Low-Level I/O Optimization in Database Systems
A Case For Multi-Page Requests

Bernhard Seeger

Low-Level I/O Optimization in Database Systems
A Case For Multi-Page Requests

Bernhard Seeger

Abstract

Magnetic disks are the most important storage medium today and are expected to play that role for
at least the next ten years. Database systems primarily use magnetic disk drives as their directly
accessible persistent storage device. The performance of magnetic disk drives has been considerably
improved over the last 25 years. However, the improvement rates are far behind those achieved for
processors. This is the most important reason that the I/O to magnetic disks has been more and

more the bottleneck of many database applications, in particular of non-standard applications.

This thesis starts with a survey on common low-level techniques to improve the I/O performance
of computer systems. Thereafter, the current magnetic disk technology is discussed in great details.
The rest of the thesis is then dedicated to studying the impact of multi-page requests on query

performance.

A multi-page request retrieves several pages from disk without interfering of other requests. The
elapsed time of a multi-page request is determined by the order in which the pages are read from disk.
Under the assumption of different disk models, algorithms for implementing multi-page requests are
discussed and their performance is analyzed analytically and experimentally. Moreover, the expected
cost of a multi-page request is expressed by functions that can be easily computed. For our most
accurate disk model, the cost function depends on several parameters describing the geometry of the
disk, the number of required pages and the degree of clustering. The cost function, which is shown
to be in good agreement with results obtained from experiments with a real disk, demonstrates that
significant performance improvements can be achieved by using multi-page requests when the required

pages are read according to a well-computed schedule.

In addition to the response time of an individual query, we also examine the impact of multi-page
requests on the throughput. Results of an experimental performance comparison demonstrate that
the throughput can be improved by several factors when multi-page requests are used in comparison

to reading the required pages one at a time.

In order to demonstrate the impact on the performance of important data structures, index struc-
tures are modified in such a manner that they exploit multi-page requests for evaluating data-intensive
queries. For the sake of concreteness, our discussion is based on the problem of supporting range que-
ries on BT-trees. In an experimental performance study, we show that the response time of range

queries can be reduced by several factors if Bt-trees use multi-page requests.

ii

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Hans-Peter Kriegel, for his great guidance
on my way from a master student at the University of Wiirzburg to a research and teaching

assistant at the University of Munich.

My warmest thanks to my wife. Her constant support, encouragement and love made my

life brighter and my work easier.

I would like to give my special thanks to Prof. Dr. Per-Ake Larson, the external reviewer
of my thesis. During my stay at the University of Waterloo he gave me a great support in my
work and eventually, he was the one who pointed out the problem on multi-page requests. I
am thankful to Prof. Dr. Seegmiiller, the second reviewer of the thesis, for his careful reading

of the thesis.

Other people who deserve special mention are my friends Dr. Thomas Brinkhoff and
Dr. Ralf Schneider. Our fruitful discussions did not only improve the thesis. Furthermore, I
would like to thank my present colleagues of the database group at the University of Munich
and to my former colleagues of the University of Wiirzburg, the University of Karlsruhe, the
University of Bremen and the University of Waterloo. John Scourias, a student from the
University of Waterloo, deserves special thanks for reading a first version of the thesis and

improving the readability.

iii

Low-Level I/0O Optimization in Database Systems
A Case For Multi-Page Requests

Bernhard Seeger

A previous version was successfully presented as a thesis to
the Fachbereich Mathematik of Ludwigs-Maximilian-Universitat
Miinchen
in fulfillment for the degree of
Dr. rer. nat. habil.
in

Computer Science

Miinchen, July 1994

v

Copyright Bernhard Seeger 1994

Contents

1 Introduction

2 I/0 Optimization Techniques

2.1 Query Processing in Database Systems
2.2 Disk Scheduling
2.3 Clustering L o i e
2.4 Buffer and Cache Organization
2.5 Disk Arrayso e e e e

2.5.1 Mirrored Disks

2.5.2 Reliability Using Parity Bits

2.5.3 Exploiting Write-Caches in Disk Arrays
2.6 Multi-Page Requests L
2.7 Conclusion

3 Magnetic Disk Systems
3.1 Disk Technology

3.2 Disk Models e e e e e

4 Query Performance under the Linear Model
4.1 Problem Statement

4.2 Optimal Read Schedules L o o oL,

12

14

15

19

20

21

22

23

25

27

27

35

41

vi

4.3 Simplified Algorithm o oL
4.4 Analysis
4.4.1 Unlimited Gaps, Limited Buffers
4.4.2 Limited Gaps, Unlimited Buffer
4.4.3 Limited Gaps, Limited Buffer
4.5 A Cost Model for Vector Reads
4.6 Discussion o e

A Cost Function for the Idealized Disk Model

5.1 Assumptions of the Idealized Disk Model
5.2 Problem Statemento o0
53 Algorithms
5.4 Analysis of Multi-Page Requests on a Cylinder

5.4.1 Recurrence Relation for Computing Probability P

5.4.2 Recurrence Relation for Computing Probability Q)

5.4.3 Expected Rotational Delay
5.4.4 Expected Transfer Time
54.5 Discussion oo Lo
5.5 A Global Cost Function
5.5.1 An Approximation for the Seek Time
55.2 Discussiono o e
5.6 Multiple Queries
5.7 Summary e

Disk Models that Consider Head Switch Time

6.1 Algorithms
6.1.1 Elevator Algorithm

6.1.2 Shortest-Latency-Time-First Algorithm

CONTENTS

CONTENTS vii

6.1.3 Look-Back Algorithm 99
6.1.4 Comparisont e e e e e e e e 103

6.2 Two Cost Estimations o 104
6.2.1 On the Distribution of Track Clusters 105
6.2.2 First Estimation Lo oo 107
6.2.3 Second Estimationo oo o oo 107
6.2.4 Experimental Comparisono 108

6.3 An Alternative Head-Switch-Time Disk Model 112
6.3.1 Inexpensive Head Switches 113
6.3.2 [Expensive Head Switches 115

6.4 Conclusion L e e 120
7 A Comparison of the Disk Models and a Validation 123
7.1 Validation of the Disk Modelo L. 123
7.2 A Comparison of the Different Cost Estimates. 129
7.3 Conclusion e e e e 133
8 Tuning Index Structures 137
8.1 Motivation e 139
8.2 The CBT-Tree o i it e i et e e e 143
8.2.1 The Data Structure o 143
8.2.2 SplittingofaBag Lo 144
8.2.3 Splitting of a Directory Page 145
8.2.4 Range Queries 146

8.3 File System Support for Bags oo oo 148
8.4 The Organization of Pages in a Cylinder 149
8.5 Experimental Performance Comparison 154

8.5.1 The Cost of Buildingup 154

CONTENTS

viii
8.5.2 Range Query Performance of BT-trees and CB™-trees 156
8.6 Large Pages: An Alternative to Clustering? 163
8.7 Summary e 166
9 Conclusions and Future Work 167
Abbreviations 170

Index 171

Chapter 1

Introduction

The short history of computer technology has been characterized by rapid innovation. In the
last three decades, dramatic performance improvements have been achieved for both main
memory and processors. However, the development of secondary and tertiary storage, the
third major hardware component of computing technology, has not kept pace with the gains

made in the other components.

Magnetic disks have been the dominant secondary storage device for almost thirty years.
The primary role of magnetic disks in computer systems is to provide a non-volatile storage
medium on which programs can keep data permanently even when they are not running. In
comparison to main memory, an important advantage of magnetic disks is their reasonable
cost: 1 M B of disk space is about 10 to 30 times cheaper than 1 M B of main memory [HP90].
Therefore, disks are also “misused” in many computer systems as inexpensive virtual main

memory when real main memory is too small to keep all data resident.

The principle of magnetic disks is based on both magnetic recording and precision me-
chanics [Hoa85]. Because mechanical movements are required for reading and writing data
on disk, the time for accessing data on a magnetic disk is fairly high. Today’s disk can access
data in 10 to 15 ms on the average. By comparison, an ordinary workstation can perform an
access to data in main memory (which does not require any mechanical movements) in a mere
80 ns. Hence, the access times of magnetic disk and main memory differ by a factor of about

150,000. According to Amdahl’s law', only a small fraction of performance improvements

! Amdahl’s law states that the performance improvement to be gained from using some faster mode of

2 CHAPTER 1. INTRODUCTION

in processor speed could be passed to system software which relies on secondary storage.
In particular, database systems suffer more and more under the performance gap between

processing data in main memory and secondary storage.

A database system (DBS) considers a disk as a collection of buckets, called pages in the
following, in which data records are stored. When a request for a data record is issued, the
corresponding page is read from or written to the magnetic disk. The time for accessing a
page on magnetic disk consists of two basic components: positioning time and transfer time.
Positioning time is the time to move the read/write head of the disk to the desired position.
Transfer time refers to the time required for transferring a page into main memory. For the
last twenty years, transfer time has been improving roughly as fast as processor speed, about
50% annually, whereas the positioning time has improved at the modest rate of about 7%
annually. The reason for the vast improvements in transfer time is that the rate of progress
in magnetic density has continued undiminished for the last thirty years. Consequently, the
I/O time of reading or writing a page for today’s magnetic disks is clearly dominated by
the positioning time. Moreover, it is expected that current improvement rates in positioning
and transfer time will continue at least until the end of the decade [Hoa85, Wo090]. Because
many applications of DBSs require several pages from different positions of magnetic disks
during a short time period, positioning time is much more crucial to efficiency in a DBS than

transfer time.

In order to maintain a balance of performance between main memory and secondary
storage, several approaches and algorithms have emerged. Recent examples includes disk
arrays [Ouc78, PGKS88, BG88], non-volatile storage [CKKS89], disk scheduling [Den67, Fra69,
CKRT72, SCO90], prefetching [Smi76, CKV93] and multi-page requests [Wei89]. The first two
approaches are based on a novel hardware architecture, whereas the remaining ones rely on
the design of efficient algorithms. The common goal of the algorithmic approaches is to
reduce positioning time on magnetic disks. So far, the design, implementation and analysis
of algorithms for multi-page requests has attracted little attention although it provides the

fundamental ideas for disk scheduling and prefetching.

In this thesis, the problem of designing and analyzing efficient algorithms for multi-page

program execution is limited by the fraction of the time the faster mode can be used [HP90]

requests, also called set-oriented I/O [Wei89] and bulk I/O [BP88], is addressed. A multi-page
request is an I/O request that accesses several pages on disk where the order does not count.
As a rule, the pages are located close to each other on disk, e.g. on a cylinder, but contiguity
is not required. A multi-page request is assumed to be performed without interfering with
other requests. The I/O time of a query that requires access to a large number of pages can
be substantially reduced when multi-page requests are used instead of processing one page at
a time. Moreover, the throughput of the I/O system can also be improved when the required
pages of a multi-page request are almost contiguous on disk. In particular, multi-page requests
reduce the movement of the disk arm, which is the most expensive portion of access time
on magnetic disks. Obviously, more buffer space is required for performing a multi-page
request than for the strategy of one page at a time. Although prototype implementations
have demonstrated the advantages of multi-page requests, particularly for accessing large
objects, the general technique can rarely be found in current DBSs. In contrast to [Wei89],
our work is primarily dedicated to selection queries, although the technique can generally
be used whenever multiple pages are read from secondary storage. In the following, we will
give several examples in which the application of multi-page requests almost always proves

advantageous.

Reading a large number of pages occurs, for example, when a secondary index is used for
the evaluation of a selection query. A selection query searchs for all objects in a given set
which satisfy a given predicate. The simplest way of performing this operation is to scan the
index and for each qualifying entry in the index retrieve the required page from the file. This
has the drawback that the same page may be accessed more than once. An improvement on
this scheme is the following approach: create a list of the pages to be retrieved, eliminate
duplicates from this list, and then retrieve the required pages one at a time. If two or more
required pages happen to be located close to each other, for example, on the same disk track,
total retrieval time may be reduced if all of them are read with a single multi-page read
request rather than issuing multiple requests, each reading a single page. It is interesting
to note that multi-page requests are already used to a limited extent in commercial systems

[BP88] to improve this type of operation.

When a cluster index can be exploited for performing selection queries, e.g. range queries,

4 CHAPTER 1. INTRODUCTION

multi-page requests can be used in a way similar to that introduced for secondary indices.
Let us assume that a cluster index is implemented as a BT-tree and that a range query should
be performed on the Bt-tree. A range query is specified by two search keys L and U with
L < U. All records are searched whose keys are in the interval [L, U]. A B*-tree is a balanced
multi-way tree that consists of internal pages and leaf pages. An internal page consists of
entries which refer to lower levels of the tree. Data records are stored in the leaf pages which
are linked together in key order. Range queries in B¥-trees are performed as follows: First,
search key L is used for traversing the BT-tree from the root to the corresponding leaf page.
The leaves are then accessed sequentially following the pointer to the next leaf that contains
records with keys greater than L. Sequential processing of leaf pages requires that one page is
read from disk at a time. Hence, multi-page read requests cannot be exploited for improving
the performance of the classical range query algorithm for BT-trees. However, multi-page
requests could be used if the range query algorithm were modified as follows. First, we
compute a list of all addresses of leaf pages which are required for answering the range query.
Second, several leaf pages are read using a multi-page request when pages are located close to
each other on disk. Although the new range query algorithm may require a few page accesses

more than the classical one, the performance of range queries can be improved in general.

In a different setting, multi-page requests are used for purging modified pages from a
write-cache to magnetic disk. A write-cache is a non-volatile disk cache that is protected
against power failures. From a user’s point of view, a write request is completed when the
modified page is in the write-cache. Thus, write-caches can effectively reduce the response
time of I/O requests. However, this requires that the buffer is not completely filled up with
modified pages. In order to provide free space in the buffer, some of the modified pages have
to be written back (i.e. purged) to disk. Almost all approaches suggest purging the pages
which have been least recently modified in a single multi-page request. Recently, similar ideas

have been proposed to overcome the problem of expensive write operations in disk arrays.

Most disk systems now feature some form of multi-page request. A frequent operation
in a DBS is to transfer a file completely from disk into main memory. Because most files
(relations) are well clustered on disk, this results in reading pages contiguously stored on disk.

After satisfying a few page requests, the disk anticipates the sequential access pattern of the

query and starts transferring several contiguous pages from disk into a buffer although the
query still requires and processes one page at a time. This technique is commonly referred

to as prefetching [Smi76].

Multi-page requests have already been demonstrated to be beneficial for reading (large)
structured objects from magnetic disk into main memory [Wei89, KGM91]. The basic pro-
blem is that objects consist of a fairly large number of references to other objects or object
fragments. These subobjects may be jointly referenced by a fairly large number of objects.
Without introducing undesirable redundancy, objects cannot be well clustered on magnetic
disk. Then, a pointer stored in a page, say P, on secondary storage, refers to a page which is
in general not identical to P. In the worst case, every pointer of an object refers to a different
page, where the corresponding subobjects can be found. Moreover, the same situation can
now occur for each of the subobjects. In order to provide fast access to an object, some
DBSs, e.g. DASDBS [PSS™87], separate the structural information from the actual data.
The structural information can be kept in a page or, if the need arises, in a tree-based direc-
tory. When an object is required from magnetic disk, the structural information is read first.

In a second step, the data is read using one or more multi-page requests.

Common to all the examples presented above is the following problem: given a list of pages
retrieved from (written to) magnetic disk, what is the fastest way of retrieving (writing) them?
Furthermore, we are interested in the corresponding cost for the optimal read schedule. In
particular, the query optimizer of a DBS can make use of such cost formulas for determining
efficient execution plans for query processing. The efficiency of multi-page requests depends
on the distance between the corresponding pages. For a very large number of pages, it is
not always better to read all pages in a single multi-page request. In particular, this would
substantially hurt the response time of other requests. Instead, only pages which are close to

each other (e.g. on a common track) are transferred in a single multi-page request.

Examples of retrieving multiple items at once can be found everywhere in daily life.
Consider the manner in which people purchase items in a supermarket. In general, the time
required to go to the store is greater than the time spent in the store. The strategy of going to
the store for every item separately is very inefficient with respect to the overall time someone

has to spend per week for purchasing items. In contrast to that, people usually behave as

6 CHAPTER 1. INTRODUCTION

follows: First, they come up with a list of all items required in the near future. Once they
are in the supermarket, they use the shortest way in the store for obtaining all items on the
list. Occasionly, we are not pleased about long queues in front of the cashier and about other
people who are buying a lot of items and have lined up in front of us. But usually, when we

can avoid hot spots, queues are rather short.

The rest of the thesis is structured as follows. In the next chapter, we present an overview
of query processing in DBSs. Special consideration is given to low-level methods for improving
the I/O performance of the DBSs. In chapter 3, we give a detailed discussion on magnetic
disk drive technology. In chapter 4, we present algorithms for implementing multi-page
requests and their analysis under the assumption of the so-called linear disk model. We come
up with a cost function that varies in the number of required pages and in the size of the
buffer. In chapter 5, the same problem is studied under the assumption of the idealized disk
model. This model takes into account the geometry of a disk as they are cylinders, tracks
and pages. For a scan-based algorithm, the cost of multi-page requests is analyzed. One of
the deficiencies of the idealized disk model is that head switch time is not taken into account.
In chapter 6, the problem is studied for a disk model that also considers head switch time
and other important aspects of today’s disks. The main contribution of the thesis can be
found in section 6.3. A simple cost function is derived for multi-page requests under a disk
model that considers almost all properties of today’s magnetic disks. In chapter 7, the results
obtained from the cost function of section 6.3 are shown to be close to the results obtained
from experiments with a real disk. Moreover, a disk simulator demonstrates the accuracy
of the cost function for various parameter settings. In chapter 8, we present a new variant
on BT-trees, called CBT-tree, which take advantage of multi-page requests for performing
range queries. In addition, the CB™-tree offers global clustering, i.e. pages which contain
answers for the same range query are stored close to each other on disk. Although the cost
of building up the CBT-tree is only slightly higher than for the Bt-tree, range queries are
performed much more efficiently. In chapter 9, we summarize the work and discuss areas of

future research.

Chapter 2

I/0O Optimization Techniques

In this chapter we review methods for improving I/O performance. First, we recall that it
is of vital importance to expend more effort on I/O optimization. For that, we have to take
a closer look at the storage hierarchy of computer systems. The classical view of computer
storage consists of main memory and secondary storage, e.g. magnetic disks. Main memory is
comprised of DRAMs (dynamic random access memory), which allow access to data in about
80 ns, i.e about 150,000 times faster than accessing data on magnetic disk. This performance
gap has been the subject of much research in the areas of computer architecture, operating
systems and database systems. In the computer architecture field, fast disk caches have been
introduced for avoiding repeated access to frequently referenced data. Today, there exist non-
volatile disk caches which are protected against power failure by battery backup. Research
related to operating systems has dealt with methods for scheduling I/O requests waiting
in front of the disk and with policies for cache management, such as replacement policies.
Research in the database area has been focused on designing efficient index structures and

clustering policies.

In the following, we first briefly discuss how queries are processed in a DBS. In particular,
the need for query optimization is stressed as one the most important issues in today’s DBSs.
Moreover, the optimization techniques presented in the following sections will be shown to
have an important impact on efficiency. Thereafter, we discuss several low-level optimization
techniques which belong more to the functionality of an operating system, but are also of

great importance to a DBS as well. In section 2, we briefly review disk scheduling policies.

8 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

Several approaches for clustering are discussed in section 3. In section 4, a survey is given on
techniques for buffer organization. In addition to volatile buffers, our discussion also includes
how non-volatile buffers can be exploited, as well. In section 5, a discussion on disk arrays
follows. In section 6, the basic idea of multi-page requests is discussed. Section 7 concludes

the chapter.

2.1 Query Processing in Database Systems

In the first section, a brief survey is given on query processing in DBSs. Most of the approaches
discussed in this section have been developed for relational DBSs. However, they are also
almost always applicable to the query processing facility of any DBS and any data model.
More details on query processing in DBSs can be found in various books, see [OV91] for

example, and articles [SACT79, JK84, Gra93].

A DBS is a highly concurrent system. It allows that several independent users with
different requirements on the system perform queries on the same database at one time.
Therefore, the DBS pursues two performance goals with respect to efficient query processing.
First, the response time of an individual query should be minimized. The response time is
defined as the elapsed time from the initiation to the completion of the query. Second, the
throughput of the system should be maximized. The throughput is only well defined for a
given workload (i.e. mix of queries or transactions) on the system. Throughput is measured
as the number queries (or transactions) that can be performed by the DBS in one second.
In many cases, a DBS optimized with respect to reducing response times also offers high
throughput and vice versa. For some cases, however, these performance goals are in conflict

with each other.

There are many reasons why a user should not be involved in the process of optimizing
queries. First of all, a user might be able to optimize a query with respect to response time,
but it is almost impossible to consider throughput as well. Second, as the designers of one
of the first relational systems stressed [ABC*76], one of the most important advantages of
relational database systems in comparison to other ones is that they take away the heavy
burden of manual design and coding from the user. Consequently, relational systems offer

a programming language that allows non-experts to express queries in an easy fashion. For

2.1. QUERY PROCESSING IN DATABASE SYSTEMS 9

Figure 2.1: Architecture of a DBMS

today’s DBSs, SQL [ACT75] is the de-facto standard for a query language. SQL is a non-
procedural language that was originally developed for System R [ABC™76], one of the first
research prototypes of a relational DBS. A query expressed in SQL only describes the response
set without mentioning or specifying implementation details. The DBS has to transform an

SQL query into an efficient execution sequence, also called the query execution plan.

Efficiency of a query can be expressed with respect to the total cost or the response time.
The total cost is defined as the cost of all components. Cost is generally measured in terms

of time units. A cost formula for the total cost can be specified as follows [MLS86]:
Ccpu * (#instructions) + Crjo * (#1/0s)

where Ccpy and Cpjp are the cost for a CPU instruction and disk I/0, respectively. Cost
formulas for the response time are rarely used for query optimization. Notable exceptions

are the query optimizers of distributed and parallel database system [OV91].

