groups, then we show how XPoints can be used to specify
the extension interface to implement the requirements of the
two scenarios.

Scenario 1: External Developer, Let us consider external
developers, who are allowed to perform some custom logic
before the SalesQuote business object is saved, but are not
allowed to modify any attribute. This group of extenders
is also allowed to read all attributes of the SalesQuote and
display a message in a label with the outcome of their logic
in the SalesQuotation form. Further, this group does not see
any method of the SalesQuote business object.

Listing 4 shows the specification of the extension interface
in XPoints for this extender group. This extension interface
spans two layers (business object and UI). Line 1 declares
the external developer extension interface. Line 3 declares
the business object and Line 12 declares the UI as the con-
tainers of extensible artifacts. In this example, there are two
artifacts declared as being extensible; com.sap.SalesQuote

and com.sap.SalesQuoteForm (Line 4 and Line 13). Exten-
sion possibilities are defined through extension points. Each
extension point has a type, a unique identifier (e.g. EPBO1),
a set of parameters, and an optional reference to a permission
set.

Line 5 shows the declaration of the extension point
EPBO1 of type beforeMethodCall and Line 14 shows the
extension point EPUI1 of type allowUIComponent. The pa-
rameters of EPBO1 declare the extension possibility before
the method saveSalesQuote(). The parameters of EPUI1
specify that the extender can add a new component of
type JLabel on the parent component salesQuotePanel. The
SalesQuote business object artifact has a reference to the
artifact permission set default1 (Lines 7-10). This permission
set declares that all attributes should be available only in
READ mode and methods should be hidden to all extension
points within the artifact. The SalesQuoteForm UI artifact
has a reference to the artifact permission set default2 (Lines
16-19). This permission set declares all attributes and meth-
ods to be hidden from the extender.
1 extensioninterface externaldeveloper{
2

3 layer BusinessObject{
4 extensibleartifact "com.sap.SalesQuote" permission=default1{
5 beforeMethodCall EPBO1 ("void saveSalesQuote()");}
6

7 permissionset default1{
8 attributepermission("*",READ);
9 methodpermission("*",HIDDEN);

10 }}
11

12 layer UserInterface {
13 extensibleartifact "com.sap.SalesQuoteForm" permission=default2{
14 allowUIComponent EPUI1 ("JLabel","salesQuotePanel");}
15

16 permissionset default2 {
17 attributepermission ("*",HIDDEN);
18 methodpermission("*",HIDDEN);
19 }}
20

21 Group extensionScenario{(EPBO1,EPUI1),ExtendAll};}

Listing 4. Extension interface in XPoints for the external developer group

The last part of the interface (Line 21) declares a group
called extensionScenario that contains two extension points
EPBO1 and EPUI1. This implies that the two extension
points are related. At the end of the group declaration, an
ExtendAll constraint is declared, which means that a valid
extension should extend both extension points.

Scenario 2: Internal Developer. In this scenario we con-
sider a group of extenders, who are working on the provider
side to realize industry-specific solutions on top of the
standard application. These extenders are allowed to define
extensions that span multiple layers. More specifically these
extenders are allowed to extend the business process after
the approval step for example to realize a second approval
step (c.f. Section II). Thereby only some relevant business
process activities should only be made visible while hiding
the rest of the process details. Further, these extenders
are also allowed to extend the SalesQuote business object

with new attributes and extend the business object logic
after it has been sent for approval. The extenders should
also be allowed to read and write values to the attributes
products and customerInfo as well as to call the method
calculateTotal. Listing 5 shows the XPoints implementation.
1 extensioninterface internaldeveloper{
2

3 layer BusinessObject {
4 extensibleartifact "com.sap.SalesQuote" permission=defview{
5 allowBOAttributes EPBO1 ("String",10);
6 afterMethodCall EPBO2 ("void sendToApproval()")permission=intdev;
7

8 permissionset intdev{
9 attributepermission ("products",READWRITE);

10 attributepermission ("customerInfo",READWRITE);
11 methodpermission ("calculateTotal",CALLABLE);
12 }}
13

14 permissionset defview {
15 attributepermission ("*",READ);
16 methodpermission("*",HIDDEN);
17 }}
18

19 layer UserInterface {
20 extensibleartifact "com.sap.SalesQuoteForm" permission=defview{
21 allowUIComponent EPUI1 ("JPanel","approvalPanel");
22 }
23

24 permissionset defview{
25 attributepermission("*",HIDDEN);
26 methodpermission("*",HIDDEN);
27 }}
28

29 layer BusinessProcess {
30 extensibleartifact "sales_quotation.bpmn" permission=defview {
31 afterActivity EPBP1 permission = view
32 ("Approve Sales Quote","com.sap.SQProcessing"
33 ,"void approveQuote()");
34

35 permissionset view{
36 activitypermission("Create Sales Quote",VISIBLE);
37 activitypermission("Approve Sales Quote",VISIBLE);
38 activitypermission("Send Sales Quote",VISIBLE);
39 }}
40

41 permissionset defview{
42 lanepermission("Sales Quotation Processing",HIDDEN);
43 }}
44

45 Group extensionScenario {(EPUI1,EPBP1,EPBO2),ExtendAll};}

Listing 5. Extension interface in XPoints for the internal developer group

In this extension interface, there are three layers defined
(business object, UI, and business process). In business
object layer (Lines 3-17), the SalesQuote business object
is declared as extensible. The permission set defview ex-
presses that the extender cannot call any method, and has
a read only access to all attributes (Lines 14-17). There
are two extension points defined (Lines 5-6) EPBO1 and
EPBO2, which declare two extension possibilities to allow
the addition of a maximum of 10 new attributes of type
String (that will be persisted in the database) and to extend
the logic after the sendToApproval() method. EPBO2 has a
reference to permission set intdev (that refines the permission
set of the parent), which allows a read / write access to the
attributes products and customerInfo, and allows the method
calculateTotal() to be called (Lines 8-12).

The next part of the interface (Lines 19-27) declares the

SalesQuoteForm as extensible with the allowUIComponent
extension possibility EPUI1 that allows the extender to add
a new panel in the sales quote approval panel. The artifact
permission set defview hides all methods and attributes of
the class from the extender. The following part (Lines 29-
43) defines the business process layer and the sales quota-
tion business process as an extensible artifact. The EPB1
extension point declares the possibility of adding an activity
after the sales quote approval activity and the underlying
class SQProcessing that processes the logic of the activity
through the method approveQuote(). The defview permission
set declares the whole lane that contains the sales quotation
business process as hidden (Lines 41-43). The permission
set view referenced by EPBP1 makes the main activities of
the business process visible to the extender.

Similarly to the previous scenario, the last part of the
interface (Line 45) declares a group called extensionSce-
nario that contains three extension points EPUI1, EPBP1,
and EPBO2. This requires then the extender to extend all
extension points.

IV. EXTENSION INTERFACE GENERATION

In the following, we will first describe the concrete
instantiation of the general language concepts described in
Section III for business applications consisting of the three
logical layers described in Section II, assuming that the
underlying classes are implemented in Java. The instantiated
concepts only present example constructs that can exist in
business applications (i.e the extensible artifacts, extension
point types, etc.). However, in other multilayered application
domains, the concepts can be instantiated accordingly to
cover all possible constructs. Then, we show how XPoints
can be used to generate the extension interface code.

Extensible Artifacts: The extensible artifacts supported
by the instantiation for business applications are Java busi-
ness object classes, Java Swing classes, and BPMN business
process models respectively.

Extension Points: On the business object layer, the
following types are supported. AfterConstructor enables
to define extension-specific logic to be executed after the
constructor of a business object. BeforeMethodCall and
AfterMethodCall enable the definition of extension-specific
logic before or after a certain method is called. AfterBOAt-
tributeChange enables to define extension-specific logic to
be executed after the value of a certain business object
attribute changes. AllowNewBOLogic enables the definition
of new business logic, e.g., a new custom method that is
not associated with the core logic of the business object.
AllowBOAttributes enables the extension of a business object
with a maximum number of attributes with a certain type.

On the UI layer, the following types are supported.
beforeForm and afterForm enable to extend the form flow
of a certain application; it can be used to insert a custom UI
before or after a certain displayed UI. beforeUIEventHandler

and afterUIEventHandler enables to define custom logic to
be inserted before or after a certain event handler is called.
allowUIAttributes enables to extend the data model of a UI
with a maximum number of attributes of a certain type.

On the business process layer, more types are supported.
BeforeActivity, AfterActivity, and ParallelActivity declare the
possibility of extending an activity before, after, or parallel to
its execution. BeforeEvent and AfterEvent allow the extender
to insert his extension before or after an event. AfterDecision
defines the possibility of inserting an extension after a
certain decision result from a gateway. ExtensibleMessage
allows the extension of the message content or type used
in the process (data extension). ExtensibleDecision allows
extending the result set of a gateway.