In order to discuss the transformation process of queries in more detail, let us first in-

troduce a simplified architecture of a relational DBS illustrated in Figure 2.1. We follow

10 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

an approach that has been presented in [OV91]. The architecture is basically adopted from
the five-level architecture of Harder [Har87]. The architecture consists of four levels: the
programming level (SQL), the logical level, the physical level, and the level of the operating
system (functionality). The logical level refers to the specific data model of the DBS. In
general, an algebra, called logical algebra, is associated with that level. For a relational DBS,
for example, the logical algebra consists of data structures such as relations, (logical) records
and views, etc. The operators include the ones of the relational algebra such as selection,
projection and join operators. The physical level consists of a collection of data structures
and algorithms for implementing the functionality of the logical level. Typical data structu-
res at the physical level are access methods and (physical) records. This level is completely
independent from the logical level and it can therefore be used for implementing any type of
DBS. Below the physical level, the operating system might be used to bridge the gap between
the physical level and the hardware. In particular, a file system and a buffer are provided on
that level. However, file management and buffer organization of an operating system are not
very appealing to a DBS [Sto81, CHMWS87]. Therefore, these functionalities are commonly

reimplemented in a DBS.

An SQL query is processed as follows. First, the query is parsed into an internal form
that uses the operators and the data structures of the logical algebra. In general, a (logical)
operator tree is used for representing the query. The internal nodes of the tree refer to
the algebraic operators, whereas the leaves refer to the logical data structures. In addition,
macros and views are expanded into the query. The first step of “optimization” referred to as
algebraic optimization is based on some heuristics. It is performed without any knowledge of
the actual cost of the operators. It is basically restricted to eliminating common and useless
expressions in the query. In addition, some equivalence rules are applied to the operator tree.
One of the best known rules is that a selection operator should be executed prior to a join and
projection operator. As a consequence, selection operators frequently read the data from a
permanent file, whereas the other operators can generally read their input from main memory
or from a temporary file. Thus, in order to improve I/O performance, special attention has
to be given to selection operators. In the next step, the tree is transformed into a physical
operator tree that only contains the data structures and the operators of the physical level.

Many physical operator trees are correct transformations of the same logical operator tree.

2.1. QUERY PROCESSING IN DATABASE SYSTEMS 11

The goal of query optimization is to select the most efficient physical operator tree, or what
might be more important, to avoid non-efficient ones. This optimization process can be very

complex and might require substantial search and cost estimation.

Since it is much too expensive to compute the exact cost of a physical operator tree,
query optimization relies on cost estimations. In System R [SACT79], the I/O cost is simply
measured by the number of pages fetched from secondary storage, and CPU-cost is expressed
in the number of answers returned from a query. In addition, a weighting factor is used to
adjust I/O and CPU cost. The ratio of I/O cost to CPU cost has been constantly increasing
for the last twenty years so that many queries are I/O bound in today’s systems or they are
expected to be I/O bound in the near future. This holds particularly for selection queries. In
order to compute the cost of a query, the number of page fetches and the size of the response
set of a query must be estimated. For that, the DBS maintains statistics about the physical
data sets such as the cardinality of the sets, the number of pages in the set, the availability
of indices, etc. Under the assumption of uniformly distributed records, the cost for each
operator of the physical algebra is estimated so that the (expected) cost depends solely on
the cardinality of the input. The cost of a query, which is represented as a physical operator

tree, can then be computed bottom up from the leaves to the root of the tree.

There are several drawbacks related to that approach of query optimization. First, the
assumption of uniformly distributed records is rarely fulfilled in practice. This assumption
is pessimistic, i.e. the cost of a query will generally be overestimated [Chr84]. Second, for
complex queries (i.e. the operator tree is rather tall) errors are propagated from the leaves to
the root in the operator tree [IC91]. Third, the I/O model is very simplistic. It is assumed that
the cost for a page access is constant for any page that is fetched from secondary storage.
The cost for a page access is generally assumed to be identical to the average disk access
time [SAC*79]. This rough estimation leads to an overestimation of the costs. Marckert
and Lohman [ML86] noticed that deficiency in their experimental validation of System R*.
Consequently, the cost for a disk access was decreased to the value observed as the average

in their experiments. However, this value might be different in other experiments.

There is great potential for improving query performance at all levels of the DBS archi-

tecture. However, the physical algebra and the level of the operating system (functionality)

12 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

are related the most to efficient query processing. During the last decade, most of the rese-
arch focused on improving the physical level. For example, access methods, algorithms for
join processing and sorting are discussed in great detail in the database literature. A survey
of these methods can be found in [Gra93]. There are only a few (but important) articles,
see [CDRS86, BP88] for example, which are concerned with the design of the file system.
Today’s file systems provide almost the same interface as for the last twenty years. Since
then, computer system technology has changed greatly and database systems are used in
new application areas such as CAD, geography and environmental science. These applicati-
ons are posing increasing demands with respect to efficient query processing. A frequently
asked question is therefore whether we have forgotten to improve the file system [Wil94]. Of
particular interest is a file system that efficiently supports selection queries (operators), since
these queries are expected to access data stored in the physical data base (see our discussion

above).

Our previous discussion stressed the importance of cost estimation. Without having
accurate cost estimations, the query optimizer can hardly find an efficient physical operator
tree. Therefore, whenever a new method is introduced into the physical level, the query
optimizer also requires its cost estimations. This is even more crucial when the functionality
of the operating system (OS) level changes. Then the cost estimations in the physical level
have to be re-examined for those operators that exploit the new functionality in the OS level.
Otherwise, the query optimizer would come up with a wrong decision. In the remainder of
this chapter, we review several low-level techniques which might be candidates for improving

query processing of a DBS.

2.2 Disk Scheduling

As early as twenty years ago, the basic policies for scheduling I/O requests were discussed
in several pioneering papers [Den67, Fra69, TP72, CKR72]. A scheduling policy decides
which of the I/O requests from the queue should receive service next. The primary goals of a
scheduling policy are not restricted merely to maximizing throughput, but also to minimizing
the average response time of a request, and to reducing the variance of response time. In

order to meet these requirements, policies optimize schedules with respect to the arrival time

2.2. DISK SCHEDULING 13

and the disk position of the requests.

The simplest scheduling policy is first-come-first-serve. This policy does not take advan-
tage of positional relationships between I/O requests in the present queue. More sophisticated
policies are shortest-seek-time-first (SSTF) and SCAN. For SSTF, the I/O request is serviced
which has the minimum seek cost with respect to the current position of the disk arm. This
policy improves the overall throughput (I/O rate), but it can lead to discrimination of indivi-
dual requests. For the SCAN policy, the disk arm operates like an elevator as it moves up or
down in one direction. It only changes direction at the innermost and outermost cylinder of
the disk. Thus, every cylinder is reached during a scan of the cylinder. Consequently, SCAN
provides lower response time variance than SSTF, but a slightly increased response time for
the requests. Several variants of the SCAN and SSTF algorithms have been proposed (see
[Dei90] for a survey). Note that these methods were proposed almost thirty years ago. At
that time, access time was clearly dominated by seek time. This might be one of the rea-
sons that policies try to improve seek time, but not rotational delay. Moreover, rotational
scheduling is often considered to be unnecessary for disks [Smi81], since it is rare to have
more than one I/O request outstanding for the same cylinder. Scheduling with respect to
rotational optimization has also been considered, but the approaches are primarily designed
for fixed-head disks such as drums [SF73, Ful74]. More recently, a disk scheduling policy was

examined in [SCO90] and in [JW91] that selects the request with minimum positioning time.

In [CJL89, AG92], scheduling of I/O requests was considered with respect to a completely
different objective. The basic idea is that priority is assigned to the I/O request such that
scheduling does not select requests according to seek time, but according to priority. This

situation occurs in real-time databases where transactions have to fulfill deadlines.

Scheduling of I/O requests have almost always been discussed under the assumption that
there is a significant number of requests in the queue. For example, in [TP72] a queue length
in the range of 100 to 140 has been considered. In general, this assumption is not justified.
In [GD8T], results have been reported from experiments on a real system. These results have
shown that the utilization of a disk is quite low. The number of requests waiting in the queue
while another I/O request was being serviced was on the average about 0.2. King [Kin90]

stated that systems with average queue length longer than 1 are rarely found in practice.

14 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

Instead, he pointed out that successive accesses to disks are usually done by one process
and that this process sends I/O requests to the disk one at a time. His conclusion was that
“time would be better spent looking at what to do when there is no queue”. More recently,
an extensive experimental comparison of various scheduling policies has been presented in

[WGP94| where the influence of disk caches, in particular, is taken into account.

2.3 Clustering

The most important factor to efficient query processing is that the records of the response set
of a query are stored close to each other on disk. The term clustering refers to that vague idea.
In a DBS, clustering can be achieved at several levels of abstraction. The different approaches
can be differentiated according to the underlying objects considered for clustering such as

records, pages and files (or relations).

Many applications for database systems, e.g. organization of spatial objects, require
efficient processing of range queries and other proximity queries. The efficiency of proximity
queries is achieved by using access methods which assign objects to a page according to
their spatial location. A page required for answering a proximity query, then, contains in
general several answers fulfilling the same query. Consequently, the number of page requests
is substantially lower when objects are clustered in comparison to the number of requests
when objects are stored at a random position in the file. For spatial database systems in
particular, such access methods are indispensable to efficient query processing. Moreover, a
database system can aim at storing certain pages of a relation contiguously (or on the same
cylinder), if these pages are expected to contain common answers of queries. For example,
a spatial access method would improve performance of proximity queries, when pages with
spatially close objects are kept contiguously on disk [HSW88]. Similar ideas were examined

for a special B*-tree, called VSAM [KL74], almost twenty years ago.

In contrast to a DBS, operating systems are not aware of the special semantics of a file.
Therefore, structural information is only used for clustering pages. Operating systems cluster
pages of a file according to their logical position in the file. Pages logically adjacent in the
file are stored physically close to each other on disk. Of particular interest is the question of

where a new page of a file should be stored on disk. For example, in the “new” file system of

2.4. BUFFER AND CACHE ORGANIZATION 15

UNIX [MJLF84], new pages of a file are preferably placed at rotationally optimal positions in
the cylinder where space for the file has been allocated last. If this is not possible, a cylinder
is chosen in the same cylinder group. However, the space in a cylinder group still might not be
sufficient for large files. A cylinder is then randomly selected from those cylinders that offer
a large fraction of free pages. Although this strategy provides clustering of pages, files may
become severely fragmented when records are frequently added and deleted. In that case, a
global reorganization of the disk can establish contiguity of all the files again. However, such

a reorganization is expensive and it should be avoided whenever possible.

Eventually, DBSs and operating systems support clustering of relations and files, respec-
tively. A physical disk is usually partitioned into a few contiguous parts, called partitions
or extents. Two relations (files) are clustered together in an extent, if queries often require
access to both of them. For example, a join operator requires access to several relations which

should be preferably kept together in a common extent.

The problem of clustering files becomes more complex if the I/O system is assumed to be

located on a large disk array [CABKS88, WSZ91] or distributed over several sites [DF82].

2.4 Buffer and Cache Organization

In order to reduce the performance gap between fast main memory and slow secondary sto-
rage, buffers and caches have been proposed to keep a large fraction of secondary storage
main-memory resident. Buffers are getting cost-effective because the cost of DRAMs is de-
creasing by a factor of 30% annually [HP90]. Cost reduction is even higher for main memory
than for magnetic disk. Moreover, it is remarkable that the data density on a DRAM has been
improved by a factor of 1000 over the last twenty years. This is a factor of ten higher than
the improvements achieved for density on magnetic disks. However, main memories which
are large enough to keep all data resident in main memory are still too expensive for most
applications. The reason is that along with the development of main memory the amount of
data is also dramatically increasing such that more and more secondary storage is required

in computer systems [Gel89].

In general, the primary goal of a buffer is to reduce the number of accesses to disks.

16 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

The buffer area is subdivided into (buffer) frames, and each frame can contain a page from
secondary storage. A buffer fault occurs when access to the disk is needed because a requested
page is not in the buffer. If an empty frame exists, the requested page is then read into one
of the available buffer frames. Otherwise, when all frames are occupied, one of them has to
be made available using a replacement policy. This policy is only allowed to consider the
replacement of those pages which are not currently used by an another process. When the
replacement policy selects a frame with a so-called “dirty” page, i.e. it has been modified but
not written back to disk, the page first has to be written back to disk before another page

can use its frame.

The most popular replacement policy is LRU (least recently used) [EH84], which replaces
the page that has not been referenced for the longest time. The efficiency of LRU is based
on the fact that a page has a high probability of being accessed again within a short period
of time. For some of the relational queries, the reference pattern can be predicted rather
well such that other replacement policies are more efficient than LRU [SS86, CD85, TG84].
For example, the LRU policy is not appropriate for sequential scans of a relation where a
page can be immediately replaced after it is processed. In [JCL90], a more general approach
has been presented that makes use of priorities given to the pages in the buffer. If a page
has to be replaced, the one with the lowest priority that has been not accessed in the recent
past is chosen. Another interesting generalization of LRU, called LRU-k, was proposed in
[OOW93]. The basic idea is to take into account not only the last reference to a page, but
the last k references, £ > 1. This leads to a better prediction of the future reference pattern

in comparison with the original LRU policy.

As important as replacement policies are the strategies for writing back modified pages
from the buffer to disk. There are two different approaches on how to deal with write
requests. The force policy, also called the write-through policy, a write request results in the
corresponding pages to be written to disk immediately. The no-force policy, also called the
write-back policy, copies the modified page into a buffer frame and defers the I/O operation
until later. For the no-force policy, the response time of a write request does not include
anymore the time required for writing the page to disk. However, the process which has

issued the write request does not have the guarantee anymore that the modified page is in

2.4. BUFFER AND CACHE ORGANIZATION 17

safe memory. Thus, transaction processing under the no-force policy is more complicated

than under the force policy [GR93].

So far, we have assumed that in case of a system failure, e.g. if the power supply is shut
off, the contents of a buffer are lost. This might not be true anymore for some of the current
and most of the future computer systems. Storage built up from DRAMs can be made non-
volatile using battery backup. In particular, the low power consumption of todays DRAMs
has made this development possible. Non-volatile storage (NVS) can be differentiated into

three classes (see also [Rah92]):

e Solid state disks (SSDs) are the most common approach for NVS. An SSD is not a
mechanical device, but simply built up of DRAMs. It is still accessed like an ordinary
magnetic disk by using the same interface. The advantage of SSD is that positioning
time can be ignored so that access time only refers to the sum of controller and transfer

time (in the range of 1 —3 ms). The architecture is illustrated on the left of Figure 2.2.

e Some disk systems (e.g. IBM 3990 [CKB89]) provide a non-volatile cache in the con-
troller. Such a cache is also called a write-cache. indexwrite-cache As discussed for
SSDs, positioning time is almost completely avoided. The architecture is presented in

the middle of Figure 2.2.

e FEzpanded storage is used in IBM 3090 mainframe computers as a 4 KB page addressa-
ble extension of main memory [CKB89]. Expanded storage can only be used through
a special interface for reading pages from expanded storage and for writing pages into
expanded storage. The interface protects expanded storage against errors, e.g. address
violation, which occur frequently in main memory. As illustrated on the right of Fi-
gure 2.2, expanded storage can be made non-volatile by simply using battery backup

[CKKS89)].

The advantage of the last approach is that access to slow controllers and slow buses is com-
pletely avoided. Access time of a page in expanded storage is about 75 us for the IBM 3090
[CKBB89], i.e. a factor of 20 faster than access to a solid state disk.

Non-volatile buffers can be used to improve response time because a write request succeeds

when the page is copied into the frame of the buffer rather than when it is written on magnetic

18

CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

Figure 2.2: Design of several non-volatile storage architectures

2.5. DISK ARRAYS 19

disk. Similarly to volatile buffers, the question arises of when a dirty page should be written
back to disk. There are two conflicting goals that are attempted to be fulfilled. On the one
hand, the response time of a write request should not include the time for writing back a page
to disk. This situation would occur when the buffer is completely filled up with dirty pages.
Then, the next request (for a page that is not in the buffer) would have to wait until one
of the dirty pages is written back to disk. On the other hand, writing back a dirty page to
disk can completely be avoided, if another write request refers to the same page. Obviously,
a large number of dirty pages in the buffer increases the probability that a write request hits
one of them. For a buffer of reasonable size, the force policy can achieve the first goal, but
it does not make use of locality of references. Thus, a policy similar to no-force seems to
be more advantageous. Another advantage of no-force is that several write operations can
be merged in a batch, as suggested in [CKB89]. The amortized time for performing a write

operation can then be substantially reduced.

Another interesting approach for using non-volatile buffers has been presented in [SO90].
The basic idea is to piggy-back write requests, which are kept in a separate write-only cache,
onto read requests, at little or no cost. For example, since a random read results in a rotational
delay of half a track on average, the disk arm passes over a few pages without interacting
with them. However, if one of these pages is in the cache waiting to be written to disk, the
corresponding write request can be performed during the rotational delay of the read request.

Thus, the write request can be satisfied without any additional cost.

2.5 Disk Arrays

Over the last five years, many researchers have focused their attention on designing parallel
disk systems, also called disk arrays. The basic idea of disk arrays is as follows: in order to
improve the I/O rate and the transfer rate, data is distributed over a large number of uniform
disks (i.e. the disks should be of the same type). Ideally, several I/O requests can be serviced
in parallel and a large I/O request can read (write) data in parallel from (to) several disks. In
the best case, a disk array can improve the transfer rate and I/O rate (defined as the number
of I/0O requests per second) linearly in the number of its disks. Note that the access time of

an I/0 request is only reduced if it transfers a sufficiently large amount of data. For most

20 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

database applications, the transfer rate of a single disk is almost always sufficiently high, but
the I/O rate might be by far too low. In order to provide high I/0O rates, disk arrays should
obey the following suggestions, see [SLI1]:

e The arms of disks in an array should move independently of each other, so that the

disk array can satisfy several I/O requests at the same time.

e Data should be striped in large units over the disk such that small I/O requests are

restricted to a single disk. However, large I/O requests should exploit parallelism.

Synchronization of disk arms and small striping units might, however, be beneficial in other
applications, e.g. supercomputing, where huge amounts of data have to be transferred into

main memory.

One of the most serious problems of disk arrays is that reliability declines linearly in
the number of disks [PGK88]. In order to improve reliability, redundancy of data has been
introduced for disk arrays. In [PGK88], the term RAID (redundant and inexpensive disks)
has been coined to refer to reliable disk arrays. The authors distinguished between five levels
for RAID called RAID-1,...,RAID-5. For database applications, the most interesting RAID
approaches are RAID-1 and RAID-5. RAID-1 is more commonly referred to as mirrored
disks and shadowed disks [BG88].

2.5.1 Mirrored Disks

The basic idea of mirrored disks is to store a physical copy of a disk on a second disk. Thus,
there is a storage overhead of a factor of 2, i.e. double the number of disks are required for
storing the data in comparison to storing data without redundancy. If a page is read, one of
the two disks is chosen to retrieve the page. In general, a read request is serviced from the
disk whose arm is closest to the desired page. When a page is written, the same write request
is issued on both of the disks. Both disk arms of the mirrored disks then have to be positioned
to the desired track where the page has to be written. Therefore, if the next request after
reading a page is a write request, the corresponding cost is higher compared to using a single
disk. Otherwise, i.e. if the next request is a read operation, the cost for reading is lower.

In [BG88], access time for mirrored disks is analyzed under the unrealistic assumption that

2.5. DISK ARRAYS 21

each disk arm of a pair of mirrored disks is randomly positioned (independent of the other
disk arm) on the surface of the disk. Actually, the cost formulas presented in [BG88] for
the access time of a read request and a write request represents only a lower and an upper
bound of the expected cost, respectively. Disk arrays built up from mirrored disks are very
reliable. A failure of the disk array occurs if both disks of a pair of mirrored disks will be
defective. Following the formula in [PGK88|, the mean time to failure, MTTF for short, of
a disk array of 100 mirrored disks is about 75 years under the pessimistic assumptions that
first, the MTTF of a single disk is 3 years and second, the mean time to repair (MTTR) the
disk array (i.e the expected time for substituting the defective disk) is 5 hours. In case of a
failure of a disk in the array, the load of a pair of mirrored disks is put on the surviving disk.
The increased load during the time period required to replace the defective disk by a new
disk could be a problem. The replacement of a defective disk also includes copying the data
on the surviving disk to the new disk. This further increases the load on the surviving disk.
Other approaches based on mirrored disks [CK89, HD90| overcome these problems using
other policies on how the copy of the original disk is distributed in the disk array. Reliability

of these approaches is still sufficiently high, but not as high as for mirrored disks.

2.5.2 Reliability Using Parity Bits

Besides mirrored disks, RAID-4 [Ouc78, SGM86] and RAID-5 [PGKS88] are the most ap-
pealing approaches of disk arrays for database applications. For simplicity, let us first re-
strict our presentation to RAID-4. Assuming an array of N disks, the basic idea of RAID-4
is to distribute the data in units of blocks (or larger) over the first N — 1 disks. The N-th
disk of the array, also called the parity disk, is used for keeping redundant data. Hence,
there is only a storage overhead of a factor of % That is an obvious advantage in com-
parison to mirrored disks. Let P[i,j] be the page on the i-th position of the j-th disk,
page P[i, N] on the parity disk is computed by XORing pages P[i,1],...,P[i, N — 1] bit-
wise. In case of a failure of disk jy, the page P[i,jo] can be reconstructed by XORing pages
P[i,1], ..., P[i,jo — 1], Pli, jo + 1,..., P[i, N].

A read request refers to a single disk while a write operation affects the parity disk and

the disk where the (data) page is stored. Writing page P[i, j] results in the following steps:

22 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

1. Read the parity page P[i,N]. If the old copy of P][i, j] is not available anymore, read the
“old” page Pl[i,j] from disk into Pold[i, j].