Control Constraints: In the concrete instantiation, con-
trol constraints are realized as permissionsets which restrict
the access, visibility, and usage rights of the base application
resources (i.e. supports the principle of least privilege [15])
to the extender. The sets can be defined on the extensible
artifact level (i.e. container level) and / or on the extension
point level. Extension points inherit the permission set of
their container. An extension point that declares its own
permission set, can further override or refine the permission
set of its container.

For the business object and UI layers, permission sets
support method and attribute permissions of the extensible
artifact. Attributes can be declared as either READ, WRITE,
READWRITE or HIDDEN. Methods can be declared as
CALLABLE or HIDDEN. Extensible artifacts that do not
declare a permission set get the default extension and usage
interface offered by Java. The permission sets defined on the
business process layer define the visibility of the business
process elements (activity, tasks, lanes, and data are currently
supported). Each element can be declared as HIDDEN or
VISIBLE for an extender.

Group Control Constraints: The current instantiation
supports one control constraint, ExtendAll, requiring that a
valid extension should provide an extension for all extension
points within the group. For example, it can be required that
an extender extends the data model of the business object
when adding a new input text field for a UI.

Interface Generation. The code generated from an
XPoints interface consists of three main parts; a generated
Java interface acts as an entry point for the extension
developer (M3, M4), a proxy class that controls the access,
visibility, and usage rights of the methods and attributes
of the base class (the proxy class will be passed to the
class of the extender implementing the interface and will be
initialized once an extension is loaded), and an aspect code
(implemented in AspectJ [16]), which injects into the base
application the necessary logic for supporting the execution
of the implemented extension (i.e. the aspect code enriches
the base class with methods and data structures necessary
to load and initialize an implemented extension in a plug-in

like fashion).
The general concepts of XPoints and the business ap-

plication extension are implemented as a domain specific
language (DSL) using XText [17] in Eclipse. To generate
the interfaces, proxy classes, and AspectJ programs as well
as the validations of the XPoints interface and references to
the core application source code, we have used XTend.

For illustration, we schematically present the generated
code framework that realizes the extension interface of the
software for the external developer scenario (see Listing 4).
Listing 6 shows the generated code framework. Lines 3-
9 show the generated interface. The interface includes two
parts. The first part is needed by the code framework to
initialize the extension (Line 6). Moreover, a reference to
the corresponding proxy classes is provided that will be
used by the developer during the implementation of the
extension. The second part is the extension point specific
part: The extension developer has to implement the method
yourEPBO1Logic() for the extension point EPBO1 and the
method yourEPUI1JLabel() for the extension point EPUI1.
1 //*************Generated Interface**************
2

3 public interface ExtensionScenarioInterface{
4

5 //these are the methods the extender has to implement
6 public void init(EPBO1Proxy p1, EPUI1Proxy p2);
7 public void yourEPBO1Logic();
8 public JLabel yourEPUI1JLabel();
9 ...}

10

11 //**********Generated proxy classes*************
12

13 public class EPBO1Proxy{
14 private SalesQuote salesquote;
15 ...
16 //getter methods for the READ attributes
17 public CustomerInfo getCustomerInfo(){
18 return salesquote.getCustomerInfo(this);
19 }
20 public List<ProductQuote> getProductQuote(){...}
21 public String getComment(){...}
22 public double getDiscount(){...}
23 ...}
24

25 public class EPUI1Proxy{
26 //empty since no access has been granted
27 }
28

29 //************Generated Aspects*****************
30

31 public privileged aspect EPBO1Aspect {
32

33 /*Datastructure to hold
34 extensions of type ExtensionScenarioInterface*/
35 private ArrayList<ExtensionScenarioInterface>
36 SalesQuote.EPBO1Extensions;
37

38 //New method in SalesQuote class to add the extensions
39 private void SalesQuote.loadExtensionScenarioExtensions(){
40 ...
41 //loads the extensions with class loader
42 ...
43 extensions.init(this.getEPBO1Proxy(),this.getEPUI1Proxy());
44 EPBO1Extensions.add(extension);
45 ...}
46

47 //New method in SalesQuote class to perform
48 //EPBO1 extension sanity checks
49 private void SalesQuote.sanityChecksEPBO1(){...}
50

51 //New method in SalesQuote class to get the EPBO1 proxy
52 private EPBO1Proxy SalesQuote.getEPBO1Proxy(){
53 return new EPBO1Proxy(this);}
54

55 //New methods to support the proxy access to the base class
56 public CustomerInfo
57 SalesQuote.getCustomerInfo(EPBO1Proxy proxy){
58 //validate the proxy and return
59 if(isLegalProxy(proxy)) return this.customerInfo;
60 else return null;
61 }
62

63 public List<ProductQuote>
64 SalesQuote.getProducts(EPBO1Proxy proxy){...}
65 //Similarly for the rest of the attributes ...
66

67 //load the extensions and
68 //perform sanity checks in constructor constructor
69 pointcut onload(): execution(* SalesQuote.new(..));
70 after(SalesQuote s): onload() && this(s){
71 s.loadExtensionScenarioExtensions();
72 s.sanityChecksEPBO1();}
73

74 //Pointcut and advice for running the EPBO1 extension
75 pointcut extension(): execution(* SalesQuote.saveSalesQuote(..));
76 before(SalesQuote s): extension() && this(s) {
77

78 if(s.EPBO1Extensions != null)
79 {
80 for(int i=0; i<s.EPBO1Extensions.size(); i++)
81 {
82 s.EPBO1Extensions.get(i).yourEPBO1Logic();
83 }
84 }}...}
85

86 public privileged aspect EPUI1Aspect {
87 ...
88 //Aspect body similar to the EPBO1Aspect
89 ...
90 //Pointcut and advice for running the EPUI1 extension
91 pointcut extension(): execution(* SalesQuoteForm.new(..));
92 after(SalesQuoteForm s): extension() && this(s) {
93 if(s.EPUI1Extensions != null)
94 {
95 for(int i=0; i<s.EPUI1Extensions.size(); i++)
96 {
97 JLabel j = s.EPUI1Extensions.get(i).yourEPUI1JLabel();
98 s.salesQuotePanel.add(j);
99 }

100 }}}...

Listing 6. Generated code framework for the external developer

The EPBO1 proxy class (Lines 13-23) contains the gen-
erated list of getter methods required to provide a READ
access to the SalesQuote class attributes. Note that no setter
methods have been generated and no methods have been
exposed as defined in the permission set default1 (Listing 5,
Lines 7-10). The proxy class generated for EPUI1 is empty
since all methods and attributes were declared as hidden by
the permission set default2 (Listing 5, Lines 16-19). The last
part of the code framework generated is the aspect code for
EPBO1 (Lines 31-84) and EPUI1 (86-100).

In the EPBO1 aspect, the first part (Lines 35-53) of the
aspect code are inter-type declarations, which enrich the base
class with data structures and methods necessary to load the
extensions implementing the ExtensionScenarioInterface in
a plug-in like fashion (the extensions of type Extension-
ScenarioInterface are loaded with a class loader and they
are passed an instance of the proxy). The second part of
the aspect code (Lines 56-65) enriches the base class in

a similar fashion with methods to support the proxy class
EPBO1Proxy calls. The last part of the aspect (Lines 69-
84) generates the advice that will load the extension after
the constructor (i.e. trigger the plug-in load mechanism) of
the SalesQuote business object, and the saveSalesQuote()
method pointcut within the base class where the extension
code will run as well as the advice that will run the extension
code. The EPUI1 aspect contains a similar body to the
EPBO1 aspect, however the generated pointcut and advice
(Lines 91-100) will add the JLabel component from the
extension to the salesQuotePanel.

V. DISCUSSION

To highlight the advantages of XPoints, we would like to
emphasize that in lack of XPoints, the code in Listing 6
would have to be manually written by the developer of
the base application in addition to the implementation of
the core application functionality. By comparing Listing 6
with Listing 5, it becomes clear that XPoints significantly
reduces design complexity. The XPoints interface provides
a declarative mechanism for the implementation of exten-
sibility, higher level of abstractions, and separation of con-
cerns. While the developer could employ other programming
patterns and techniques rather than those we used for code
generation, the resulting application will not be of lower
complexity. This is because the developer will always have
to adapt the functional code to support extensibility.