2. Compute P[i, N] as (Pold[i, j] XOR P[i, j]) XOR P[i, N].
3. Write pages P[i, N] and P[i, j| to disk.

A write operation requires (at most) four disk accesses, two reads and two writes, where both
writes and both reads can be done in parallel. Hence, a write operation in a RAID-4 is more
expensive than a write operation for a single disk. Because each write results in two accesses
to the parity disk, the parity disk might become the bottleneck for RAID-4. In order to
overcome this problem, RAID-5 [PGK88] does not use a parity disk anymore, but distributes
the parity blocks evenly over all the disks in the array.

For N > 2, RAID-4 and RAID-5 are not as reliable as mirrored disks because a failure of
two disks in the array at the same time results in data loss. For a disk array of 100 disks, an
MTTTF of 3 years per disk, and an MTTR of five hours, the MTTF of the disk array is about
one and a half years. In order to obtain higher reliability, the disk array can be partitioned

into several small groups, where each of them is independently organized as a RAID-5.

In case of a disk failure, the additional load for RAID-4 or RAID-5 is higher than the
one for mirrored disks. The reason is that read requests require access to each of the N — 1
surviving disks. For the same reason, rebuilding a RAID-4 or RAID-5 disk array is more

expensive in comparison to mirrored disks.

2.5.3 Exploiting Write-Caches in Disk Arrays

In the previous subsections, we have presented the basic ideas of the most common disk arrays
used for database applications. We have not considered several important details. One of
them is the design of disk array controllers. Disk array controllers are a rather complex piece
of hardware. It is probably one of the reasons that disk arrays are not as inexpensive as
once promised [PGK88]. A major difference to ordinary disk controllers is that a disk array
controller contains large caches for buffering pages. Since one of the most serious drawbacks
of disk arrays is the high cost for writing data, exploiting write-caches has recently been

considered for RAID-5 [MC93] and mirrored disks [PBD93].

2.6. MULTI-PAGE REQUESTS 23

First, let us discuss the approach to mirrored disks presented in [PBD93]. The idea
for improving the performance of mirrored disks is to use a buffer (if possible non-volatile)
efficiently. Consider a pair of mirrored disks labeled A and B. Write operations are not written
to disk, but collected in the buffer until a certain number of operations has been accumulated.
Then, the write operations (of the dirty pages in the buffer) are applied as a batch to the
disks. First, disk A is used for writing the buffer while disk B services read requests for those
pages that are not in the buffer. Next, the buffer is written out to disk B and read requests
are performed on disk A. Thus, each disk alternates between time periods of write-only and
read-only activity. The time period in which no write operations are performed on disks can
be used to improve the response time of read requests as originally introduced in [BG88].
Moreover, in such time periods disk arms are never synchronized such that the average seek

time indeed refers to the cost formulas given in [BG88].

In [MC93, SGHY0] similar ideas have been presented for RAID-5. In comparison to the

approach for mirrored disks, these approaches designed for RAID-5 seem to be more complex.

2.6 Multi-Page Requests

In the previous sections, we already presented approaches where several page requests are
merged into a multi-page request. A multi-page request is performed like a batch so that other
requests have to wait in front of the disk while the multi-page request is serviced. Almost
all of the approaches presented in the previous sections are only concerned about improving
write requests. In the following, our emphasis is put on how to improve the performance of
read-only queries by using a buffer so that multiple pages can be transferred in a single read

request.

One of the most popular techniques for improving I/O performance of read requests
is prefetching [Smi76], also called prepaging [Tri79] and anticipatory paging [Dei90] in the
context of virtual memory systems. Prefetching transfers one or more pages into a buffer
without satisfying an explicit read request for one of these pages. In order to be efficient,
prefetching only considers those pages which are likely to be required in the near future. In
general, prefetching is used when a page fault occurs. Then, the required page and multiple

physically adjacent pages are read into a buffer. Reading physically adjacent pages avoids the

24 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

cost of positioning the disk arm. Thus, pages can be read for the expense of a page transfer.
A scan of a complete file is an example that shows the benefits of prefetching. When page ¢
causes a page fault, pages ¢ +1,...,7 4+ k should also be brought into the buffer because it is
likely that one of the next requests will ask for those pages. For a scan of a file, the efficiency
of prefetching depends on how well the file is clustered on disk. If only a fraction of the pages
in a file is required, the performance of prefetching declines because many pages transferred
into the buffer are not used during their stay in the buffer. However, more sophisticated
prefetching techniques may overcome such problems [CKV93, PZ91]. Prefetching is already
implemented as an optimization technique in many commercial DBSs such as IBM’s DB2

[CLSW84, TG84] and Tandem’s NonStop SQL [BP88].

The term prefetching is mostly restricted to request patterns which are not known at
present. However, there are many situations where the sequence of pages required for perfor-
ming a query is entirely or partially known shortly after the beginning of query processing.
Instead of reading one page at a time, the required pages can be read as a batch in a single
multi-page request. The pages in a batch can be read in arbitrary order, but we are inte-
rested in the order that will minimize the response time for retrieving the required pages.
Note that scheduling policies also try to find an “optimal” order for processing I/O requests,
but optimality is not only restricted to improving the cumulative response time of all re-
quests. The approach of multi-page requests is also termed set-oriented I/O [Wei89] and
bulk I/O [BP88]. Multi-page requests have been demonstrated to be beneficial for reading
large objects from disk [CHMWS87, Wei89, KGM91]. However, multi-page requests can also
be considered for improving data-intensive selection queries. For example, NonStop SQL
[BP88] offers the possibility of reading physically contiguous blocks in a single request when
a range query is performed. In [SLM93], under the assumption of a simple disk model, the
benefits of multi-page requests are shown for selection queries on a sequential file, where the

queries are evaluated by using a secondary index.

The idea of multi-page requests is increasingly used for current disk systems. Because of
the availability of non-volatile disk caches, write operations can be assumed to be completed
when the modified page is in the cache. The physical write operation (to disk) can be deferred

to a later point in time. The time for performing a physical write can then be reduced by

2.7. CONCLUSION 25

combining multiple write requests of adjacent pages into a multi-page request [SO90]. This
is particularly beneficial for disk arrays where write requests are more expensive than on

ordinary disks [MC93, PBD93, SGH90].

2.7 Conclusion

In this chapter, a general introduction was given to query processing and query optimization
in a DBS. Due to the high abstraction level of DBSs, query optimization is of great im-
portance for improving the performance (w.r.t. high throughput and short response times).
Performance depends on both CPU-time and I/O-time required for answering the query. In
the current state of hardware development, I/O-time is increasingly the dominant cost com-
ponent. The most common approach for improving I/O performance is to design new data
structures (e.g. index structures) and algorithms (e.g. for join processing) and to make these
available in the physical level of a DBS. However, our discussion was primarily related to the

lowest level of the DBS, where the buffer manager and the file system is implemented.

The lower levels of the DBS also offer great potential for improving I/O performance of a
query. However, this potential has only been exploited to a limited extent so far. One of the
most appealing approaches is the technique of multi-page requests. A special form of multi-
page request, called prefetching, is already implemented in commercial products [CLSW84].
However, prefetching is only applicable in a few situations, whereas multi-page requests can
generally be used whenever multiple pages have to be read from magnetic disk. In order
to incorporate multi-page requests into a DBS, the algorithms of the physical level have
to be modified so that multi-page requests are used instead of reading pages one at a time.
Moreover, since multi-page requests greatly affect performance, new cost functions have to be
introduced so that the query optimizer can take multi-page requests into account for selecting
a good query execution plan. In general, a complex query starts processing with selection
operators before more expensive operators (e.g. join and projection) are executed. Thus, I/O
performance greatly depends on how efficient selection queries (operators) are performed,
whereas other operators read the input data directly from the buffer in main memory or (if

main memory is too small) from a temporary file stored contiguously on magnetic disk.

Previous cost functions [Wat76, Yao77], that are applicable for selection queries when pa-

26 CHAPTER 2. 1/0O OPTIMIZATION TECHNIQUES

ges are read one at a time, are no longer valid when multi-page requests are used. Otherwise,
the probability would be very low that the query optimizer will find an optimal execution
plan. One of the most serious objection to these cost functions and also to more sophisticated
ones [SGT76, Kol78] is their independence of the underlying disk architecture. Due to the re-
duced complexity of the underlying disk models, the resulting cost functions are simple, but
unfortunately results are not very accurate. As observed in [ML86], cost functions generally

overestimate the actual cost.

In the following chapters, we present more accurate cost functions that can be used for
estimating the I/O cost of selection queries which exploit multi-page requests. In particular,
these cost functions take into account the disk geometry more than other known cost func-
tions. Before we get into cost functions, however, a detailed discussion is required on the

current state of disk technology.

Chapter 3

Magnetic Disk Systems

Despite numerous predictions to the contrary, magnetic disks have dominated secondary
storage for the last thirty-five years. In comparison to other storage media, the advantages of
magnetic disks are founded on low cost for a reasonably fast and reasonably large non-volatile

storage medium.

In the first section, a review is given of the most important properties of present disk
technology. Our discussion on magnetic disks gives more details than usually found in data-
base and operating system literature, but it is still restricted to those properties relevant to

our approaches. An excellent survey can also be found in [RW93a, RW94].

In the second section of this chapter, several disk models will be presented. In a DBS,
disk models serve as a basis for designing efficient query execution plans and for estimating
the cost of queries. The efficiency of the execution plan for query processing increases with
model accuracy. However, query processing costs are difficult to estimate for a complex disk

model.

3.1 Disk Technology

A magnetic disk drive is a collection of platters rotating on a spindle at a constant speed,
about 3600 to 7200 revolutions per minute (rpm). Instead of disk drive, the short term disk
is used in the following. Both surfaces of a platter are coated by a very thin metal film whose

thickness is less than 1 micron. The platter diameter of today’s disks is between 1.8 inch and

27

28 CHAPTER 3. MAGNETIC DISK SYSTEMS

Figure 3.1: Disk architecture

5.25 inch. Each of the surfaces of a platter is divided into concentric circles known as tracks.
There are typically 500 to 2000 tracks per surface. Each track is in turn divided into sectors
where data can be stored. A sector is considered to be the smallest unit that can be read from
and written to disk. In front of each sector, there is a gap that contains the address and the
status of the sector, data for error correction, and some additional information explained later.
A movable arm containing a read/write head is attached to each of the surfaces. The arms
of a disk drive are connected and move synchronously so that the corresponding read/write
heads are (almost) on the same track for each of the surfaces. However, only one of the heads
can be active, i.e. reading and writing data, at one time. The term cylinder is used to refer
to all the tracks under the read/write heads at a given time. For today’s disks, the arms
are implemented similarly to an ordinary arm of a record player. The arms are positioned
by a voice coil motor that linearly moves the arms in one draw to the desired track. The
read/write heads float on a cushion of air over the surfaces. The distance between platters

and heads is only about 0.2 micron.

One of the reasons for the success of magnetic disks is the improvement in recording
density. For magnetic disks, there are two distinct measures of density. One refers to the
density of bits on a track, called the linear density, given in bits per millimeter (bpm), whereas
the other, the track density, refers to the number of tracks per millimeter (tpm). The area
density is simply the product of both. The area density of magnetic recording has been

increasing constantly (doubling every two and a half years) for thirty years [Hoa85]. This

3.1. DISK TECHNOLOGY 29

development allows a constant increase in the capacity of disks although the diameter of the
platters is decreasing. The IBM 3390, introduced as the top disk model of IBM in 1989, offers
a linear density of 1100 bpm and a track density of 98 {pm. In comparison, the predecessor
disk, the IBM 3380 introduced in 1981, has a linear density of 600 bpm and a track density of
32 tpm. A more recently introduced disk, the Quantum Pro Drive, offers essentially higher
area densities than the IBM 3390, see Table 3.1. For the near future, even higher density
improvements have been announced, based on the assumption that giant magnetoresistive

head technology [Sci93] will replace the current one in a few years.

Disk technology does not depend solely on high record densities, but also on mechanical
precision [Hoa85]. This is demonstrated by the following discussion on positioning read/write
heads. The positioning accuracy of a head can be controlled using only a dedicated servo
surface. For such a disk, the heads on each of the surfaces are aligned at the same track. The
advantage of this approach is that switching between heads does not cause any mechanical
delay and hence almost no time delay. However, in order to achieve a higher track density,
most of the present disks additionally prerecord the servo information in the gaps between
sectors. Note that track densities are so great that even thermal differences between platters
make it impossible to write and read data accurately on all surfaces using only the information
from the servo surface. Consequently, the heads are no longer aligned to be exactly on the
same track. Whenever a read/write head is activated (e.g. switched from one head to
another), the arm first reads the servo information from the surface and then, if the need
arises, tunes the head position. This operation is also called a head switch. The head switch
time refers to the time required for switching from one read/write head to another. The head
switch time of present disks is in the range of 0.5 ms and 3 ms. For modern disks, the head
switch time of a read request is less than that of a write request. The reason is that a sector
can be read from a disk although the arm is not exactly above the track. If some data of the
sector is lost it can frequently be rebuilt from the error-correction information. On the other

hand, writing a sector requires that the disk arm is precisely positioned on the track.

In order to read from or write to a sector, the arm first has to move to the proper track.
This operation is called a seek and the time required to move the arm to the desired track is

called seek time. For long seeks, the disk arm accelerates up to some maximum velocity, then

30 CHAPTER 3. MAGNETIC DISK SYSTEMS

cruises at constant velocity, then decelerates back to zero, and eventually settles onto the
desired track. For short seeks the arm accelerates up to the halfway point, then decelerates
and settles. This behavior can be well approximated by a two-part function where one part
refers to a linear and the other part to a square function. For example, the seek time of
Tandem’s XL80 disk is approximated to within 5% by the following formula [GHW90] where

M refers to the number of cylinders:

2.5+ 0.32V/dist it dist > M/5
seek_time(dist) = { —ic_iist—M/s b s /
7+ o

dist € {1,..., M} (3.1)

otherwise
Cost functions for estimating seek time are very similar to formula 3.1 and can be found in
many publications, see for example [HP90]. The average seek time is defined as the cumulative
time required for all possible seeks divided by the number of all possible seeks. Under the
assumption that seek time increases linearly with the number of tracks, the time required
for traveling over a third of the tracks refers to the average seek time. Therefore, this time

(seek_time(M/3)) is often used as an approximation to the average seek time.

After arriving at the right cylinder, the arm waits until the platter is rotated into the
position where the desired sector starts. This time is called the rotational delay. The average
rotational delay is given as half a revolution of the disk. Disks that rotate at 5400 rpm and
3600 rpm have an average rotational delay of 5.6 ms and 8.3 ms, respectively. The sum of

seek time and rotational delay is also called positioning time.

Finally, the sector is transferred into main memory. The required time for this is known
as transfer time. The transfer time for a sector can be simply computed as the size of a
sector divided by the maximum throughput of a disk. The maximum throughput of today’s
magnetic disks is in the range of 2 to 5 M B per second. Note that throughput of disks is
usually lower than the bandwidth of the bus that connects disk and main memory. In general,
an I/0 request is not restricted to a sector, but to a number of sectors contiguously stored on
disk. For example, a database system transfers data in larger buckets. Such a bucket is called
a page in the following. For a typical size of a page, e.g. 8 KB, the transfer time is between
1.5 and 4 ms for today’s disks. It is interesting to note that the transfer time of a page is not
fixed for a disk. The reasons are twofold. First, the record density of a track depends on its
distance from the center. This feature is discused below in more detail. Second, some pages

cross track boundaries and therefore, their transfer includes a head switch. The transfer time

3.1. DISK TECHNOLOGY 31

Fujitsu M2652 IBM 3390 Quantum ProDrive
year introduced 1993 1989 1992
disk diameter [inch] 5.25 10.8 3.5
area density [bits/mm?] 107800 209000
capacity [GByte] 2.055 11.3 1.05
minimal seek time [ms] 2 2 3
average seek time [ms] 11 9.5 10.5
avg. rotational delay [ms] 5.56 7.1 6.7
I/0O rate [seeks/s] 53.88 52.87
number of platters 12 6
capacity per track (net) [Byte] 45056 23040-49152
capacity per track (gross) [Byte] 52864 23940-51072
transfer rate (async) [MB/s] 3.0 4.2 2.3 - 4.67

Table 3.1: Specifications for some magnetic disks

for those can be double or more the transfer time of an “ordinary” page.

The performance measures of some disks are reported in Table 3.1. The I/O rate refers
to the “expected” number of page requests that can be satisfied in a second. The I/O rate
can be simply computed by using the average access time. The average access time of an I/O
request is equal to the sum of average seek time, average rotational delay and transfer time.
For example, the Fujitsu M2652 has an average access time of 18.56 ms for a page of 8 KB.
Thus, the I/O rate is about 53.88 page requests per second. For transaction processing in
particular, the I/O rate of a disk is more important than throughput. The minimal seek time
refers to the time for moving the disk arm to an adjacent cylinder. The minimal seek time is
also frequently quoted as the track-to-track seek time. The gross capacity of a track refers to
the space occupied by sectors and gaps, whereas the net capacity refers only to the amount
of space required by sectors. One of the most important properties of magnetic disks is high
life expectation. The mean time to failure (MTTF) is the expected life span of a disk given
in hours. In general, MTTF is more than three years. Some of the disk manufacturers give

a guarantee of five years for their magnetic disk drives.

So far, only the cost that directly occurs on a disk has been taken into consideration.
However, disks are connected to main memory through a disk controller and therefore other

cost components may occur when an I/O request is satisfied. Obviously, there is some time

32 CHAPTER 3. MAGNETIC DISK SYSTEMS

overhead at the disk controller. For example, disk controllers have to select channels for
transferring both sectors and commands between several I/O requests and multiple disks. In
general, however, the time spent on the controller is only a small portion of the time spent

on the disk (usually less than 1 ms per request).

When a disk controller is connected to several disks, delays can occur when two disks
are ready for transferring data at the same time. This situation can obviously be avoided if
a disk is the only one connected to the controller while the disk satisfies the corresponding
I/O request. As a result, I/O requests on other disks have to wait for the disk controller
to become available although the disks are idle. The disk controller itself is also idle most
of the time because it is waiting for the I/O request to transfer data. In order to reduce
the idle time of a disk controller, a different strategy is pursued. Since the transfer time
is only a small portion of access time, the controller disconnects from the disk while the
arm moves to the desired position so that other disks can transfer data into main memory.
This is called rotational positioning sensing (RPS). If the controller is not available when
the disk attempts a reconnection, a so-called RPS miss occurs. The disk then has to wait
through another rotation before the next attempt can take place. As shown in [HGPG92]
and as introduced already for some disks [HP90], a buffer on the disk might be a solution for
avoiding RPS misses. The following situation might then occur for a controller connected to
more than two disks: one disk can be seeking and others loading their buffer while another
is transferring data from its buffer. In addition, a buffer on the disk can reduce the number
of disk accesses and thus can have a substantial impact on the average access time [RW94].
Disks with large buffers (1 M B) are rather common today. Another approach that almost
eliminates RPS misses is based on the use of alternate pathing [CKB89].

While a disk satisfies an I/O operation, other page requests have to wait in a queue in
front of the disk. The time a request spends waiting for the disk to become available is
called the queuing delay. If the queue contains more than one I/O request, the requests
are scheduled according to a certain policy. The problem of efficient scheduling policies has
been extensively discussed in the literature, see [Dei90] for a survey. Currently, there is some
debate about the actual length of request queues in front of the disk. In [Kin90] it is stated
that the average length of the queue is rarely longer than one request, whereas in [RW93b)]

3.1. DISK TECHNOLOGY 33

Figure 3.2: Layout of sectors (vertical alignment on the left and track skewing on the right)

queue length of 50 and more requests are shown to be rather common in real applications.

Important for reading data from a disk is how addresses are assigned to sectors. The
primary goal of address assignment is to organize the sectors in a linear sequence according
to their physical position. After having read a given sector its successor sector should then
be read with very little or no time delay. An address of a sector is composed of its position
on the track, and the addresses of its surface and its cylinder. The position on a track is
defined relative to an track index kept at the beginning of a track. First, let us discuss the
approach where the indices are vertically aligned for each track in a cylinder. Then, when an
I/O operation requires the last and the first sector of two consecutive tracks, a head switch
has to be performed after transferring the first sector. Since head switch time is so high that
the first sector on the next cylinder cannot be read immediately, an additional disk rotation
is necessary. This undesirable situation can be avoided, when the index of the next track
is staggered by some sectors so that a sequential read over multiple “adjacent” tracks does
not result in missing a full rotation. This technique is also called track skewing and can
be found in almost all disks. In Figure 3.2 both approaches are illustrated for a disk that
consists of 4 surfaces, each of them containing 8 sectors. The gray-colored pattern shows
the position of the index in the track. In our example, the index of a track is located one
sector after the index of the predecessor track. In a similar way as illustrated for tracks,
the sectors of adjacent cylinders can be glued together (cylinder skewing). Then, sequential

reading (writing) of sectors does not cause a delay of a full rotation when the disk arm crosses

34 CHAPTER 3. MAGNETIC DISK SYSTEMS

10000 = T T T T 7
: linear density — :
1000 = track density/—El— i
: e]
00 —
density / """"" g EI/B:
10 ¢ éaa/g/zﬂ """ 3
1 b -
01 i | | | | | |]
1955 1960 1965 1970 1975 1980 1985 1990

year

Figure 3.3: The development of linear and track density for IBM disks [HBP*81]

track and cylinder boundaries.

Several properties of disks make address assignment more complex than it seems to be
at first glance. So far, it has been assumed that data can be kept in each of the sectors.
However, this is generally not true. Even for a new disk, there are some “bad” sectors which
cannot keep any data. These bad sectors are immediately replaced by so-called spare sectors.
A disk contains some spare sectors which are only used for the replacement of bad sectors.
In general, spare sectors are stored on every track either before or after the index. Moreover,

there are disks with spare cylinders which are used for the replacement of a complete cylinder.