The more different ways of extending a software, the
more complicated it would be to mix functional code with
aspects, proxy classes, and interfaces that are concerned with
governing different extension scenarios. This will lead to an
overly complex design with maintainability problems and
loss of design intent. As the base application evolves (e.g.
more extension scenarios have to be supported), the base ap-
plication developers will have to implement the extensibility
enforcement code through new aspects, interfaces, and proxy
classes. The huge number of classes and aspects that have to
be created makes the technical realization of the extension
interface very hard. The technical realization complexity of
the extensibility possibilities is simplified by XPoints since
it automatically generates the required (boilerplate) code of
the extension interface and avoids polluting the core design
with infrastructure for simulating extension interfaces, and
results in a less complex design, better class maintainability,
and better preservation of the design intent for the software
provider.

Providing the classes and interfaces to an extender without
proper documentation of the extension possibilities and
usage instructions can make the comprehension of the exten-
sion possibilities and the identification of the coding artifacts
to be used (e.g. interfaces, proxy classes, etc.) very hard.
The proxy classes and interfaces provided to the extender in
Listing 6 are not sufficient to be able to identify whether they
are used as a part of the core functionality of the software or

they are used for extensibility. On the other hand, an XPoints
interface declares extension points and their constraints as
first class entities and hence explicitly defines the extension
possibilities. Using an XPoints interface as a contract, the
developer can see the layer specific extension possibilities
and their dependencies and can use it as a pointer to the
low-level coding elements that are required to realize an
extension. For example, the XPoints interfaces in Listing 5
can be used to identify the right interfaces and proxy classes
required to realize a particular extension.

Limitations of the Approach: First, the extension inter-
face generation strategy depends on the implementation. In
the presented example implementation for business applica-
tions, we used aspects, proxy classes, and Java interfaces
for the generation of the extension interface. However, it
is also possible to use other techniques for the generation
and enforcement of extension interfaces. Second, if the
core application code changes, the old generated extension
interfaces can become invalid. To address this limitation,
once the XPoints interface is compiled, the XPoints compiler
validates the XPoints interface and the source code of the
core application and will output errors and warnings if
there are any inconsistencies (e.g. references to nonexistent
classes or methods) in the interface specification. Once the
developer updates the XPoints interface, the compiler will
generate a new extension interface for the application. Last,
the extension point types and semantics depend on the
implementation of XPoints. The presented implementation
of XPoints for business applications is only an example
instantiation of the concepts presented (i.e. we do not claim
that these are all the possible extension point constructs
for business applications). We are currently working on a
more generic instantiation for XPoints to support defining
extension interfaces for Java.

VI. RELATED WORK

Several works have proposed interfaces enabling modules
that are advisable while preserving modularity and control-
ling internal implementation details. In this section we show
how XPoints relate and compare it with different language-
level state-of-the-art approaches.

Open modules [8] use pointcuts to expose advisable join
points of a particular module. The pointcuts are tightly
coupled with the definition of the module, and therefore it is
not possible to express crosscutting concerns across several
modules. In contrast to our approach, XPoints expresses the
extensibility possibilities separately from the base classes.
The base class developer has to only focus on defining what
extensibility possibilities exist, rather than writing pointcut
expressions. Moreover, it is possible to associate different
extension possibilities with extension point groups unlike
open modules.

Crosscutting interfaces (XPIs) [11] partially address the
limitations of open modules, by defining the crosscutting

interfaces independently of both the advised code and the
advice. XPIs use AspectJ pointcuts to expose the join points
in the base modules along with informally defined contracts
relying on design rules. Although the approach enhances
on the decoupling of the extension possibilities from the
base code and slightly shares our concept of separating the
extension possibilities from the base code, the rest of the
drawbacks previously described for open modules are not
addressed. Furthermore, the design rules contracts used in
XPIs are informally defined and no means are provided for
enforcing them. Unlike XPoints, the constraints defined on
the extensible artifacts, extension points, and extension point
groups are enforced by generating code. Furthermore, there
is no way to restrict the access to the base class resources
to the advice code.

Join point types [10] and join point interfaces (JPIs) [12]
introduce an additional layer to serve as an interface between
join points and advices. These approaches enrich pointcuts
with a “type” (syntactically in a method signature like
fashion) that specify information passed between the base
code and the aspect. This is advantageous since the advice
code can only access the elements within the declared type
as a specific join point. XPoints share the idea of restricting
access of an extension to the base class resources. However,
there are also several limitations that are not addressed by
these approaches. The first limitation is that there is no fine
grained access control to the elements specified in the type.
It is not possible to express whether the extender has a read /
write access to certain attributes. In addition to that, there is
no possibility to restrict an advice code from calling certain
methods. The second limitation is that it is not possible to
support multiple extenders with different access rights to the
base code resources.

Design patterns [18] are patterns in software design that
aim to solve reoccurring problems. Each pattern can either
have a creational, structural, or behavioral purpose. Patterns
are usually documented and described in terms of purpose,
motivation, structure, and relations to other patterns. In
XPoints a developer does not have to be an expert in
design patterns to realize the required extension interface.
The XPoints compiler will automatically complement the
core software using the adequate design patterns (if the
compiler supports that technique as a generation strategy)
and generate the required code framework.

Plug-in systems abstract the data and functionalities of an
application through an application programming interface
that act as hooks or extension points. Extenders can then
write applications and package them in the form of plug-ins
that conform to the API. The plug-in platform manages the
integration and execution of plug-in. An example of a plug-
in system is the OSGi [19] based Eclipse [20]. Each plug-in
contributes to a set of extension points and can provide a set
of extension points (a manifest file describes the extension
points it contributes to, dependencies to other plug-ins, and

extension points it provides). Extension points are dependent
on the interface definitions declared by the base plug-
in developer. These interface definitions indicate how the
contributing plug-in should be called and what data it can
get. XPoints and Eclipse share the idea of explicitly defining
extension points as well as their dependencies. However, in
XPoints a developer does not have to manually develop the
interfaces as well as handle them in the implementation of
the core software to support extensibility. XPoints generates
the extension handling framework, classes, and interfaces
automatically from the XPoints interface specification.

In addition to the limitations pointed out in all of these
approaches, XPoints further supports defining extension
possibilities at different logical layers that have not been
handled so far by the current state-of-the-art approaches.
The approaches outlined above only focus on the code level,
however XPoints can further support other abstractions like
UI and business processes. XPoints also aims at simplifying
the base code developer task of designing for extensibility.
The developer simply has to specify the extension possibil-
ities for each extension scenario that exist without worrying
much about how the extension interface will be realized on
the code level. From that perspective, XPoints can be seen
as introducing a new layer above these approaches and can
further make use (depending on the implementation of the
compiler) of these approaches or other advanced techniques
(e.g. like mixins [21], virtual classes [22], difference based
modules [23] dynamic routines [24], traits [25] etc.) for the
realization of extension interfaces on the code level.

VII. SUMMARY AND OUTLOOK

Defining and realizing extension interfaces for multilay-
ered applications is a very challenging task. In this paper
we outlined the limitations of state-of-the-art approaches
in supporting extensibility for multilayered applications and
introduced XPoints, an approach and a language for address-
ing these limitations. An XPoints extension interface defines
the extension possibilities in multilayered applications, con-
trols the available resources of the core application to the
extension, and relates extension possibilities from different
layers. The interface is defined separately from the core
software resulting in less complex code and better soft-
ware maintainability and also enabling multiple extension
interfaces for different kinds of extenders to co-exist. The
XPoints compiler automatically generates the necessary code
framework to realize the extension interface on the code
level without having the core developer being an expert in
advanced programming techniques.

Currently, we are investigating a generic realization of
XPoints for Java as well as possibilities for generating the
extension interface using other approaches. We plan to apply
XPoints to other application domains, and to investigate
advanced topics like extension validation, monitoring, and
conflict detection.

REFERENCES

[1] M. Aly, A. Charfi, and M. Mezini, “On the extensibility
requirements of business applications,” in Proceedings of the
2012 workshop on Next Generation Modularity Approaches
for Requirements and Architecture, ser. NEMARA’12. New
York, NY, USA: ACM, 2012, pp. 1–6.

[2] M. Aly, A. Charfi, D. Wu, and M. Mezini, “Understanding
multilayered applications for building extensions,” in Pro-
ceedings of the 1st workshop on Comprehension of complex
systems, ser. CoCoS’13. New York, NY, USA: ACM, 2013,
pp. 1–6.

[3] J. Micallef, “Encapsulation, reusability, and extensibility in
object-oriented programming languages,” Journal of Object-
Oriented Programming, vol. 1, no. 1, pp. 12–36, 1988.

[4] G. Kiczales and J. Lamping, “Issues in the design and
specification of class libraries,” in conference proceedings
on Object-oriented programming systems, languages, and
applications, ser. OOPSLA’92. New York, NY, USA: ACM,
1992, pp. 435–451.