Another property of today’s disks is that the number of sectors on a track depends on its
perimeter. Most of the disks partition the surface of a platter into a few contiguous zones
of cylinders. In each zone, the tracks in the cylinders consist of the same number of sectors,
but the number of tracks is lower in those zones which are closer to the center of the disk.

This technique is called zoned bit recording.

The development of magnetic disk technology has shown almost the same behavior for
several years. As already mentioned, the success of magnetic recording, in particular for

magnetic disks, is based on the improvements in area density. In Figure 3.3, the historical

3.2. DISK MODELS 35

development of linear and track density is illustrated for some IBM disks. In 1957, the
IBM 350 was the first production movable-head disk offering a linear density of 3.93 bpm
and a track density of 0.78 tpm. In comparison, the IBM 3390, currently one of the most
powerful disks of IBM, has a linear density of about 1100 bpm and a track density of 98 tpm
[Wo090]. Linear density has been improved at a slightly higher rate than track density. For
the near future, magnetic recording density is expected to improve even faster than during
the last decade [Wo090]. In particular, transfer rate will be improved for future disks while
positioning time remains almost the same as for current disks. Although rotational speed has
been improved by a factor 1.5 to 2 over the last few years, it is unlikely that improvements will
continue. A further improvement of rotational speed would cause severe problems related to
energy consumption, frictional heat, mechanics and magnetic recording [Dei90]. In Figure 3.4,
the historical development of average access time is plotted for some IBM disks. The average
access time for a 4 KB page is illustrated with respect to its components such as average
seek time, average rotational delay and transfer time. The graph shows that the ratio of
transfer time to access time has been substantially reduced so that transfer time has not much
influence anymore on access time for today’s disks. In contrast to transfer time, rotational
delay did not much influence access time twenty years ago, but it can be expected to become
the dominant factor of access time in the near future. Moreover, because of locality in disk
references, the actual average seek time observed in practice is expected to be only 25% to
33% of the advertised number [CKB89, HP90]. If so, already for current disks, the major
portion of access time is not seek time anymore, but rotational delay. Overall, the primary
goals for optimizing I/O performance of disks should be to reduce seek time and rotational
delay. To preserve locality of references is one optimization technique that might help achieve

these goals. Other optimization techniques include the ones presented in Chapter 2.

3.2 Disk Models

In the previous section, the most important properties of current disk technology have been
introduced. Obviously, a disk is a rather complex piece of hardware that is difficult to model
accurately and in full generality. However, disk models are very important for designing

efficient algorithms (e.g. request scheduling in front of the disk) and for estimating the cost

36 CHAPTER 3. MAGNETIC DISK SYSTEMS

1000 ¢ T | T E
i seek time — 7
- rotational delay —+— -
100 transfer time H— o
time I iy
[m S] 10 E_ _E
1k !
01 I | | | | | | |
1955 1960 1965 1970 1975 1980 1985 1990

year

Figure 3.4: The development of access time for IBM disks [HBP*81]

of I/O requests, in particular for multi-page requests.

There are only a few papers, see [RW94] for example, that are concerned about modeling
of disks. Most of the studies related to DBSs assume a very simplistic disk model: the access
time is assumed to be constant for any page that is read or written. In general, the average
access time is used for estimating the cost of a page request. Let A be the average access time.
If N pages are required from disk, the cost estimation of the corresponding multi-page request
would be N * A, which is identical to the cost for reading the pages in N single-page requests
in arbitrary order. This approach is implemented in well-known DBSs such as System R
and System R* [ML86]. The advantage of this model is its simplicity. For estimating the
I/O cost of a query it is sufficient to compute the number of required pages. For example,
when a range query is performed on a file using a secondary index, the Waters-Yao formula
[Wat76, Yao77] provides an estimation for the number of page requests and hence, for the

I/0O cost.

In the following, three disk models are presented. In order to make these models as
simple as possible without sacrificing too much accuracy, we make the following simplifying

assumptions:

3.2. DISK MODELS 37

1. The time overhead of the controller can be neglected.
2. RPS can always be avoided.
3. Bad sectors do not occur.

4. There is no buffer on the disk.

The first three assumptions are mild abstractions of reality. Assumption 4 does not hold for
most modern disks. Moreover, Ruemmler and Wilkes [RW94] have shown that a buffer on
the disk has a serious impact on the average access time (since pages are frequently found in
the buffer). However, a buffer has only a limited impact on the performance of data-intensive
queries which require a page only once. In particular, this can be observed for selection

queries, the type of query that is primarily considered throughout the thesis.

The Linear Model

The first step in the direction of a better disk model is to differentiate between transfer time
and positioning time. However, each of them is still assumed to be fixed for an arbitrary page
on disk. Furthermore, a neighborhood relation of pages is modeled as follows. The pages of
a disk are linearly ordered such that every page, except the last, has a successor page. When

a page has been read, the successor page could be read without causing any positioning cost.

This linear model is still very simplistic, but it already takes into account that the time
for an I/O request depends on the request size and that there is some neighborhood relation
between pages on disk. The model is particularly used for analyzing the cost for accessing

large objects [Bil92, BK94].

The Idealized Disk Model

In order to come up with a better disk model the next step is to take into account the fact
that access time consists of three components: seek time, rotational delay and transfer time.
The transfer time is assumed to be constant, whereas the other components depend on the
position of the page previously read from disk. Furthermore, a disk is not viewed anymore

as a linear sequence of pages. Instead, every page is assumed to have several successor pages

38 CHAPTER 3. MAGNETIC DISK SYSTEMS

Figure 3.5: A cylinder under the assumption of the idealized disk model

that can be read without any delay (seek or rotational delay). The model makes the following

three assumptions:

e Head switch time is zero.

e The indices of the tracks are vertically aligned in a cylinder.

e A track consists of a fixed number of pages.

Now, a cylinder can be viewed as a two-dimensional array C;; of pages, 0 < i < PT,
0 < j <TC. The parameter PT refers to the number of pages in a track and the parameter
TC denotes the number of tracks per cylinder. The model would have represented the
architecture of disks almost perfectly ten years ago, but it does not at present. In particular,
the assumption of disregarding head switch time is not valid for a modern disk. Therefore,

we refer to this model as the idealized disk model (IDM).

An example of the layout of a cylinder (T'C = 5, PT = 4) is illustrated in Figure 3.5.
Consider that page C3 has been read from the cylinder. The address of the page is 14.
Then, a head switch can be performed to any other track such that one of the pages Cj ,

1 < j <5 can be read at the expense of a page transfer.

3.2. DISK MODELS 39

The Head-Switch-Time Disk Model

The head-switch-time model generalizes the idealized disk model with respect to several
points. First of all, head switch time is taken into account. Second, a page may cross a track
boundary. Finally, track skewing and spare sectors are also considered in the model. Note
that a cylinder cannot simply be pictured as a two-dimensional array of pages. In particular,
the mapping of pages to sectors is more complicated and will be discussed in greater detail

in Chapter 6 and Chapter 7.

40

CHAPTER 3. MAGNETIC DISK SYSTEMS

Chapter 4

Query Performance under the

Linear Model

In this chapter, we address the problem of reading a set of disk pages under the assumptions
of the linear model. The linear model is a first approach for a model that is close to the
actual disk architecture. In order to improve response time of a query, we assume that the

technique of multi-page requests is exploited for query processing.

The chapter is organized as follows. In the first section, we define the problem more
precisely and introduce our cost model. In section two, it is shown that finding an optimal
read schedule is equivalent to finding the shortest path in a certain graph. In section three,
a very simple algorithm is presented for reading a set of pages. Experiments show that its
performance is close to optimal. In section four, we analyze the expected cost of the read
schedules produced by this algorithm. We begin with two special cases and derive simple
closed formulas for the expected cost. These two cases provide upper and lower bounds
on the expected cost. The general case is then analyzed and a recurrence relation is derived
which can be used to numerically compute the expected cost. Section six extends the model to

vector reads (scatter-reads). Section seven summarizes the results and concludes the chapter.

41

42 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

target file

number of pages in the file
capacity of a page (in records)
target set (pages to retrieve)
number of target pages

- N
maximum gap size
number of buffer pages

T IR TOHC =2y

ratio of positioning time to transfer time

Table 4.1: List of symbols

4.1 Problem Statement

Consider a file F' whose pages are in a contiguous sequence of pages numbered 1,...,N.
Pages are of fixed size and each page can store a maximum of ¢ records (page capacity). A
query selects some subset of the records stored in the file (the response set of the query). A
page containing at least one record in the response set is called a target page and the set of all
target pages is called the target set. A page that does not belong to the file and that does not
contain any record in the response set (and thus is not in the target set) is called an empty
page. To compute the result of the query, every target page must be read. We assume that
the complete target set is known before actual retrieval of the pages begins. This situation
occurs relatively frequently in query processing. Retrieval by means of an index is the most
typical example but there are other situations where the target set is known before retrieval

begins.

According to the linear model, the time for a read request only consists of positioning
time and transfer time. Furthermore, both are assumed to be constants in the linear model.
In the following, we take the time required to transfer a page as the cost unit and express the
cost in terms of page transfers. Let P denote the ratio of positioning time to transfer time.

The cost of a read request transferring f pages is then P + f (page transfers).

Whenever a sequence of pages is read into main memory, a sufficiently large buffer area
must be available. We assume that buffer space for at most p pages, p > 1, is available. The

problem then is how to minimize the overall cost of reading the required pages into main

4.1. PROBLEM STATEMENT 43

memory. An obvious way of reducing the cost is as follows: whenever there is a contiguous
sequence of target pages (at most p pages), read all of them into main memory with a
single request. If the transfer time is significantly less than the positioning time, it may
be worthwhile reading some empty pages if this reduces the number of read requests. For
example, consider a situation where a target page is followed by an empty page which is
followed by a target page. Overall cost is (almost always) reduced if all three pages are read
with a single request, instead of reading the two target pages using separate requests.

In many operating systems, in particular several variants of UNIX, there are two suitable
operations for implementing read requests. An ordinary read transfers a contiguous sequence
of pages from the disk into a contiguous area of main memory. A wvector read can be used to
transfer the pages into several non-contiguous buffers. The advantage of a vector read is that
all empty pages of a read request can be assigned to the same position in the buffer. Thus,
at most one page of the buffer is sacrificed for collecting the empty pages of a read request.

We first analyze the case of ordinary reads and then the case of vector reads.

Definition 4.1.1 Let @ be a subset of the set F (the file) which is in turn a subset of
{1,...,N}. and p, p > 1, an integer (representing the buffer capacity). Let the tu-

ple (s,t) denote a read request reading t pages beginning from page s. Then a sequence

0= ((s1,t1)y---,(Sm,tm)) is a read schedule for Q, if

1. t; <p foreveryie {1,...,m}

2. for every q € Q, there exists a tuple (s;,t;) in 0 such that s; < q < s; +1;
The read schedule is ordered , if

3. 8; < 8iy1 foreveryie {l,...,m—1}

Example: Consider the file and target set illustrated below. The file is assumed to occupy

the contiguous area completely. A target page is indicated by 1 and an empty page by 0.

[1]o[1fo]ol1]1]o[1]o]olo]1]1]0]1]

Assuming a buffer with 4 pages, ((1,3), (6,2), (9,1), (13,4)) is an example of an ordered read
schedule. This schedule is interpreted as follows: the first read request reads pages 1,2 and

3, the second reads 6 and 7, and so on.

44 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

Definition 4.1.2 Let C(§) denote the cost of a read schedule § and A the set of all possible
read schedules for a given target set Q) and buffer size p. The subset reading problem s then

to find a read schedule dop¢ such that

C(bpr) = min O(6) (4.1)
Up to section 4.5, we assume that the cost of a read schedule 6 = ((s1,%1),.-., (Sm,tm)) is
computed as
m
C(6)=> (P+1t). (4.2)
i=1

This cost function is admittedly simplistic. A more detailed cost model would have to consider
the geometry of the disk, the actual layout of the file on the disk, the seek times and rotational
delays incurred, and the time to process the records on a page. Such cost models are studied

in the following chapters.

4.2 Optimal Read Schedules

In this section, we show that an optimal read schedule can be found by computing the shortest
path in an appropriately constructed graph. The graph is acyclic with positive edge weights
and any standard shortest-path algorithm can be used. We first state two lemmas which
show that only a restricted class of read schedules need be considered. Note, however, that

the lemmas do not necessarily hold under a different cost model.

Lemma 4.2.1 Any optimal read schedule, dopt = ((S1,%1),.--, (Smstm)), has the following

two properties:

1. sj+t; <sjors;+t;<s; foreveryi,je€{l,....,m}, i #j
2. for everyi € {1,...,m}, s, € Q and s; +t;, —1 € Q
In other words, an optimal read schedule must have non-overlapping reads and every read

request must begin and end with a target page. Both properties are rather obvious so we

will only outline the proof.

4.2. OPTIMAL READ SCHEDULES 45

Proof: To prove that the first property must be satisfied, assume that a schedule contains
two overlapping reads: (s;,t;) and (s;,t;). If (s4,%;) is a subset of (s;,t;) (or vice versa),
the cost can be reduced by eliminating (s;,%;) from the schedule. If the two reads overlap,
but neither is a subset of the other, the transfer cost is reduced if the common pages are
eliminated from one of the reads. It follows that a read schedule containing overlapping

reads cannot be optimal.

If a read request (s;,t;) begins with an empty page, we can reduce the transfer cost simply
by changing it to (s; +1,%; —1). The same applies if a read request ends with an empty page.

It follows that an optimal schedule must satisfy property two. O

Lemma 4.2.2 Let § be a read schedule satisfying the properties of the previous lemma and
0" be the equivalent ordered schedule, that is, containing exzactly the same read requests but

listed in ascending order on the first component (s;). Then C(8) = C(d).

Proof: The proof follows immediately from the observation that C(¢’) is simply a reordering

of the terms in C(9). O

An ordered schedule satisfying the two properties of Lemma 4.2.1 will be called a regular
schedule. The two lemmas guarantee that we need only consider regular schedules. To find
an optimal schedule, we create a schedule graph from which all regular read schedules can be

determined. The schedule graph is created as follows:

1. There is one node for each member (page) of the target set (). The node corresponding

to member (page) i is labeled 7. There is one (initial) node labeled 0.

2. Let ¢ denote a node and j the node with the next higher node label. For every node 1,

there is an edge

(a) from node i to node j. The weight of the edge is P + 1.

(b) from node i to every node k such that k —j < p, j < k < N. The weight of the
edgeis P+ (k—j+1).

3. There are no other nodes and edges.

46 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

Figure 4.1: Target set and corresponding schedule graph

Let M denote the maximum node label occurring in the graph. Every path from node 0
to node M represents a read schedule and each edge in the path represents a read request.
Consider an edge from a node ¢ to a node k. If there are no nodes between ¢ and k, that is,
no nodes with labels in the range 7 + 1 to k — 1, then the edge represents the read request
(k,1). Otherwise, the edge represent the read request (j,(k — j + 1)) where j denotes the
node with the next higher label after i. In other words, each edge points to the last page of a
read request. The sum of the edge weights of a path is equal to the cost of the read schedule.

An example target set and schedule graph are shown in Figure 4.1. The file consists of
16 pages and there are 8 target pages. The buffer is assumed to have a capacity of 4 pages
(p = 4). If, for example, a read request ends at page 3, there are three possibilities for the
next request. First, we can read page 6 only, requiring the transfer of one page. Second, we
can read pages 6 and 7, requiring the transfer of two pages. Third, we can read pages 6,7,8
and 9, requiring the transfer of four pages. Note that this request reads page 8 although it is
an empty page. The shortest path for P = 2, and thus the optimal schedule, is indicated by
bold edges.

4.2. OPTIMAL READ SCHEDULES 47

Theorem 4.2.3 The shortest path from node 0 to node M in the schedule graph defines an

optimal read schedule.

Proof: To prove the theorem, we must first prove that (a) every path from node 0 to node
M represents a regular schedule and (b) every regular schedule is represented in the graph.
Part (a) follows directly from the construction of the graph. Hence, we need only show that

every regular read schedule is represented by a path in the graph.

Assume that there exists a regular read schedule which is not represented by any path
in the graph. Then the schedule must contain at least one read request for which there is
no corresponding edge in the graph. Assume that this read request begins with page j and
ends with page k, k > j. Because the schedule is regular (property 2 of Lemma 4.2.1), pages
7 and k must be target pages and consequently the graph also contains a node j and a node
k. Let ¢ denote the node immediately preceding node j. An edge from node i to node k
would represent the read request and we must show that such an edge exists. There are two
cases to consider: j = k and j < k. For the case j = k, the existence of the edge follows
from 2(a) in the definition of the graph. For the case j < k, we note that k — j < p must
be true. Otherwise the schedule would be invalid. From this observation and point 2(b) of
the definition of the graph, it follows that there exists an edge from node 7 to node k. This

contradicts the assumption that the read request is not represented in the graph.

The construction of the graph guarantees that there is always an edge between two ad-
jacent nodes. Hence, at least one path from node 0 to node M always exists. It follows that

the shortest path from node 0 to node M defines an optimal read schedule. O

Once the graph has been constructed, we can use any shortest-path algorithm to find an
optimal read schedule. However, it is questionable whether it is worthwhile in practice to
compute an optimal schedule. The model ignores many factors, for example, queuing delays
and time to process records. Hence, a theoretically optimal schedule may not in practice be
optimal. Furthermore, we cannot estimate the performance of schedules produced by this
algorithm (without knowing the exact layout of the target set), something which is needed
for query optimization purposes. In the next section, we present a simple algorithm which

produces read schedules that are very close to optimal.

48 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

4.3 Simplified Algorithm

The basic idea of the algorithm is simple: start reading from the next target page, stop
reading either at the last target page that fits into the buffer area or at the last target page
before a long stretch of empty pages. This algorithm is based on the observation that it is
often cheaper to read a few empty pages than to skip them. A sequence of empty pages is
called a gap. Let m denote the maximum sequence of empty pages that will be read, that
is, when a gap of m + 1 or more empty pages is encountered, the read request ends with the

last target page before the gap.

Algorithm ReadSubset(F: File; Q: TargetSet; B: Buffer; p: BfrSize; m: GapSize);
BEGIN
end := 0;
REPEAT
start := NextTargetPage(F, Q, end);
prev := start;
LOOP
next := NextTargetPage(F, Q, prev);
IF (next > m + 1 + prev) OR (next > p + start) OR (next > N) THEN
end := prev; EXIT
END:;
prev := next;
END;
ReadIntoBuffer(F, B, start, end);
Process records in B;
UNTIL (next > N);
END ReadSubset;

The function NexztTargetPage(F,Q,j) is assumed to compute the position of the first tar-
get page after page j. If none exists, it returns a value greater than N. The procedure

ReadIntoBuffer(F, B, start, end) reads pages start, start+ 1,...,end from file F into buffer

4.3. SIMPLIFIED ALGORITHM 49

p ReadSubset Optimum Diff.(%)
2 10.079 10.079 0.0000
4 8.883 8.866 0.1948
6 8.206 8.153 0.6527
8 7.818 7.715 1.3372
10 7.585 7.454 1.7552
12 7.415 7.293 1.6660
14 7.299 7.184 1.5967
16 7.209 7.105 1.4669
18 7.144 7.046 1.3847
20 7.090 7.004 1.2371
24 7.019 6.948 1.0190
28 6.971 6.914 0.8242

Table 4.2: Cost (per target page) of read schedules produced by ReadSubset compared with
cost of optimal schedules. (P = 10,a = 0.1, N = 100, 000)

B. The first and the last page of a read request are always target pages. The algorithm adds
pages to the read request until one of three conditions is satisfied: a gap of (m + 1) or more
empty pages is found, the next target page is past the end of the buffer, or the end of the file

has been reached.

This simple algorithm does not guarantee optimal read schedules. We have performed
extensive simulation experiments which indicate that the schedules produced are close to
optimal. The results of one set of experiments are listed in Table 4.2. The results are for a
file with 100,000 pages and a target set of 10,000 (randomly chosen) pages. The figures are
averages of 20 experiments. The table lists the cost per target page of schedules produced by
ReadSubset, the cost of optimal schedules per target page and the relative difference. The cost
of schedules produced by ReadSubset depends on the value of the maximum gap size (m). For
each buffer size (p), the value of m was chosen so as to produce the best schedule (minimal
cost). As shown in the table, the (best) read schedules produced by algorithm ReadSubset

were within 2% of the optimum. Similar results were obtained from other experiments.

The behavior of the algorithm depends on the buffer size (p) and maximum gap size (m).
Five different cases are discussed below. We illustrate the discussion using the example file

and target set shown in Figure 4.3. The value of P is assumed to be 2.

50

4.4

CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

.p=1:

Setting p = 1 produces schedules reading one target page at a time, that is, the tradi-

tional approach. The cost of the schedule produced for the example file is 24 (8 %2+ 8).

. m=0, p=oc:

An unlimited amount of buffer space is assumed. This parameter setting results in
schedules where each request reads a contiguous sequence (cluster) of target pages.
The algorithm takes advantage of whatever clustering there is in the file but never
reads an empty page. The cost of the resulting schedule is 20 (6 * 2 + 8). This case was
analyzed in [McF90].

.0<m < oo, p=o0:

This version also assumes an unlimited amount of buffer space. To reduce the number
of positioning operations, (short) gaps of empty pages are read instead of skipped. The
value of m affects the cost of the read schedules produced. Setting m = 2 produces a

read schedule with cost 17 (2 % 2 + 13) for our example file.

.m=00, 1l <p<o0:

A buffer of limited size is used but there is no restriction on the length of gaps. In other
words, a request reads every page up to and including the last target page covered by
the buffer. For p = 7, we obtain a schedule with cost 20 (3 x 2 4 14) for our example
file.

.0<m<oo, 1 <p<oo:

This is the most general case: a buffer of limited size is available and the maximum
gap size is also limited. For p = 7 and m = 2, the resulting schedule has a cost of 18

(3%2+12).

Analysis

In this section, we analyze the expected cost of read schedules produced by algorithm Read-

Subset, first for two special cases and then for the general case. The analysis is structured in

this way because (a) simple closed formulas can be derived for the two special cases but not

4.4. ANALYSIS 51

—_ — m=2,p="7:3P+12
| || | | m=o0,p="T7:3P+14

| | | | m=2,p=o0: 2P +13

HH 4 H b H m=0p=oc6P+8

HH HHH HH H p=1:8P+8
AI0TL[0I0ATI0 L0100 TITIoTL

Figure 4.2: Example file and read schedules for different parameter settings

for the general case and (b) the cost formulas for the two special cases are upper and lower
bounds for the general case. The analysis is asymptotic, that is, for N,b — oo and keeping
a = b/N constant. The cost is expressed as the expected cost per target page. Target pages
are assumed to be randomly distributed over the file. The probability of a page being a target

page is a.

4.4.1 Unlimited Gaps, Limited Buffers

We begin by considering the case m = 0o and p < oo. We first derive the expected number

of read requests and then the expected number of pages transferred per request.

The expected number of target pages transferred by a read request is 1 + (p — 1)a. The
first page is always a target page. Each one of the remaining p — 1 pages covered by the
buffer is a target page with probability . The number of read requests per target page is
then simply

1
1+ (p—-1)a

A read request transfers some number of pages (target pages and empty pages). The

number of pages transferred equals p minus the number of empty pages located at the end of

the buffer. The probability u; that there are exactly ¢ empty pages at the end of the buffer

is given by

w a(l—a)t fori<p-—1
Tl —a)Pt fori=p-—1

52 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

12 I I

Total cost —
10 Positioning cost +— -
Transfer cost —

0 | | | | | | |

0 5 10 15 20 25 30 35 40
Buffer size (pages)

Figure 4.3: lcost(0.1,p, 00) in page transfers as a function of buffer size (P = 10)

The expected number of empty pages at the end of the buffer is then
p—1
E = Z 1U;
i=0

= (-D-aP + Y all- o)

— (-D—ay
(1-a)

= Z2-a-ap

1-(1-a?=(p-2a(l-a)?)

The expected number of pages actually transferred is p— E. Combining the expected number
of read requests and the number of pages transferred, we obtain the following formula for the

expected cost per target page:

P+p—L21—-(1-ap!
lcost(a, p,0) := lj-((p—l()a)

(4.3)

In Figure 4.3 the expected cost is plotted as a function of the buffer size. The positioning
cost and transfer cost are also shown to illustrate the behavior of the two components of the

cost function. As expected, the positioning cost decreases (fewer requests) and the transfer

4.4. ANALYSIS 53

T
14 + p=1—
pP=35 4=
12 - —
Cost 10 -
8 L
6 [
| | | |
0 0.04 0.08 0.12 0.16 0.2
a

Figure 4.4: lcost(a,p,o0) in page transfers as a function of «, (p = 1,5,10, P = 10)

cost increases (reading more empty pages) with the buffer size. The cost function has a global
minimum. In particular, very large buffers result in a higher overall cost because the number

of empty pages read increases.

In Figure 4.4, the expected cost is plotted for three different buffer sizes (p = 1,5, 10).
The figure clearly shows the benefit of using a larger buffer. For @ = 0.2, increasing the buffer

size from one page to 10 pages, reduces the expected cost by 50%.

For the case illustrated in Figure 4.3, the expected cost has a minimum. The optimal
buffer size cannot be derived analytically but can be computed numerically quite easily.
Table 4.3 shows the optimal buffer size as a function of the fraction of target pages. We have
also listed, for a few different page capacities, the fraction of records in the response set that
corresponds to each fraction of target pages in the file. These results were obtained by using
the Waters-Yao formula [Wat76, Yao77]. At first, the optimal buffer size increases slowly
with increasing a. However, when « increases to 17%, the lowest cost occurs for p = oo. This
simply means that for large a the best policy is to read the whole file with one read request.

In practice, this translates to reading the file sequentially using (very) large buffers.

The results are somewhat surprising if we consider the fraction of records in the response

54 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

Records in the response set (in %)
c=5 c=10 ¢=20 c=40
1.0 12 | 0.2010 0.1005 0.0503 0.0251
2.0 12| 0.4041 0.2020 0.1010 0.0505
40 12 | 0.8164 0.4082 0.2041 0.1021
6.0 12| 1.2375 0.6188 0.3094 0.1547
8.0 13| 1.6676 0.8338 0.4169 0.2085
10.0 14 | 2.1072 1.0536 0.5268 0.2634
12.0 15| 2.5567 1.2783 0.6392 0.3196
14.0 18 | 3.0165 1.5082 0.7541 0.3771
15.0 20| 3.2504 1.6252 0.8126 0.4063
16.0 25| 3.4871 1.7435 0.8718 0.4359
17.0 oo | 3.7266 1.8633 0.9316 0.4658

a(in %) p

Table 4.3: Optimal buffer size (p*) as a function of «, (P = 10)

set needed to exceed this critical point. For example, when ¢ = 20, our model indicates that
the cheapest way to answer a query is to scan the whole file even when the response set

contains as little as 1% of the records.

4.4.2 Limited Gaps, Unlimited Buffer

Next we consider the case p = oo and 0 < m < 0co. A gap is a contiguous sequence of empty
pages delimited on the left and the right by a target page. A cluster is a contiguous sequence

of pages with the following properties:

e the first and the last page of the sequence are target pages
e the sequence does not contain any single gap longer than m

e the sequence is delimited on the left and the right by gaps strictly longer than m

Because p = 00, each read request will read exactly one cluster. To calculate the expected
cost of a read schedule, we calculate the expected number of clusters and their expected

length.

4.4. ANALYSIS 55

Consider an arbitrary page in the file. This page begins a cluster if it is a target page and
to the left of it is a gap longer than m. Hence, the probability of a page beginning a cluster
is

Z a(l —a)fa=al —a)™

j>m
The expected length of a cluster, including the gap separating it from the next clusters, is

then 1/(a(1—a)™*!). The next step is to compute the expected length of the gap separating
two clusters. The probability of the gap being of length m + 145, 7 > 0, is a(1 —). The
expected length of the gap is therefore

Z(m+ 1+j)a(l—a)) =m+ 1/

j=0
The pages which are part of the gap will not be read. The expected length of a cluster,

counting only the pages read, is therefore

1 1
- m —_
a(l — a)mtl e

The expected cost per page in the file is then

1 1

a(l — o)™ (P + a(l—aymi ™")

which can be simplified to
aP(1—a)™ +1-(1-a)™'(1+ma)
Finally, by dividing by «, we obtain the expected cost per target page

lcost(a,00,m) = P(1—a)™ + (4.4)

(1—(1—-a)™'(1+ma)

RIr

In Figure 4.5, the expected cost has been plotted as a function of m. Positioning and
transfer costs are also plotted to show their contribution to the total cost. The cost function

has a minimum at about m = 9 for the case shown in the figure.

For the purpose of finding the minimum of the function cost(a, oo, m), (for a given value
of @), we can treat m as being defined over the real numbers. The value of m that minimizes

the function can then be determined by taking the derivative of the function with respect to

56 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

10
94 -
8 —]
7 |
6 |
Cost 5 Total cost —
4L Positioning cost 4+— |
5 Transfer cost —
2 —]
1 |
0 | | |

0) 10 15 20 25 30 35 40
Maximum gap size (m)
Figure 4.5: lcost(0.1,00,m) as a function of m, (P = 10)

m. If m* denotes the real value minimizing the function, the optimal integer value is then

either [m*] or |m*].

1 1
* — P___
m a In(l-a)
1 1 9
—E—EQ—O(O()

Figure 4.6 shows the expected cost as a function of «, for four different values of m.
For P = 10, the integer minimum for m is either 9 or 10. The graph corresponding to

cost(a, 00,20) is clearly above the one for cost(a, 0, 9).

4.4.3 Limited Gaps, Limited Buffer

In this section we analyze the general case of the algorithm, that is, the case where m < oo
and p < co. Consider a read request filling some number of pages in the buffer. Let Q(4, j),
1 < 4,5 < p, denote the probability that page j in the buffer receives the i-th target page
read by this request. Since page j in the buffer can receive at most the j-th target page, it

follows Q(i,7) = 0 for 4 > j. Furthermore, the first page is always a target page. Hence, for

4.4. ANALYSIS o7

Figure 4.6: lcost(a, 00,m) as a function of «, (P = 10)

7 = 1 we have

Q1) =1 and Q(1,5) =0 for 2<j<p

Now consider the case i > 1 and j < i. Assume that the (i — 1)-th target page is in position
j—k (k>1,1<j—k <m+1). The conditional probability that the next target page is in
position j is then (1 — a)*'a. Consequently, the probability that the i-th target page is in
position j can be computed by summing over all possible positions for the (i — 1)-th target
page. The (i — 1)-th target page cannot be to the left of page j — (m+1) and j — &k > 0 must

always hold. It follows that for j > i Q(4,5) can be computed by the recurrence relation

min(j—1,m+1)

QG = Y. QE-1Lj—kal-af!

k=1

Let Qstop(j), 1 < 7 < p denote the probability that exactly j pages are transferred by
a read request. There are two cases to consider. If p — j > m, a gap of length m + 1 (or
more) follows page j. This occurs with probability (1 —a)™*!. Otherwise, that is p —j < m,

p — 7 empty pages follow and the end of the buffer is reached. This occurs with probability

58 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

(1 — a)P~J. Combining the two cases, we obtain

(1-a)p ifp—j<m
(1—a)™ ifp—j>m

Qstop(j) = {

The probability of a page being a target page is independent of its position in the file.
For j > 1, the probability (i, j) is independent of the probability Qstop(j). Therefore, the
probability that exactly ¢ target pages are contained in a buffer is given by

Q(i’j)Qstop(j)

1

P
1=

The expected number of target pages per read request can then be computed as
P
Etarget = Z Q(iaj)Qstop(j)i
1,521
and the expected number of pages transferred as
P
Eiotar = Z Q(iaj)Qstop(j)j
hj>1

Finally, the expected cost per target page is given by

lcost(a,p, m) (P + Etotal) (45)

Eta'r get

The expected cost is plotted in Figure 4.7. The positioning and transfer costs are shown
separately. Note that the results are not for a fixed value of m. For each buffer size p, the

best value of m was chosen.

The three functions lcost(a, p,), lcost(a, 00, m) and lcost(a,p, m) are plotted in Fi-
gure 4.8. The three curves indicate that the functions lcost(w,p,o0) and lcost(a, oo, m)
might be special cases of the general function lcost(c,p, m) and that the two simple func-
tions are upper and lower bounds on [cost(a, p,m). The simpler closed formulas are fairly

good approximations of the most general case.

4.5 A Cost Model for Vector Reads

So far we have assumed that target pages are read by using the ordinary read command, i.e.

a contiguous area of the disk is copied into a contiguous area of the buffer. Thus, the buffer

4.5. A COST MODEL FOR VECTOR READS

12 I ‘

Total cost —
Positioning cost -+— |
Transfer cost —

0 5 10 15 20 25 30 35 40
Buffer size (pages)

Figure 4.7: lcost(0.1,p, m*) as a function of p, (P = 10)

cost(a,10,40) —
cost(a,10,00) — 7|
cost(a, 00,40) —+—

12 -

59

Figure 4.8: Comparison of the cost functions lcost(a,p,m) for (m,p) = (10,00), (10,40),

(00,40), P =10

60 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

might contain a high fraction of empty pages. Many operating systems (in particular several
variants of UNIX) offer another operation, called a vector read, for reading multiple pages
in a single request. A vector read transfers a contiguous sequence of pages from secondary
storage into a non-contiguous collection of buffer pages. In particular, a single buffer page
may receive several pages. This property can be used for assigning all empty pages of a read
request to the same buffer page. Then, at most one buffer page is sacrificed for receiving
empty pages. In the following, we address the problem of finding optimal read schedules
under the assumption that a read request is implemented as a vector read. First, we briefly

introduce the modified problem definition and a modified algorithm.

Definition 4.5.1 Let Q be a subset of the set F = {1,...,N} and p, p > 1, an integer.
Let the tuple (s,u,v) denote a read request reading u + v pages beginning from page s where
u and v denote the number of empty and target pages, respectively. Then a sequence § =

((s1,u1,v1)y---, (Sm>Um,VUm)) is a v-read schedule for Q, if
1. vi<p foreveryi€ {l,...,m} with u; #0
2. v; <p foreveryi€{l,...,m} withu;, =0

3. for every q € Q, there exists a tuple (s;,u;,v;) in & such that s; < q < s; + u; + v;

Instead of using cost formula 4.2, we assume that the cost of a v-read schedule is computed

as
m

C(6) = Z(P+ui + ;). (4.6)

Similarly to our previous cost model presented in section 4, the solution of computing an
optimal v-read schedule can be reduced to solving a shortest-path problem in an acyclic graph.
The graph can be constructed following almost the same approach as for the graph described
in section 4. However, we are primarily interested in a simple approximate algorithm which
produces v-read schedules close to the optimum and whose cost can be easily computed. In
order to support vector reads, algorithm ReadSubset requires only a few modifications. The

modified algorithm VReadSubset follows.

4.5. A COST MODEL FOR VECTOR READS 61

Algorithm VReadSubset(F: File; Q: TargetSet; B: Buffer; p: BfrSize; m: GapSize);
BEGIN
end := 0;
REPEAT
adr[1] := NextTargetPage(F, Q, end);
ones := 1; zeroflag := 0;
LOOP
adr[ones+1] := NextTargetPage(F, Q, adr[ones]);
IF (adr[ones+1] > m + 1 + adr[ones]) OR (ones > p - zero_flag) OR (adr[ones+1] > N)
THEN
end := adr[ones]; EXIT
END:;
IF adr[ones+1] > adr[ones] + 1 THEN
zeroflag := 1;
END:;
ones := ones+1
END:;
VRead(F, B, adr, ones);
Process records in B;
UNTIL (adrones+1] > N);
END VReadSubset;

The procedure VRead(F,B,adr,ones) reads pages with addresses adr[l], adr[l] + 1, ..,
adr[2] — 1, adr[2], adr[2] + 1, .., adr[ones] from file F' into the buffer B. Note that the target
pages adr[l1], adr[2], .., adr[ones] are assigned to the first ones pages in the buffer. All empty
pages are read into the p-th buffer page. The algorithm adds pages to the read request until
one of three conditions is satisfied: a gap of (m + 1) or more empty pages is found, the next
target page causes an overflow of the buffer, or the end of the file has been reached. Let
us mention that the algorithm VReadSubset indeed produces schedules which are close to
optimal.

Most interesting is the analysis of the algorithm VReadSubset and a comparison of VRead-
Subset with ReadSubset. Note that both algorithms produce the same schedule if the buffer is

unlimited. In the following, we restrict our attention to the most general case, i.e. we assume

62 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

limited gaps and a limited buffer. The following analysis is similar to the one presented in

section 4.4.3.

Consider a read request that reads pages labeled 1,2,3,... into the buffer with p pages.
Let R(i,7), 1 < i < p, j > 1 denote the probability that page j is a target page and is
assigned to the i-th buffer page. Note that R(i,j) = 0 for ¢ < j. Since page 1 always has to

be a target page, it will always be the first page in the buffer. Hence for ¢ = 1 we obtain
R(1,1)=1 and R(1,j) =0 for j>2

Furthermore, the p-th page of the buffer will be filled with a target page only if all of the
other buffers are filled up with target pages and none of the pages read from the file was an

empty page. Therefore, for i = p we have

R(p,p) =1 and R(p,j)=0 for j>1,j#p

Now consider the case i € {2,...,p—1} and j > 7. Assume that the (i —1)-th target page has
the label j —k (k> 1,1 < j —k <m+ 1). The conditional probability that the next target
page has the label j is then (1 — a)*~'a. Consequently, the probability that the i-th target
page has label j can be computed by summing over all possible positions for the (i — 1)-th
target page. The (i —1)-th target page cannot be to the left of page j —(m+1) and j—k > 0
must always hold. It follows that for j > ¢ R(%, j) can be computed by the recurrence relation

min(j—1,m+1)
RG,j)= Y RG-1,j—kald-a)f!

k=1

Let Rstop(4,7), 1 <1i < p,j > 1, denote the probability that exactly j pages are transferred
by a read request and that ¢ of the j pages are target pages. There are four cases to consider.
If ¢+ = p, the buffer is completely filled and thus no more pages can be read. If i = p — 1 and
1 < j, p— 1 target pages are transferred and at least one of the buffer pages is reserved for
the empty pages. The buffer is then already full. If ¢ = 7 = p — 1, it is possible to read the
p-th page into the buffer. However, this page is not read, if the p-th page is an empty page.
This occurs with probability (1 — «). Otherwise, that is ¢ < p — 1, a gap of length m + 1 (or

m—+1

more) follows after the j-th page. This occurs with probability (1 — «) . Combining the

4.5. A COST MODEL FOR VECTOR READS 63

11 < I T T

vecost(0.2,p,9
0.2,p,9

< |
cost —+—

0 5 10 15 20 25 30 35 40
Buffer size (pages)

Figure 4.9: vcost(0.2,p,9) and lcost(0.2,p,9) as a function of p, (P = 10)

four cases, we obtain

1 ifi=p
. 1 ifi=p—1i<j
R ,J) = e
stop (1:7) (1—a) ifi=j=p—1
(1—)™ otherwise

Similarly to section 4.4.3, the expected number of target pages per read request can then be

computed as

p
V;farget = Z Z R(Za j)Rstop(i’ J)Z

i=1 j>i

and the expected number of pages transferred as

p
Viotal = Z Z R(Z, j)Rstop(ia .7).7

i=1j>i

Finally, the expected cost per target page is given by

(P + Viotat) (4.7)

veost(a, p,m) = Vi
arge

The expected cost is plotted in Figure 4.9. Additionally, the expected cost lcost(0.2, p,9)

is shown to be higher than vcost(0.2,p,9), particularly for a small number of buffers.

64 CHAPTER 4. QUERY PERFORMANCE UNDER THE LINEAR MODEL

If pages are always transferred exactly in the order specified in the read request, a separate
buffer page for empty pages is not needed. We can let the last target page overwrite the last

buffer which was used for collecting empty pages.

4.6 Discussion

In this chapter we investigated how to rapidly retrieve a set of pages from a file stored in a
contiguous area on disk. The principal idea is to reduce the response time by making use of
multi-page requests that transfer multiple adjacent pages. If it is advantageous to do so, a
multi-page request may include some gaps. A gap is a contiguous sequence of empty pages,

that is, pages not containing any required records.

The algorithms and their analysis presented in this chapter are based on the assumptions
of the linear model. We showed that for the linear model, an optimal read schedule can be
found by computing the shortest path in a certain graph. The performance was analyzed for
a simplified algorithm which was found to produce close-to-optimal read schedules. The most
general cost formula depends on three parameters: the fraction of the target pages in the file,
the maximum size of a gap that is allowed to be in a read request, and the size of the buffer.
The buffer size is an upper bound for the number of (target) pages that can be transferred
in a single multi-page request. The results of our analysis have demonstrated the benefits
of using multi-page read requests but under the assumptions of the fairly simplistic linear
model. For the linear model, a disk is basically assumed to be a linear sequence of pages.
Thus, we have disregarded the partition of disks into cylinders and tracks and the existence of
multiple read/write-heads. Furthermore, we simply charged a fixed cost for each positioning
operation. This is clearly a blatant simplification. In the next chapters, the problem will be
investigated under the assumption of more complex disk models. These models are closer to

the real architecture of a disk, but, unfortunately, it is much harder to obtain an analysis.

Chapter 5

A Cost Function for the Idealized
Disk Model

In the following chapter, the problem of reading a set of disk pages is investigated under the
assumptions of the idealized disk model (IDM). This model comes closer to the actual disk
architecture than the simple linear model. The IDM takes into account that a disk consists
of cylinders, tracks and pages. Moreover, the availability of multiple read/write heads is also
considered which allows data to be read from different surfaces in a single revolution of the

disk.

The chapter is structured into seven sections. In the first section, a summary is given
on the most important assumptions of the IDM. The problem is then precisely stated in
the second section. In section three, a simple algorithm is given for reading a set of disk
pages. In section four, the expected cost for reading a set of disk pages is analyzed under the
assumption that all required pages are located on the same cylinder of the disk. In section
five, the analysis is extended to the case when pages are distributed over several cylinders.
In the first five sections, the problem is studied assuming that the disk completely belongs
to the underlying query. In section six, the issue of several queries being performed at the

same time is addressed. In the final section, we summarize our results.

65

66 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

5.1 Assumptions of the Idealized Disk Model

In the IDM, the total cost of reading a page is assumed to be the sum of its three major
components: seek time, rotational delay and transfer time. We do not consider the overhead
of the disk controller (which is generally less than 1 ms) and channel contention (when
multiple disks share a common disk controller). In order to make the analysis tractable, head
switch time is also not considered as part of the total cost. Seek time and rotational delay
depend on the previous position of the disk arm, whereas the transfer time is assumed to
be constant for all pages on the disk. The transfer time of a page is taken as the cost unit
and the cost is expressed in terms of page transfers. Consider that page A has to be read
from disk. Let B be the page where the read/write head was positioned on when the request
for page A received service. Furthermore, let s(A, B) and r(A, B) denote the ratio of seek
time and rotational delay to transfer time, respectively. The cost of reading page A is then

s(A,B) +r(A,B) + 1. Thus, a lower bound for reading a page is 1 (page transfer).