[5] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt, “Reuse
contracts: managing the evolution of reusable assets,” in Pro-
ceedings of the 11th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
ser. OOPSLA’96. New York, NY, USA: ACM, 1996, pp.
268–285.

[6] M. Mezini, “Maintaining the consistency of class libraries
during their evolution,” in Proceedings of the 12th ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications, ser. OOPSLA’97. New York,
NY, USA: ACM, 1997, pp. 1–21.

[7] G. Kiczales and M. Mezini, “Aspect-oriented programming
and modular reasoning,” in Proceedings of the 27th inter-
national conference on Software engineering, ser. ICSE ’05.
New York, NY, USA: ACM, 2005, pp. 49–58.

[8] J. Aldrich, “Open modules: modular reasoning about advice,”
in Proceedings of the 19th European conference on Object-
Oriented Programming, ser. ECOOP’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 144–168.

[9] K. Hoffman and P. Eugster, “Bridging java and aspectj
through explicit join points,” in Proceedings of the 5th inter-
national symposium on Principles and practice of program-
ming in Java, ser. PPPJ’07. New York, NY, USA: ACM,
2007, pp. 63–72.

[10] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner, “Types and
modularity for implicit invocation with implicit announce-
ment,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 1, pp.
1:1–1:43, Jul. 2010.

[11] K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai,
M. Shonle, and N. Tewari, “Modular aspect-oriented design
with XPIs,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 2,
pp. 5:1–5:42, Sep. 2010.

[12] M. Inostroza, É. Tanter, and E. Bodden, “Modular reasoning
with join point interfaces,” Center for Advanced Security
Research Darmstadt, Tech. Rep. TUD-CS-2011-0272, 2011.

[13] J. Sutherland, “Business objects in corporate information
systems,” ACM Computing Surveys, vol. 27, pp. 274–276,
June 1995.

[14] Object Management Group (OMG), “Business Process Model
and Notation (BPMN) Version 2.0,” Object Management
Group (OMG), Tech. Rep. formal/2011-01-03, January 2011.
[Online]. Available: http://www.omg.org/spec/BPMN/2.0

[15] T. Mayfield, J. E. Roskos, S. R. Welke, J. M. Boone,
and C. W. McDonald, “Integrity in automated information
systems,” National Security Agency, Tech. Rep. 79-91, 1991,
iDA Paper P-2316.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An overview of aspectj,” in ECOOP’01, ser.
LNCS, J. Knudsen, Ed. Springer Berlin Heidelberg, 2001,
vol. 2072, pp. 327–354.

[17] M. Eysholdt and H. Behrens, “Xtext: implement your lan-
guage faster than the quick and dirty way,” in Proceedings
of the ACM international conference companion on Object
oriented programming systems languages and applications
companion, ser. SPLASH ’10. New York, NY, USA: ACM,
2010, pp. 307–309.

[18] E. Gamma, Design patterns: elements of reusable object-
oriented software. Addison-Wesley Professional, 1995.

[19] O. Alliance, OSGi service platform, release 3. IOS Press,
Inc., 2003.

[20] S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman,
and P. McCarthy, The Java Developer’s Guide to Eclipse.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.

[21] G. Bracha and W. Cook, “Mixin-based inheritance,” ACM
SIGPLAN Notices, vol. 25, no. 10, pp. 303–311, Oct 1990.

[22] O. L. Madsen and B. Moller-Pedersen, “Virtual classes: a
powerful mechanism in object-oriented programming,” in
Conference proceedings on Object-oriented programming
systems, languages and applications, ser. OOPSLA’89. New
York, NY, USA: ACM, 1989, pp. 397–406.

[23] Y. Ichisugi and A. Tanaka, “Difference-based modules: A
class-independent module mechanism,” in ECOOP’02, ser.
LNCS, B. Magnusson, Ed. Springer Berlin Heidelberg, 2006,
vol. 2374, pp. 62–88.

[24] C. Heinlein, “Vertical, horizontal, and behavioural
extensibility of software systems,” Universität Ulm, Fakultät
für Informatik, Tech. Rep., 2003. [Online]. Available:
http://vts.uni-ulm.de/doc.asp?id=5344

[25] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black, “Traits:
Composable units of behaviour,” in ECOOP’03, ser. LNCS,
L. Cardelli, Ed. Springer Berlin Heidelberg, 2003, vol. 2743,
pp. 248–274.