The layout of pages on a disk is assumed to be as follows. First, each track of the disk
contains PT pages where PT is an integer. Second, the starting positions of the tracks
are aligned in a cylinder. These assumptions are not valid for today’s magnetic disks, but
they facilitate the analysis that will be presented in the following sections. In particular, a
cylinder of the disk can now be represented as a two-dimensional array C;; of pages where
0<i<TC and 0 < j < PT. Here, TC denotes the number of tracks. For a cylinder (Cj;),
the set {C; ;|0 < i < TC} is also called the j-th column, 0 < j < PT. It follows that at most
one page can be read from a column during a revolution of the disk. Since head switches are
assumed to cause no time delay, an arbitrary page from column j can be read without any

time delay when the previous page was read from column (j — 1) mod PT.

5.2 Problem Statement

Consider a file F as a collection of pages of fixed size distributed over a magnetic disk drive.
In order to perform a query on the file, it is assumed that pages T1,..., Ty of the file must
be read from the disk into main memory. These pages are called target pages and the set of

target pages is called the target set. It is assumed that the complete target set is known in

5.2. PROBLEM STATEMENT 67

advance before actual retrieval of the pages begins.

In the following, we deal with the problem of reading the target pages into main memory
as fast as possible using one or more multi-page requests. A multi-page request transfers
a set of pages from magnetic disk into main memory without interfering of other requests.
In contrast to ordinary read commands, it is not required that the pages are contiguous on
magnetic disk. In order to perform a multi-page request, a sufficiently large buffer is required
where the target pages can be copied to. For the sake of simplicity, we first assume to have

an infinitely large buffer, i.e. the buffer size is not of concern.

Let us first assume that the target set {71,...,Tn} is read by using one multi-page
request. Let I be defined as the set of all permutations on the vector (1,...,N). Then,
a sequence S = (Tj,,...,T;,) is called a read schedule for the target set {T1,...,Tn}, if
(¢1,...,in) € IIn. A read schedule (T;,,...,T;,) determines the order in which target pages

are read from disk.

The selected schedule has a substantial impact on the cost for the multi-page request.

The reason is that the cost for reading a target page T; 1 < j < N, depends on the (disk)

410
position of the target page T;; previously read. For a given target set {T1,...,Tn}, the goal
is to find a schedule (T5,,...,T;,) such that the total elapsed time of the multi-page request
is minimized. Let T be the page on disk where the read/write head had been positioned on

when the multi-page request received service. The total elapsed time of a multi-page request

is then given by

N-1 N-1
ElaTO + Zs Z]+1; +T' 21; +ZT ZJ+1’ +N
J=1 Jj=1

For a given schedule S = (T;,,...,T;,), the elapsed time of a multi-page request can
be decomposed into three components. Similarly to an ordinary single-page request, we call
these components seek time, rotational delay and transfer time of the schedule. The seek

time of the schedule S is defined as

N-1
St(ﬂm---aT)_ST‘ZUTO + 3 Z+1a
J
Jj=1

68 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

The rotational delay is defined as

rd(Tyy, .-, Tiy) = (T, To) + Z T(Tij+17Tij)
1<j<N
8(Ti; 40, Ti;) > 0

417

and the transfer time is given as

tt(Tin"'aEN):N"i_ T(Ti‘+1aTi')
J J
1<j<N

Let us emphasize that the transfer time of a multi-page request does not only correspond to
the actual transfer time IV, but it also includes the the rotational delays of the pages which

are read from the same cylinder as the predecessor page (i.e. no seek time occurs).

5.3 Algorithms

For a given target set, an efficient algorithm for computing an optimal schedule (i.e. with
minimum cost) has not been found so far. A common approach for computing approximate
schedules is to read from a cylinder all target pages before going on to the next cylinder.

Then there are the following subproblems:

1. Find an efficient algorithm for computing optimal schedules, when target pages are

stored on a cylinder.

2. Find an optimal sequence for accessing those cylinders which contain at least one target

page.

Under the assumptions of the idealized disk model, an appropriate algorithm can easily be
found for the first subproblem. Let (C;;), 0 < i < TC and 0 < j < PT, be a cylinder of
pages where N < PT x T'C of them are target pages. In the following, PC (= PT x TC)
denotes the number of pages on a cylinder. Furthermore, C, ;, 0 < j < PT, denotes the set
of target pages that can be found in the j-th column. Let us assume that the initial position
of the disk arm is at the beginning of the track. The algorithm reads the target pages with
respect to the shortest-latency-time-first (SLTF) policy [Den67]. One target page is read

5.3. ALGORITHMS 69

Figure 5.1: Target pages in a cylinder

from each of the non-empty sets C, ;, 0 < j < PT, in a single disk revolution as long as
one target page is unprocessed in C, ;. In the last disk revolution required for reading the
target pages, the algorithm stops reading after the read/write head has passed over the last
column (i.e. farthest away from the beginning of the track) with the maximum number of

target pages.

In [SF73] it was shown that the algorithm is optimal, i.e. it reads the target pages in
minimum time. In order to differentiate (elapsed) time into transfer time and rotational
delay, the algorithm is slightly modified. Note that the response time is not affected when
the algorithm does not transfer data until the first set C, r, 0 < f < PT, is reached with
the maximum number of target pages. The corresponding time refers to the rotational delay
of the schedule when all target pages are on one cylinder. Then, the transferring of pages
begins and continues until the last target page is read. This time is the transfer time of the

schedule.

An example is illustrated in Figure 5.1. A cylinder consists of four tracks and eight
columns. Target pages received the label 1, whereas other pages received the label 0. Overall,
10 pages have to be read from disk. The maximum occurs three times, at the second, fourth
and fifth column. The rotational delay then corresponds to 2 page transfers and the transfer

time corresponds to 20 page transfers.

The second subproblem is to compute an optimal sequence on how the cylinders are

accessed. The author is not aware of an algorithm that computes an optimal sequence in po-

70 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

N number of target pages

{T1,...,Tn} target set

PT number of pages on a track

TC number of tracks per cylinder

PC =PT*TC

Ci,j denotes the pages of a cylinder, 0 <7 <7TC and 0 < j < PT
(Cij) denotes a cylinder

Csj denotes the set of target pages in the j-th column, 0 < j < PT
M maximum number of target pages in a column of a given cylinder
Cyl number of cylinders

Cr number of cylinders occupied by the file (file cylinders)

Coact number of cylinders with at least one target page

ttx expected transfer time

rdx expected rotational delay

stx expected seek time

Table 5.1: List of symbols

lynomial time. In general, the SCAN policy [Den67], originally proposed for disk scheduling,
seems to be a good approximative algorithm. For the SCAN policy, the disk arm follows the
physical ordering of the cylinders either from inside to outside or vice versa. Policies other

than the simple SCAN policy have been examined in [SCO90].

In general, when a target set is required from magnetic disk, the following combined
algorithm is used. First, the cylinders which contain at least one target page are accessed
following the SCAN policy. For each of these cylinders, the optimal algorithm is used for

reading all target pages from the cylinder.

In order to present an analysis of the schedules produced by the algorithm, the problem
is first restricted to the case where all target pages are on the same cylinder. The analysis
for the more general problem, when pages are distributed over several cylinders, is presented
in section 5.5. A summary of the most important notations used in the remainder of the

chapter is given in Table 5.1.

5.4. ANALYSIS OF MULTI-PAGE REQUESTS ON A CYLINDER 71

5.4 Analysis of Multi-Page Requests on a Cylinder

In this section, we present an analysis of the optimal algorithm for reading a set of target
pages from a cylinder (C;;), 0 <4 < TC and 0 < j < PT. The number of required rotations
is determined by the maximum number M of elements in the sets C, j, 0 < 7 < PT. Without
loss of generality, the initial position of the disk arm is assumed to be be in front of column 0,
i.e. when the first page is read from column [/, 0 <[< PT, the rotational delay corresponds

to [page transfers.

Lemma 5.4.1 Let {T1,...,Tn}, N < PC, be the target set completely stored on a cylinder
and let (T;,, ..., Tiy) be the corresponding schedule. Furthermore, let Cs,...,Cy pr—1 denote
the distribution of the target pages among the columns of the cylinder and let M be defined as
maxo<i<pr |Csi|. For the optimal algorithm, the transfer time tt is given (in units of page

transfers) as
t(Tiy,...,Tiy) =14+ PT (M — 1)+ max{j — i | |Cs ;| = |Cs;i| = M,0 < 14,5 < PT}
and the rotational delay rd is given (in units of page transfers) as

rd(T;,,...,T;y) =min{j | |Cy;| =M,0<j < PT}

Proof: The proof follows immediately from the description of the algorithm given in the

previous section. O

In the following, cost formulas are derived for the expected transfer time ttx and the
expected rotational delay rdx. The analysis is made under the basic assumption that target
pages are uniformly distributed among the pages of the cylinder. Thus, the formulas only
vary in N, the number of target pages. In accordance with Lemma 5.4.1, it is sufficient to
compute the expected value of M and the expected value of the position of the last column

where the maximum is adopted. The analysis is therefore structured into two parts.

First, the probability P(N, PT,m) is computed that none of the sets C, j, 0 < j < PT,
contains more than m of the NV target pages which are randomly selected from the PC pages.
This probability allows the computation of the expected value of M using the following
formula;: min(N.TC)

P(N,PT, 1)+ Y. ((P(N,PT,i)— P(N,PT,i—1))*i
=2

72 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

The formula can be simplified to
min(N,TC)
1+ Y (1=P(N,PT,i)) (5.1)
i=1

Second, we present a formula for computing the probability Q (N, z, M) that the maximum
M,1< M L<TC, occurs z times, 1 < z < PT, assuming that N target pages are selected
from the cylinder. Since every column can adopt the maximum with the same probability,
the expected position of the last column with M target pages can easily be computed by

using elementary probability theory.

In order to compute the probabilities P(N, PT,m) and Q(N,z,m) accurately, two recur-
rence relations are given in the following subsections. The expected rotational delay and the

expected transfer time are then derived from the recurrence relations.

5.4.1 Recurrence Relation for Computing Probability P

Let (C; ;) be a cylinder consisting of PT columns and T'C tracks. Furthermore, let F(n,p, m)
be the number of ways in which n target pages, 1 < n < PC, can be selected from p columns,
1 < p < PT, of the cylinder such that at most m target pages, 1 < m < TC, are taken from
each of the p columns. It follows that the probability that none of the p columns contains

more than m target pages is given as

F(n,p,m)

()
n

P(n,p,m) = (5.2)

Suppose that n target pages, n < p * T'C, have already been randomly selected from the
p columns of the cylinder and each of the p columns delivers at most m target pages. Let
the next target page be randomly selected from the remaining p * TC — n pages. The term
R(n+1,p, m) denotes the conditional probability that the (n+1)-st target page is not selected

from a column with TC' — m pages. Then R(n + 1,p,m) can be expressed as

P(n+1,p,m)

(5.3)

The (n+1)-st target page will produce a column that has delivered more than m target pages
if and only if the target page is taken from a column with T'C — m remaining pages. The

number of possibilities that a certain column contains T' — m target pages is given as

(TC> x F(n —m,p—1,m)

m

5.4. ANALYSIS OF MULTI-PAGE REQUESTS ON A CYLINDER 73

TC—m
pxTC—n"

Furthermore, the probability that this column receives the (n + 1)-st target page is
There are p columns and hence, the probability of the (n + 1)-st target page taken from a
column with T'C' — m remaining pages can be expressed as

TC —m * (T)*F(n—m,p—l,m)
p*xTC —n F(n,p,m)

1 - R(n+1,p,m) = px (5.4)

By combining equations 5.2, 5.3 and 5.4, we obtain the following recurrence relation

_pr@c-m) ()"0

n—m

pxTC—n = (#T0)

n

P(n+1,p,m) = P(n,p,m) P(n—m,p—1,m) (5.5)

The recurrence relation can be simplified by using the following equality:

TC —m * (:,';r?) _ (551)
_ «TC\y ~ (pxTC
px* TC n (p n) (pn—l—l)

The recurrence relation is then given as

(26 (0, 10)
%P(n—m,p— 1,m) (5.6)
n+1

P(n+1,p,m) =P(n,p,m) —px*

In order to compute P(N, PT,m) we need to calculate P(n,p,m) forn =m,2,...,p+xTC and
p = 1,2,...,PT. The recursive relation is initialized by using the formula P(n,p,m) = 1
for n < m. Although the above recurrence relation looks complicated at first glance, the
computation can be organized so that the evaluation of the next value of P(n,p, m) requires
only a few arithmetic operations. In particular, the product of the three binomial coefficients

can also be computed in a recursive fashion.

To the best of the author’s knowledge the computational problem of computing the pro-
bability P has not been solved so far. A similar problem has only been addressed in [Ram87]

where the overflow problem of hashing has been examined.

5.4.2 Recurrence Relation for Computing Probability @)

Let < n,z,m > be a three-tuple that denotes the state of the selection process after n target
pages, n < PC, are read from the cylinder. The parameter m, m < TC, refers to the
maximum number of target pages in a column of the cylinder after reading n pages, and z,
x < PT, denotes the number of columns where m target pages can be found. Let Q(n,z,m)

be the probability of obtaining the state < n, z, m > after distributing n target pages starting

74 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

from state < 1,1,1 >. Thus, Q(1,1,1) =1 and Q(1,z,m) = 0 for m > 1 and z > 1. Now,
let us consider the situation after the (n + 1)-st target page is randomly selected from the

remaining PC — n pages.

First, the case is discussed for obtaining a transition state < n + 1,z,m > with z = 1.
There are two possible situations. In the first one the (n+1)-st page is selected from a column

where the (current) maximum number of target pages can be found, i.e. there are TC —m

remaining pages in the column. Hence, the probability of this event is 71;%’_’7?. Then, the
value of m is incremented by 1 and only a single column adopts the maximum. In the second
situation, x = 1 is already true before taking the (n+1)-st target page from the cylinder. If the
(n+1)-st target page is selected from a column with more than 7'C — (m —1) remaining pages,
the value of m remains unchanged. Thus, there is still exactly one column with m target
pages which are already transferred into main memory. Note that R(n—m,z—1,m—1) refers
to the probability that the (n+ 1)-st target page is in a column with more than TC — (m — 1)
remaining pages. Apart from these situations, there is no way to obtain a transition state

with £ = 1. For n > 1 and =z = 1, we obtain the following recurrence relation:

11 _ PT_ TC —m . 5.7
(1—LC=my O0(n,1,m) * R(n —m, PT — 1,m —1)

- PC—n

Second, let us consider a transition state < n+1,z,m > for £ > 1. This state can only be
realized for the following two cases. In the first case, the original state has been < n,z,m >
and the (n + 1)-st target page is selected from a column with more than T'C' — (m — 1) pages.
In the second case, the original state has been < n,z —1,m > and the (n + 1)-st target page
is taken from a cylinder with T'C — (m — 1) target pages. The corresponding probability is
given as (1— R(N+1—(z —1)*m,PT — (z — 1), m —1)). Then, the recurrence relation can

be computed for z > 1 as

Qn+1,z,m) = (1—:6*%%m)*R(n+l—a:*m,PT—m,m—l)*Q(n,w,m)+
(1—(z—1)x ;Z;g%Z) * (5.8)

1-Rn+1—(x—1)*«m,PT —(z—1),m—1)) x Q(n,x — 1,m)

5.4. ANALYSIS OF MULTI-PAGE REQUESTS ON A CYLINDER 75

The probability that for a request of N pages the maximum occurs x times is then given as

N
> Q(N,z,m) (5.9)

m=1
5.4.3 Expected Rotational Delay

In the previous subsection, the probabilities P and () are derived as recurrence relations. In

this subsection, probability @ is used in computing the expected rotational delay.

If the response set only consists of a single page, the expected rotational delay is half a
revolution (= PT/2). The same result holds when the maximum number of target pages is
adopted only once. In general, the expected rotational delay refers to the expected distance
from the beginning of a track to the first cylinder with the maximum number of target pages.
In order to obtain the expected distance, formula 5.9 is used for computing the probability
that the maximum occurs ¢ times, 1 < 4 < PT. The property that the probability for realizing

the maximum is the same for each of the columns can then be exploited.

Now, let us suppose that the maximum occurs z times, 1 < x < PT. This corresponds to
randomly selecting x out of PT columns. The distance to the first column can be computed

by using elementary probability theory. There are

()

possibilities to select x columns. Under the assumption that the j-th column, j > x, is the

)

possibilities to select the remaining (z — 1) columns such that each of them is behind of the

first one, there are

j-th column. Hence, the expected distance is given as

PT—(z—1) (PTEj)

>

J=1

* j (5.10)

and consequently, the expected rotational delay is given as

PT N PT—(z—1) (PT*J'

rdx(N) = S{Y QWam} e { 3)1 (5.11)

rz=1 m=1 (x)

76 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

5.4.4 Expected Transfer Time

The transfer of pages from the disk starts when the first column, say C; r, 0 < f < PT, with
M target pages is under the disk arm. Then, M — 1 disk revolutions are required for reading
all pages from column C ;. If all other columns contain fewer target pages than column C j,
the transfer is completed. Otherwise, there is a column, say C.;, f <! < PT, which refers
to the last column with M target pages. Then the transfer of pages continues until the disk
arm has passed over the column C, ;. For a multi-page request of N pages, the expected cost

for the complete revolutions can easily be derived from formula 5.1. We yield

min(N,TC)
PT « Z (1— P(N, PT, 7))
7j=1

Assume that the maximum is realized = times, 1 < x < PT. Then, the expected distance
to the first column with M target pages is already given by formula 5.10. In a similar way,

the expected distance to the last column with M target pages can be computed as

PT (j—i) PT—(z-1) (PT_1j)
Yo em o ki=PT— Y
= (z) = ()

Overall, the following formula is obtained for the expected transfer time:

min(N,TC)
ttx(N,p) = 14+PTx Y (1—P(N,PT,j))
7j=1
PT N PT—(z-1) (PTfj)
Y QN z,m)}« (PT -2+ > (53;7}) %) (5.12)
=2 m=1 j=1 x

5.4.5 Discussion

In this subsection, the cost is discussed for reading N target pages from one cylinder. In
Figure 5.2, the expected rotational delay, the transfer cost and the sum of both are plotted
as a function of the number of target pages. The cylinder consists of 20 tracks, each of them
containing 8 pages (T'C = 20, PT = 8). The cost is expressed as the expected cost per target
page.

For N =1 (i.e. there is only one target page), we obtain the well-known result that the

expected rotational delay is half a rotation. As expected, the cost per target page decreases

5.5. A GLOBAL COST FUNCTION 7

5 \ \
4.5 transfer costs —
4 rotational delay >« _|
55 overall cost —
Cost]
(page transfers)2'5 B
2 H _
15 e ————
1 —
0.5 - _
0 | | | T ZN 25 2K
0 5 10 15 20 25 30 35 40

number of target pages (N)

Figure 5.2: Expected rotational delay and expected transfer costs (T'C = 20, PT = 8)

with an increasing number of target pages. For N = 10, the cost per target page is only 2
page transfers. For larger values of NV, the cost per target pages approaches the minimum of

one page transfer.

When pages are read in random order, the cost per target page would be the same as
reading a single target page from the cylinder (5 page transfers in the example). Even if the
target pages are already clustered on a single cylinder, the graph demonstrates the importance

of reading the target pages in the order given by an optimal schedule.

5.5 A Global Cost Function

In this section, a cost function is presented for reading target pages which are distributed
over several cylinders of the disk. Thus, the cost function has to consider seek time as a

major component of the total cost.

In a scenario where a query is performed on a file, it is very unlikely that target pages are
uniformly distributed over the disk. On the contrary, it is expected that the underlying file

system clusters a file on a few cylinders. Accordingly, target pages would be distributed on

78 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

a few cylinders. In order to take into account the effect of clustering, the cost function does
not only depend on the number of target pages, but also on the cylinders on which the pages
of the file are distributed. A cylinder that contains a page of the file is called a file cylinder

in the following.

In the analysis, we make the simplifying assumptions that the file cylinders are distributed
uniformly over the disk and that the target pages are uniformly distributed over the file
cylinders. The first assumption is in agreement with the policy on how the fast file system of
UNIX [MJLF84] organizes files on the disk when a so-called cylinder group consists of exactly
one cylinder. The second assumption can often be observed for queries in a DBMS, e.g. range
queries performed on a secondary index. In order to simplify the analysis, we assume that
the initial position of the disk arm is at the outermost cylinder. The algorithm for reading
the pages visits only those file cylinders where a target page can actually be found in linear
order from outside to inside. A file cylinder where a target page is located is called a target

cylinder.

First, a cost formula is given for the required seek operations. Note that a seek consists
of several components. First, the arm is accelerated until it reaches half the seek distance or
a constant velocity. In the later case, the arm coasts across some cylinders at its maximum
speed. Third, the arm decelerates its speed and stops on top of the desired track. Therefore,
the seek time can be well modeled as a square root function for small seeks and as a linear
function for large seeks. The seek time of a multi-page request is simply the sum of the seek
time required to move from one target cylinder to the next target cylinder. The distribution
of target cylinders is determined through the number of target pages and the number of
file cylinders. The exact distribution is again given as a recurrence relation. The analysis
of the seek cost is first based on the exact distribution of target cylinders. Thereafter, an
approximate formula is derived for the expected seek cost which avoids the computation
of the recurrence relation. This formula produces results which are very close to the ones

obtained from the exact formula.

Let C'yl be the number of cylinders on the disk. For a file F', the parameter Cr denotes
the number of file cylinders. Consider N target pages randomly distributed over Cr file

cylinders. Let < n,j >, n > 1,1 < j < Cp, refer to a transition state where j of the Cp

5.5. A GLOBAL COST FUNCTION 79

file cylinders are target cylinders. Furthermore, let S(n, j) be the probability of realizing the
transition state < n,j >. Note that S(1,1) = 1 and S(1,5) =0, 2 < j < Cp. For n > 1,
two situations are distinguished: either the n-th target page is on a cylinder which already
contains one of the other n —1 target pages, or the n-th target page is on an “empty” cylinder
that does not contain any of the other target pages. Then the probability S can be computed
for n > 1 by using the following recurrence relation:

(Cr—(j—1))xPC
CrxPC—(n—-1)

j*PC—(n—1)

S(n,j) = CrxPC—(n—-1)

Sn—-1,7—-1)+

S(n—1,7) (5.13)

Note that this recurrence relation is actually a special case of the formulas 5.7 and 5.8.

Let us consider that C, cylinders are target cylinders, i.e. they are hit by at least one
of the target pages. Recall that the disk arm is assumed to be on the first cylinder and
that target cylinders are uniformly distributed. The first cylinder is a target cylinder with
probability Cye;/Cyl. In general, the probability that the first target cylinder is the k-th
cylinder on the disk, 1 < k < Cyl — Cgyet + 1, is given as

(Gt =)

Cyl
(Cayct)

Assume that the disk requires seek_time(i) to pass over i cylinders. When the first cylinder
is a target cylinder, the expected cost to move from one target cylinder to another is given

by H(Cyl —1,Cq¢t — 1). The function H is computed as

m—I+1 (m—k)

H(m,l) = Z =1

= ™

When the first cylinder is not a target cylinder, the expected cost to move from one target

* seek_time(k)

cylinder to another is given as H(Cyl — 1,Cy¢). This event occurs with probability 1 —
Coct/Cyl. Because target cylinders are uniformly distributed, the expected distance between
two target cylinders is independent of their actual position. Under the assumption of j target

cylinders the expected cost for the seek operation is then given as
£ (j— 1)« H(Cyl —1,j — 1) + (1 — =) % j » H(Cyl — 1,)

GCyl(]) = Cyl

g
Cyl
Finally, the expected seek time st x can be obtained by combining the formulas in the following

way:
Cr

stx(N,Cr) =Y _ S(N,j) * Geulj) (5.14)
j=1

80 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

When the target set is distributed over several cylinders, the rotational delay and transfer
time of the multi-page request is defined as the sum of the rotational delays and transfer
times which occur on the target cylinders, respectively. The expected rotational delay and
the expected transfer time can be approximately computed under the assumption that each of
the target cylinders receives target pages independently of each other, i.e. the values computed
for the one cylinder has no effect on the values of another cylinder. Then, a target cylinder

receives j of the IV pages with probability

N, 1, 1 nos
(j)(C_F) *(1—C—F)

The formulas 5.14, 5.12 and 5.11 can be combined for computing the total expected cost of
reading N target pages distributed on Cr cylinders. We yield
YN 1 1.y
ICost(N,Cr) = stx(N,Cr) + Z{< .>() (1 - 5)N_] * (ttx (4) +rdx (7))} (5.15)

j=1 J CF

5.5.1 An Approximation for the Seek Time

The computation of probability S using the recurrence relation, see formula 5.13, is time
consuming when the number of file cylinders and the number of target pages is high. In
this subsection, an approximate formula is given for the seek cost which is based on the
expected number of target cylinders. The (exact) expected number of target cylinders can
be computed by using the Waters-Yao formula [Wat76, Yao77]. The formula was originally
proposed for a problem in a different context. In [Yao77] it is shown that the formula of
Cardenas [Car75] is a simple and accurate approximation of the expected value if (in our
terminology) a cylinder consists of a large number of pages. Since this property is satisfied
in our setting, the formula of Cardenas is used in the following. Thus, the expected number

of target cylinders is approximately given as

x:CF*(1—(1—CiF)N)

Since z is not an integer, |z| and [z] are used for computing a linear combination. The

approximate formula is given as

stx(N,Cr) = (z — [z]) x [2] x Goy([z]) + (z — [2]) * [z] * Gep(lz]) (5.16)

5.5. A GLOBAL COST FUNCTION 81

Cyl 840
TC 20
PT 8
page size [KB] 4
average seek time 9
average rotational delay 4

Table 5.2: Specification of the Fujitsu Eagle disk

In [PBD93] the formula z * seek_time(Cyl/z) has been proposed for approximating the
seek cost. This simple approximation also gives accurate results (relative errors of about 2%
and less) if the number of target pages is high. However, for a small number of target pages,
the relative error of the seek cost is too high. In contrast, formula 5.16 still produces accurate

results (with a relative error less than 1%) in such a situation.

5.5.2 Discussion

In order to demonstrate that the cost function 5.15 is indeed accurate, we compared the
results of the cost functions with the ones obtained from simulations. The underlying disk
parameters correspond to the one of the Fujitsu Eagle disk (see Table 5.2) which is a rather
old disk, but is frequently used in various experimental comparisons. Note that the timings
of Table 5.2 are given in page transfers. Moreover, the seek time of the Fujitsu Eagle is well
approximated by using the following function [SCO90]:

0 ifz=0
seek_time(x) =< 2.3 +4.35\/x if z <239 (5.17)
9+ 0.14(z — 239) if z > 239

For one of our experiments, the results of the cost functions and the results of the simu-
lations are reported in Table 5.3. In this experiment, the number of target pages is fixed
(N = 40), whereas the number of file cylinders is varying from one to forty. The cost is
decomposed into three components: transfer cost, rotational delay and seek cost. For each of
these cost components, we report the results of the cost function, the results of the simula-
tion and additionally, the relative error given in percent. As demonstrated in Table 5.3, the

relative errors are less than 1% for each of the cost components.

82 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

| cylinder || rotational delay || transfer time || seek time

model simu. | rel. error || model simu. | rel. error || model simu. | rel. error

1.4205 | 1.4246 0.2869 || 0.0873 | 0.0872 0.0831 || 0.2841 | 0.2852 0.3707
1.6075 | 1.6077 0.0130 || 0.1690 | 0.1677 0.7886 || 0.4637 | 0.4633 0.0855
1.7218 | 1.7166 0.3020 || 0.2467 | 0.2470 0.1362 || 0.6130 | 0.6127 0.0576
1.8033 | 1.8041 0.0465 || 0.3213 | 0.3215 0.0700 || 0.7476 | 0.7479 0.0363
1.8642 | 1.8652 0.0528 || 0.3943 | 0.3923 0.5094 || 0.8730 | 0.8740 0.1063
1.9124 | 1.9136 0.0671 || 0.4646 | 0.4639 0.1544 || 0.9917 | 0.9924 0.0720
1.9522 | 1.9556 0.1705 || 0.5317 | 0.5323 0.1012 || 1.1047 | 1.1052 0.0449
1.9855 | 1.9917 0.3078 || 0.5966 | 0.5985 0.3283 || 1.2124 | 1.2128 0.0325

9 || 2.0127 | 2.0107 0.1006 || 0.6604 | 0.6598 0.0887 || 1.3151 | 1.3150 0.0025
10 || 2.0340 | 2.0383 0.2150 || 0.7241 | 0.7229 0.1666 || 1.4127 | 1.4133 0.0415
11 || 2.0497 | 2.0513 0.0765 || 0.7881 | 0.7885 0.0428 || 1.5054 | 1.5050 0.0251
12 || 2.0605 | 2.0628 0.1117 || 0.8523 | 0.8473 0.5903 || 1.5932 | 1.5944 0.0784
13 || 2.0669 | 2.0692 0.1138 || 0.9166 | 0.9160 0.0653 || 1.6764 | 1.6775 0.0635
14 || 2.0695 | 2.0703 0.0394 || 0.9806 | 0.9797 0.0901 || 1.7551 | 1.7575 0.1330
15 || 2.0689 | 2.0730 0.1978 || 1.0441 | 1.0450 0.0861 || 1.8296 | 1.8325 0.1590
16 || 2.0656 | 2.0664 0.0393 || 1.1068 | 1.1078 0.0911 || 1.9001 | 1.9028 0.1429
17 || 2.0602 | 2.0627 0.1249 || 1.1685 | 1.1696 0.0925 || 1.9668 | 1.9709 0.2077
18 || 2.0529 | 2.0580 0.2492 || 1.2289 | 1.2327 0.3094 || 2.0299 | 2.0320 0.1028
19 || 2.0442 | 2.0451 0.0461 || 1.2880 | 1.2888 0.0626 || 2.0897 | 2.0927 0.1402
20 || 2.0343 | 2.0329 0.0707 || 1.3456 | 1.3480 0.1772 || 2.1464 | 2.1463 0.0055
21 || 2.0235 | 2.0251 0.0788 || 1.4017 | 1.4039 0.1571 || 2.2002 | 2.2042 0.1784
22 || 2.0121 | 2.0118 0.0143 || 1.4562 | 1.4574 0.0832 || 2.2513 | 2.2554 0.1803
23 || 2.0000 | 1.9995 0.0271 || 1.5091 | 1.5098 0.0458 || 2.2998 | 2.3011 0.0529
24 || 1.9876 | 1.9911 0.1748 || 1.5604 | 1.5582 0.1420 || 2.3460 | 2.3482 0.0945
25 || 1.9750 | 1.9754 0.0231 || 1.6101 | 1.6167 0.4071 || 2.3899 | 2.3962 0.2612
26 || 1.9621 | 1.9634 0.0635 || 1.6582 | 1.6606 0.1454 || 2.4318 | 2.4366 0.1978
27 || 1.9492 | 1.9512 0.1054 || 1.7048 | 1.7071 0.1339 || 2.4717 | 2.4751 0.1367
28 || 1.9362 | 1.9352 0.0497 || 1.7499 | 1.7538 0.2268 || 2.5098 | 2.5137 0.1555
29 || 1.9233 | 1.9241 0.0429 || 1.7935 | 1.7932 0.0179 || 2.5462 | 2.5484 0.0882
30 || 1.9104 | 1.9104 0.0012 || 1.8357 | 1.8372 0.0797 || 2.5810 | 2.5852 0.1631
31 || 1.8977 | 1.8983 0.0335 || 1.8765 | 1.8784 0.1007 || 2.6143 | 2.6180 0.1430
32 || 1.8850 | 1.8822 0.1526 || 1.9160 | 1.9215 0.2851 || 2.6461 | 2.6529 0.2542
33 || 1.8726 | 1.8718 0.0439 || 1.9543 | 1.9510 0.1681 || 2.6767 | 2.6805 0.1424
34 || 1.8603 | 1.8566 0.1974 || 1.9913 | 1.9941 0.1438 || 2.7060 | 2.7087 0.1020
35 || 1.8482 | 1.8475 0.0405 || 2.0271 | 2.0311 0.1979 || 2.7341 | 2.7393 0.1906
36 || 1.8363 | 1.8359 0.0259 || 2.0618 | 2.0625 0.0376 || 2.7611 | 2.7632 0.0748
37 || 1.8247 | 1.8216 0.1666 || 2.0954 | 2.0966 0.0583 || 2.7871 | 2.7907 0.1313
38 || 1.8132 | 1.8084 0.2658 || 2.1279 | 2.1320 0.1916 || 2.8120 | 2.8193 0.2571
39 || 1.8020 | 1.8006 0.0772 || 2.1594 | 2.1601 0.0333 || 2.8361 | 2.8407 0.1611
40 || 1.7910 | 1.7916 0.0326 || 2.1900 | 2.1866 0.1555 || 2.8592 | 2.8613 0.0730

0 3O U i LN

Table 5.3: A comparison of results obtained from simulations and the cost function (N = 40)

5.5. A GLOBAL COST FUNCTION 83

7 T T —
-
6 - —
overall costs —
5 transfer time ©— —
rotational delay —+—
4+ seek time — —

Cost
(page transfers)

0 5 10 15 20 25 30 35 40
number of file cylinders (CF)

Figure 5.3: Cost function (varying in cylinder, constant number of 40 pages)

In Figure 5.3, the expected cost is plotted for the three cost components as a function
of the number of file cylinders. Additionally, a fourth curve shows the total cost per target
page given as the sum of the three cost components. The cost is measured in units of page
transfers. As expected, the total cost increases with an increasing number of file cylinders.
Best performance is obtained when the file is kept only on a single cylinder. Reading a target
page in this case only requires less than two page transfers. In general, it is more likely that
files will consist of a large number of pages and therefore the number of file cylinders has
to be greater than one. For example, let us consider that target pages are distributed on
5 cylinders. Then the approach of reading all target pages in a single multi-page request

requires only three page transfers (per target page).

Let us compare these results to the ones obtained when target pages are read using a
random schedule, i.e the target pages are read in a random sequence without considering
their physical position on disk. Then, when the disk arm is already on the desired cylinder, 5
page transfers will be required on the average for reading a page from the cylinder. Otherwise,
the disk arm has to move to the desired cylinder first. The average seek time of the Fujitsu

Eagle disk is roughly 9 page transfers. The total time is then 14 page transfers for reading

84 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

18 | |

16 -\ overall costs — -
\ transfer time <—

14 - rotational delay —x—]|

12 b seek time ——

Cost
(page transfers)

10 15 20 25 30 35 40
number of target pages (N)

Figure 5.4: Cost function (varying number of pages, constant number of 10 cylinders)

a page. The probability is approximately 1/5 that a target page is read from the same file
cylinder as the previous target page. Thus, the expected cost for reading a page is about 12
page transfers. In comparison to reading target pages using the proposed schedule, a random
schedule is less efficient by a factor of four. However, the advantage of using efficient schedules
decreases with an increasing number of file cylinders. For example, when 40 target pages are
randomly distributed over 40 file cylinders, the cost of reading a target page corresponds to

7 page transfers, i.e. it is still half the cost of reading pages randomly.

The total cost depends on its three components as follows. Transfer time is the dominant
component for C'r < 18. For Cr > 18, the seek cost is higher than the transfer cost. For a

large number of file cylinders, transfer cost can even be lower than the rotational delay.

In Figure 5.4, the cost is illustrated for a fixed number of file cylinders (Cr = 10) and a
varying number of target pages. As long as the number of target pages is low, the performance
gain of reading target pages using the proposed schedules is fairly low in comparison to
random schedules. However, the total cost per target page constantly decreases with an

increasing number of target pages.

5.6. MULTIPLE QUERIES 85

5.6 Multiple Queries

In the previous sections, the performance of multi-page requests is examined under the as-
sumption that the disk belongs exclusively to one query. This is typically true for a low-loaded
or a batch-oriented system. In a heavily loaded system where several queries are concurrently
processing, it is not acceptable that the disk arm belongs to a single query from beginning to
end. Otherwise, a huge request may defer the execution of small requests (which may require
only a few pages) such that their response time becomes unacceptably high. However, the
primary goal in a heavily loaded system is not to improve the response time of individual
queries, but to improve the throughput. The throughput is defined for a given mix of queries
and for a given arrival rate of queries by the number of completed queries per second. The
reciprocal value of the throughput gives the average response time of a query. The question
arises how the policy of multi-page requests influences the throughput of the system? This
question is discussed under the assumption that the response time of a query is determined
by its I/O time.

Our approach for processing queries concurrently using several multi-page requests is as
follows. A query sends multi-page requests to the disk one by one. Each of these multi-page
requests contains all target pages of the query which belong to the same cylinder of the disk.
Since multi-page requests are processed without interfering of other requests, the disk gives
services to a query as long as target pages are still unprocessed on the cylinder where the
disk arm is currently positioned. Several multi-page requests of different queries are waiting
in front of the disk in a request queue to receive service from the disk. Any of the well-known
disk scheduling policies [Dei90] can be used for organizing the request queue. This approach
to query processing has basically two advantages. First, it prevents a multi-page request from
occupying the disk for a very long time period. Second, the size of the buffer required for a

multi-page request is limited by the capacity of a cylinder.

In the following, we report the results of a preliminary performance comparison of multi-
page requests and ordinary (single) page requests when multiple queries are processed con-
currently. All results are obtained from simulations which are based on our disk model and

on the corresponding cost function.

The simulation runs on a Sequent Symmetry, a shared-memory multi-processor system.

Figure 5.5: The implementation of the simulation

The system runs DYNIX, a version of the UNIX 4.3BSD operating system. The simulation
is implemented in C using the pSystem [BS90], a library which provides simple but effective
mechanisms to deal with light-weighted processes termed threads in the following. In compa-
rison to UNIX processes, the overhead is very low for creating a thread, absorbing a thread,

and switching execution from one thread to another.

The implementation of the simulation is illustrated in Figure 5.5. A thread Create
creates the queries with respect to a given query profile. In general, several queries are
running concurrently as independent threads at a time. Each of the active queries sends
page requests to the disk one by one. We assume that the query is blocked while the disk
satisfies one of its requests. Thereafter, when the request is completed, the next request of the
query is immediately sent to the disk. If all requests of a query are satisfied, the execution
of the query is finished. The disk itself is also implemented as a thread which is running
on a separate processor. Attached to the disk is a queue of waiting requests. The circular
SCAN (C-SCAN) [Dei90] scheduling strategy is used for selecting the next request which
receives service from the disk. In contrast to the ordinary SCAN policy, the C-SCAN policy

moves unidirectionally across the disk surface toward the inner cylinder. When there are no

5.6. MULTIPLE QUERIES 87

more requests for service ahead of the arm, it jumps back to service the request nearest the
outermost cylinder and proceeds inward again. In addition to the queuing delay, the cost
of a request consists of two components: the seek time and the cylinder time (i.e. the time
spent on the cylinder). In our simulation, the disk simulates a Fujitsu Eagle and therefore,
the seek time can be computed using the formula 5.17. The cylinder time is obtained as the
sum of formula 5.12 and formula 5.11 derived in section 5.4. For a request of one target page,

the cylinder time is then roughly 10.3 ms.

A query profile is characterized by one or several query types. Each query type is described
by the following parameters: the number of target pages (V) and the number of (file) cylinders
(Cr). We assume that the target pages are uniformly distributed over the file cylinders and
that the file cylinders are uniformly distributed among the cylinders of the disk. For each
query type, the probability of selecting a query of this type has to be specified. In addition
to the query types, a query profile is characterized by the arrival rate of the queries. In the
following, we assume that the arrivals of queries follow an exponential distribution where A
denotes the average number of queries which arrive in one second. The assumption of an
exponential distribution is rather common for this kind of simulations and therefore, it is
also used in our experiments. Overall, a query profile QPF can be described by the following

list of parameters

QPF = (AapblaQTl(Nlacl)""apbkaQTk(Nkack‘))

where A denotes the average number of queries per second and QT; is the i-th query type
which delivers queries with probability pb;, 1 <4 < k. The parameters N; and C; denote the
number of target pages and the number of file cylinders of query type Q7;.

In our first set of experiments, we investigated query profiles
QPFi(A) = (A,1.0,QT(20,5))

where parameter A is varying in the range between 0.5 and 10. In Figure 5.6 the average
response time (expressed in ms) is depicted. The one graph refers to the policy when target
pages are read using ordinary read requests, whereas the other graph depicts the results when
multi-page requests are used. For A = 1, 20 target pages on the average are required to be

read from disk. For A = 0.5, the queuing delay does not have much influence on the response

88 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

5000 T T | T |

multi-page requests —
4000 - single page requests — _|

average 3000 - i
response time

(in ms) 2000 L i

1000 i

0 1 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 11
average number of queries per second ()

Figure 5.6: Results of query profiles QPF; () varying in A

time of the queries and therefore, these results correspond to the ones obtained when queries
are performed one by one. As depicted in Figure 5.6, when queries are performed using
single-page requests the average response time per query dramatically increases for A > 3,
whereas multi-page requests still offer low response time of the queries. Only for A > 10,

response times are not acceptable anymore for multi-page requests.

In the second set of experiments, query profiles

QPF>(\) = (\,0.5,QT(1,1),0.4, QT(20,5),0.1, QT(100, 10))

are considered, 0.5 < A < 14, each of them containing three different query types. A query
that requires only one page is assumed to occur with probability 50%, whereas the probability
of a query that requires 100 target pages is only 10%. The average response time of queries of
query profile Q PF; is depicted in Figure 5.7. The graphs show almost the same characteristics

as the ones observed for query profile QPF.

One serious problem of using multi-page requests might be that the multi-page requests
of data-intensive queries occupy the disk for a very long time period such that the response

time of small queries which require only one page (or a few pages) increases substantially.

5.6. MULTIPLE QUERIES

2000 i T I I

1800 - ,’ multi-page requests — -
1600 - II single page requests — _|
1400 - / -

average 1200
response time 1000 |

(in ms) 800 -
600 -

400 |-

200 -

0 | | | | | | |

0 2 4 6 8 10 12 14
average number of queries per second ()

Figure 5.7: Results of query profiles QP F5(\) varying in A

16

500 I I \

450 multi-page requests —
400 L single page requests —
350 -

average 300 -
response time 950 |

(in ms) 200 |
150 -
100 -
50 -

0 | | | | | \ \
0 2 4 6 8 10 12 14
average number of queries per second ()

Figure 5.8: The average response time of queries of type QT'(1,1)

16

90 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

An interesting question is therefore how the average response times of small queries develops
when all queries are performed using multi-page requests. In order to answer this question
for our query profiles QPF5(\), the average response time of the queries of type QT'(1,1) is
plotted in Figure 5.8. The response time of a single query of type QT'(1,1) obviously cannot
take advantage from multi-page request. Therefore, both graphs show similar results for a
low-loaded system (i.e. small A). On a heavily loaded system, however, the average response
time of these queries is considerably lower when multi-page requests are used in comparison
to using single page requests. Overall, we conclude that multi-page requests does not only
reduce the response time of data-intensive queries on a loaded system, but also of those

queries which require only a few pages from disk.

5.7 Summary

In this chapter, we examined schedules for efficiently reading a set of pages from a file scattered
on some cylinders of a magnetic disk. First, a simple algorithm is introduced for computing
schedules. The main contribution of the chapter is its analysis which is completely based
on an analytical model. As a result, we derived a cost function for the expected cost of
reading a set of disk pages. The cost function varies in the number of required pages and
in the number of cylinders where pages of the file are kept. The cost function illustrates the
dependency between cost, clustering of data, and scheduling policies. In particular, we found
that although the required pages are clustered on a single cylinder, the cost for reading the
pages can be reduced substantially when an efficient read schedule is used. Moreover, the cost
function also shows the relationship between its three components of seek time, rotational

delay and transfer time.

In order to obtain an analysis, several simplifying assumptions have to be made with
respect to the distribution of files, the distribution of target pages and the architecture of
the disk. A file is assumed to be distributed over some cylinders which are randomly selected
from the disk. This assumption is in agreement with the policy of the fast UNIX file system
[MJLF84] (when a so-called cylinder group consists of a single cylinder). Moreover, target
pages are randomly selected from the pages of the file. This assumption is valid for many

queries in a DBMS. In our disk model, a cylinder is modeled as a two-dimensional array of

5.7. SUMMARY 91

pages. In particular, head switch time and track skewing is not considered in the model so
far. The additional costs caused by head switches and track skewing are not expected to
dominate the overall cost of a multi-page request, but they may have some impact on it.

This issue of head switch time is discussed in full detail in the following chapter.

92 CHAPTER 5. A COST FUNCTION FOR THE IDEALIZED DISK MODEL

Chapter 6

Disk Models that Consider Head
Switch Time

One of the most important assumptions of our disk models has been that head switch time
can be neglected. This assumption, however, is not in agreement with current disk technology.
In contrast with the improvements in track density, the ratio of head switch time to transfer
time is unfortunately increasing for today’s disks. In particular, high head switch times occur
when pages are written. A read request is not influenced so much by the head switch time,

since the disk arm need not be positioned with the same accuracy required for write requests.

In the first section of this chapter, we present algorithms for reading a set of disk pages,
when head switch time is taken into account. Two of the algorithms produce schedules
which are close to optimal. Results of an experimental comparison show that there is almost
no difference in the expected cost of schedules produced by all of these algorithms. In the
second and third sections, practical approaches are pursued to derive approximate functions
for estimating the cost of the schedules. The approach in section 2 makes use of the cost
functions originally proposed for the idealized disk model that does not consider head switch
time. In contrast to that, a completely new approach is presented in section 3. In particular,
the cost functions are very easy to compute. In addition to head switches, the underlying
disk model considers track skewing and other properties of a disk. Section 4 concludes the

chapter.

93

94 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

6.1 Algorithms

In this section, we make the simplifying assumptions that the starting positions of the tracks
are vertically aligned in a cylinder and that a track consists of PT' pages, where PT is an
integer. Hence, a cylinder can again be considered as a two-dimensional array Cj ; of pages,

0<i<TCand0< j< PT.

Before going into more details, let us first introduce an important notation used throug-

hout the chapter. For two positive integers, say n and m, the expression n % m refers to
Ln/m].

The following discussion is at first restricted to the case that head switch time is one page
transfer. Then, after a page C; ; is read from disk, any page from the (j +2)%PT-th column
can be read with a rotational latency of 1 page transfer. Furthermore, page C; ;i 1)%pr
can read without any rotational latency, but a page Cj j11%pr, K € {0,1,...,i — 1,i +

1,...,TC — 1}, requires a rotational latency of PT page transfers.

A track cluster of size k is a contiguous sequence Cj ;, C; iy1,-.-,Ci k-1, 0 < j <TC
and k£ < TC — j, of target pages on a track such that one of the following conditions is
fulfilled:

(1) j=0and k=TC

(2) pages C; (j_1)%rc and Cj j k%7 are not target pages.

When condition (1) is fulfilled, a track cluster is called complete. Otherwise, condition 2 is
fulfilled and a track cluster is called partial. Let us recall that pages that are not target pages

are called empty pages.

In the following subsections, three simple algorithms are considered for computing efficient
read schedules. The last two of these algorithms produce read schedules whose cost is close to
optimum. In the fourth subsection, we present some results from an experimental comparison

of these algorithms.

6.1. ALGORITHMS 95

6.1.1 Elevator Algorithm

The FElevator algorithm is a very simple algorithm for reading a set of pages from a cylinder.

The algorithm follows.

Algorithm Elevator
Initial state: the disk arm is in front of column 0, j,;q = PT — 1 and %44 = 0.
BEGIN
WHILE (there is an unprocessed target page) DO
(1) Determine the next column j with an unprocessed target page, j = (joa +

)%PT, (joiqg + 2)%PT,....
(2) Compute the smallest 7, i > 744, such that C; ; is an unprocessed target page. If such

a page does not exist, compute smallest 4, ¢« > 0, such that C; ; is an unprocessed

target page.
(3) Read target pages C;j, Cj j11)%pr, - - - until a page, say Ci, 0 < k < PT, is detec-

ted that is either an empty page or a target page that has been already processed.
(4) Set joq =k and iyq = 4.
END;
END Elevator;

Without loss of generality, it is assumed in the algorithm FElevator that the initial position
of the disk arm is in front of column 0. The loop is repeated as long as a target page is unpro-
cessed. In step (1) of the loop the next column is computed which contains an unprocessed
target page. Thereafter, in step (2) one of the unprocessed target pages is determined in an
elevator-based fashion. In step (3), the pages are read from the corresponding track until
an empty page is found or a target page is found that has already been processed. Finally,

indices are updated in the last step of the loop.

Let us illustrate the algorithm using the example given in Figure 6.1. In our example, a
cylinder is assumed to consist of 8 columns and 4 tracks. The Elevator algorithm first reads
the target page A. Next, the algorithm examines column 2. There are two possible pages for
reading, and the algorithm decides to read page C (because it is on the lowest track above

track 0). The remaining target pages are read in the following order: E, G, B, F, D. Overall,

96 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

Figure 6.1: An example of 7 target pages A,...,G distributed on a cylinder (PT = 8 and
TC =4)

the cost of the read schedule is 19 page transfers.

Note that the Elevator algorithm is not restricted to disks that fulfill our assumptions. It
can also be used for disks with an arbitrary head switch time. Moreover, the algorithm can

easily be generalized to disks with track skewing of an arbitrary number of sectors.

6.1.2 Shortest-Latency-Time-First Algorithm

The basic idea of the next approach is to read track clusters one by one. When a track cluster
is completely processed, the next track cluster is determined according to the policy shortest-
latency-time-first (SLTF). This policy selects the track cluster whose starting position comes
under the disk arm first. Due to its simplicity, we abstain from giving the algorithm in full
detail. Instead, let us again discuss the example given in Figure 6.1 under the assumption
that the disk arm is in front of column 0. After the algorithm reads page A, the next track
cluster is the one that only consists of page D. Note that the Elevator algorithm performs
differently. The remaining target pages are read in the following order: E, B, C, F, G. The
cost of the schedule is 13, i.e. it is less than the cost of the schedule computed by the Flevator

algorithm.

In [SF73], the SLTF policy has been shown to produce close-to-optimal schedules (SLTF
schedules) when head switch time is of no concern. In the following, we show that SLTF
schedules are also close to optimal for a disk that performs a head switch at the expense of

one page transfer. The basic idea of the proof is to transform a multi-page request performed

6.1. ALGORITHMS 97

Figure 6.2: The transformed target set of the example

on a disk that considers head switch time into an equivalent multi-page request performed

on a disk that neglects head switch time.

For a given target set, let S be a schedule, not necessarily an SLTF schedule. Schedule S
can be transformed into an equivalent schedule St on a disk without head switch time such
that the cost for both schedules is the same. Schedule St is created as follows. Let (71, 7%) be
a pair of adjacent target pages in schedule S. Then these pages are also adjacent in schedule
ST, if T is the predecessor page of T5 on the same track. Otherwise, a new page P is inserted
in schedule ST between pages T and T5. More precisely, page P is in the column left of the
column where page T>» is stored. Such a page is also called an artificial target page. It follows
that for a given target set, the cost of schedule S is always higher than the minimum cost for
reading the target pages and the artificial target pages from a disk without head switch time.
For our example given in Figure 6.1, the transformed situation is depicted in Figure 6.2. The

target pages with label P refer to the artificial ones.

Now, let S = (CLy,...,CLg) be an SLTF schedule consisting of k track clusters and
let S’ be an arbitrary schedule. The transformed schedules of S and S’ are called S7 and
ST, respectively. Then, St is given as (CLy, Py,CLo,...,P;,CLyg), where P;, 2 < i < k
are artificial target pages. It follows that there are artificial target pages P] in schedule S/,

such that page P; and page P! are in the same column, 2 < 7 < k. Thus, the cost of the

3

transformed SLTF schedule St is not higher than the cost of any other transformed schedule.

This observation is used in the proof of the following theorem.

98 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

Theorem 6.1.1 For a given target set, let S be an SLTF schedule on a cylinder with a head
switch time of 1 page transfer and let St be the transformed schedule. Then, the cost of
schedule St is not more than PT higher than the cost of an optimal schedule.

Proof:

For k > 0, let Sp = (CLy, P»,CLs,...,P;,CLy) be the transformed schedule of S. Without
loss of generality, the disk arm is assumed to be positioned in front of column 0 initially. Let
M denote the maximum number of target pages (including the artificial ones) that are in a
column. Then, in order to read the required pages, the cost of the SLTF schedule would be
at least (M — 1) * PT + jo + 1 where jj refers to the last column with maximum number of
target pages. Moreover, (M — 1) x PT + jo + 1 is also a lower bound for the cost of any other

transformed schedule.

Next, we show that the column, say j, which contains page P, contains M target pages.
If this is not true, the disk arm would pass over the column j once without reading any page.
For the original schedule S, this would cause that no target page is read from column j or
from column (5 + 1)%PT. Since schedule S is an SLTF schedule, reading track cluster CLj
would have been started prior to the the last rotation. Hence, C'Ly is not the last track
cluster in the schedule. This contradiction eventually proves the statement that page Py is
in a column with M target pages. The cost of schedules is maximized if column j is identical
to column jy and track cluster C' L consists of PT pages. Thus, in the worst case, the cost

of the schedule S is at most M * PT + 5o+ 1. O

For a given target set, there is still some freedom in selecting SLTF schedules. So far, we
have not explained which page of a complete track cluster (i.e. occupying all pages of a track)
serves as the page read first. For the transformed schedule St, this page determines the
column where an artificial target page is inserted. Due to Theorem 6.1.1, our primary goal is
to keep the maximum number of target pages as low as possible in the transformed schedule.
Thus, for each complete track cluster, we proceed as follows: First, we determine the column,
say j, which contains a minimum number of target pages. Ties might be resolved by selecting
the column with the smallest index (this is only advisable when the initial position of the

disk arm is in front of column 0). Reading the track cluster should then start from column

6.1. ALGORITHMS 99

Figure 6.3: An example of a target set that has an expensive SLTF schedule

(j + 1)%PT.

The same comment can be made as for the Elevator algorithm. SLTF schedules do not

impose any restrictions on a disk with respect to track skewing and head switch time.

6.1.3 Look-Back Algorithm

Although the shortest-latency-time-first algorithm is shown to be close to optimum, the cost
of its schedule can be almost double the minimum cost, in the worst case. An example for such
an undesirable situation is shown in Figure 6.3. The cost of the SLTF schedule (A,B,...,H)
would be 16, whereas the cost of the optimal schedule A,C,..., H, B is only 10. In order to
reduce cost, it is obviously necessary to allow that portions of a track cluster can be read.
A schedule is then no longer an SLTF schedule. This was our starting point for designing a

new algorithm which will be given in this subsection.

The basic idea of our new approach is to consider sequences of 2 adjacent columns in a
cylinder. The i-th sequence GZ?, 0 <1 < PT, also called i-th group of size 2, is defined as
the set of target pages found in column 4 and column (i + 1)%PT. Since our discussion is
restricted to groups of size 2, we simply use G; to refer to the i-th group. For the example
illustrated in Figure 6.1, we obtain Gy = {4, B}, G1 = {B,C, D}, Go = {C, D}, G3 = {E},
etc. It is obvious that two target pages from the same group cannot be read in one disk
revolution when they are on different tracks. Therefore, the following algorithm tries to

reduce the number of occupied tracks in the groups of a cylinder.

Algorithm Look-Back

100 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

Initial state: the disk arm is in front of column 0, j,q = PT — 1.
BEGIN
WHILE (there is an unprocessed target page) DO
1. Determine the next group G, j = (joig +1)%PT, (joia + 2)%PT, ... which contains

at least one unprocessed target page.

2. (a) Ifthereisa track ¢ such that Cy; is an unprocessed target page and Cy (;_1)%pr

is an empty page, put the disk arm in front of page C} ;.

(b) Otherwise, if there is a track ¢ such that Cy; is an unprocessed target page,

put the disk arm in front of page C; ;.

(c) Otherwise (i.e. there is not an unprocessed target page in the j-th column), put

the disk arm in front of an arbitrary unprocessed target page, say C (j11)%pr-

3. Read unprocessed target pages on track t in sequential fashion until an empty page
or an processed target page appears in front of the disk arm. Let G, be the group

in front of the disk arm.
END;

END Look-Back;

In order to illustrate the algorithm Look-Back we will again use the example which is
depicted in Figure 6.1. The algorithm first reads page A. It then reads page D because the
predecessor page on the same track is not a target page (see step 2 (a) in the algorithm). After
page E has been processed, the algorithm reads page G. This is an example where algorithm
Look-Back reads track clusters partly. The remaining target pages are then transferred into
main memory in the order B, C, and F. Overall, the algorithm requires 13 transfer units for
reading all the target pages. The name Look-Back refers to the policy used in step 2 (a) of
the algorithm.

The example illustrated in Figure 6.4 shows that the Look-Back algorithm does not always
compute the optimal schedule for reading the target pages. The algorithm computes the
schedule A, B, ..., H, whereas the optimal schedule is A, B, ..., F, H,G. As illustrated in
our example, optimal read schedules do not always read pages until the end of the track

cluster. Sometimes it is beneficial to stop earlier and to perform a head switch.

Before giving the next lemma, let us introduce another notation. For a given state of

the algorithm Look-Back and for given group G;, 0 < ¢ < PT, the function Tracks(G;)

6.1. ALGORITHMS 101

Figure 6.4: Cylinder with some target pages

returns the number of tracks occupied by at least one of the unprocessed target pages of
group G;. For our example illustrated in Figure 6.1, Tracks(Go) = 2 and Tracks(G3) = 1
can be observed before the algorithm enters the loop. Moreover, M is defined as M =

max;—o,... pr—1 1racks(G;) at the moment of initialization.

Lemma 6.1.2 Consider that N target pages are distributed among the pages C; ; of a cylin-
der, 0 <i <TC and 0 < j < PT. Then, the algorithm Look-Back requires at most PT + 1

page transfers for decrementing M by 1.

Proof: Let Seq = G;,,Gi,,...,Gi, 1 < k < PT, be the sequence of the groups which

fulfill Tracks(Gi;) = M, 0 < i; < PT and 1 < j < k, at the moment of initialization. We
assume that Seq is ordered according to the index of the groups, i.e. 7; < 7;1 is fulfilled for

0 < j < k—1. Now, we assume (in contradiction to the statement of the lemma) that the

following property holds:

(*) There is a distribution of target pages such that algorithm Look-Back requires more than

PT + 1 page transfers to reduce M.

Due to statement (*), there is a distribution of target pages such that for at least one
group Gy, € Seq it is not possible to reduce M = Tracks(Gr,). Let G, be the first group in
Seq with that property. Then, when the disk arm arrives at G,

Tracks(G;)) <M for0<i<m—1 (6.1)

is fulfilled.

102 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

First, let us assume that the disk arm has read the last page from column (m — 2)%PT
before it moves to one of the columns of group G,,. Then, G,, is considered as the next
group in the algorithm. First, the algorithm would have tried to read one of the target pages
in column m. If no target page can be found in column m, the disk arm would have read
a target page from column (m + 1)%PT. In both situations, the number of occupied tracks
in group Gy, is reduced and thus, Tracks(Gy,) < M. Because this is in contradiction to our
statement (*), the disk arm has read the last target page from column (m — 1)%PT. Thus,

the algorithm considers group G;,41)%pr as the next group (see step 1 of the algorithm).

Due to step 2(a), the algorithm would have tried to read one of the pages from column
(m + 1)%PT that do not have a predecessor target page on the same track in column m.
If such a page exists, Tracks(G,,) will be reduced (in contradiction to statement (*)). Tt
follows that such a target page does not exist in column (m + 1)%PT. The group G,, only
consists of target pages which are in column m and of pairs of target pages stored on the
same track in column m and (m + 1)%PT. Thus, M = Track(Gy,) is equal to the number
of target pages in column m. However, the number of target pages in column m is a lower
bound for Track(Gnm—-1) and so, Tracks(Gm—1) = Tracks(Gp) = M is true. This result is

in contradiction to inequality 6.1.

Statement (*) has been shown to be false and therefore the statement of the theorem is

true. O

Theorem 6.1.3 Consider that N target pages are distributed among the pages C;; of a
cylinder, 0 <1 <TC and 0 < j < PT. The cost of the schedules computed by the Look-Back

algorithm is then at most (PT + 1) * M page transfers.

Proof: Let us consider the pages that the disk arm passes over as a sequence partitioned into
(M — 1) subsequences of size PT + 1 and one subsequence with at most PT + 1 pages. The
first subsequence starts in column 0 of the cylinder. Thus, when target pages are in group Gy,
algorithm Look-Back decrements Tracks(Gyp) by 1. In general, the i-th subsequence starts in

the :1%PT column of the cylinder.

From Lemma 6.1.2, we already know that M is decremented by 1 after the first subse-

quence is processed. What remains to be proven is whether algorithm Look-Back guarantees

6.1. ALGORITHMS 103

that the maximum is reduced by 7 when the disk arm is at the beginning of the (i + 1)-st

subsequence.

Without loss of generality, let us assume that the maximum could not be reduced in the
second subsequence. This is only possible if the last page of the first subsequence is read
from column 0 and a head switch is performed such that the next page is read from column
2. In that case, the number of occupied tracks in group Gy is at most M — 2 (note that
Tracks(Gy) was already reduced at the beginning of the first subsequence). Moreover, it
follows from Lemma 6.1.2 that the maximum number of occupied tracks can be reduced for
groups G, G3, ... of the second subsequence. The remaining question is whether Tracks(G1)

can also be decremented in the second subsequence, if Tracks(G1) = M — 1 is fulfilled.

Let us assume that Tracks(G1) = M — 1 could not be reduced in the second subsequence
and that reading starts from the second column, i.e. the right column, of group G1. Then, the
algorithm Look-Back cannot find a page in column 2 whose predecessor page (on the same
track) is not a target page. Therefore, M — 1 is equal to the number of target pages that can
be found in the left column and thus, group Gy has at least M — 1 occupied tracks. This is
in contradiction to our statement that Tracks(Go) < M — 2. Hence, if the maximum M — 1
is adopted in group G1, the algorithm Look-Back decrements Tracks(G1) by 1 and thus, the

statement of the theorem follows for M < 2.

The same technique can be used to obtain the result of the theorem for an arbitrary value

of M. O

Note that the upper bound (PT + 1) * M is indeed close to optimum. In order to show
that, let us consider an SLTF schedule S and its transformed schedule Sp. Then, at the
moment of initialization, Tracks(G;) is equal to the number of target pages (including the
artificial ones) in the i-th column of the transformed situation. Thus, (M —1)* PT is a lower
bound for the cost of any schedule. This shows that the schedules of the Look-Back algorithm

are also close to optimum.

6.1.4 Comparison

In this subsection, results obtained from an experimental performance comparison are

104 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

5 I I

Elevator — |
SLTF <©—
Look-Back =+— |

Cost 3.5 1

(page transfers) 3L

25

2_

1.5 '
0 2 4 6 8 10 12 14 16 18 20
number of target pages (N)

Figure 6.5: The cost of schedules produced by the different algorithms

shown. In Figure 6.5, the average cost is depicted for the schedules produced by the algo-
rithms. The cost (given in page transfers) varies in the number of target pages. The disk
consists of 4 tracks and 8 columns (T'C = 4, PT = 8). As illustrated, there is almost no
difference in performance between the schedules produced by the different algorithms. The
schedules of the Look-Back algorithm are slightly better than the ones of the other algorithms
only in the case of large numbers of requests. We observed that the difference in performance

was even less when the number of tracks was higher.

6.2 Two Cost Estimations

Due to the complexity of obtaining an analysis for the cost of read schedules under the
assumption of the idealized disk model (see chapter 5), the reader might guess that an exact
analysis is even more complex for a model that takes into account head switch time. In order
to obtain cost estimations, our goal is to derive rather simple approximate cost functions
for the schedules of the algorithms. In this section, the cost functions are based on the
cost function ICost, see formula 5.15, which was originally derived under the assumption of

the idealized disk model. Target pages are assumed to be on one cylinder in the following

6.2. TWO COST ESTIMATIONS 105

discussion. The more general approach that target pages are distributed among several
cylinders can be obtained by using the same techniques already presented in Section 5.5.
Furthermore, the following discussion is restricted to the special case that a head switch

requires the time of one page transfer.

One essential point is that the cost functions make use of the number of times a head
switch has to be performed. A head switch is performed when the next page on the actual
track is an empty page. Note that a head switch is actually not necessary when the next
target page is read from the same track. However, since the cost is the same as if a head
switch was performed, we simply call that operation a head switch as well. A head switch,
then, occurs after all pages of a track cluster are transferred into main memory. For the
Elevator algorithm, the number of track clusters is only a lower bound to the number of head
switches. The reason is that when the read/write head is switched to another track, the next
read operation may start from a target page that is right of the left-most target page in a
track cluster. As a result, one head switch is generally not sufficient to read all pages of a
track cluster. Since the number of track clusters is essential to our cost estimations, we first
deal with the distribution of track clusters in the next subsection. Next, we will present two

cost estimations in the following subsections.

6.2.1 On the Distribution of Track Clusters

Let N be the number of target pages uniformly distributed among the pages of a cylinder.
In this subsection, we focus on two important issues: First, computing the expected number
of track clusters, and second, deriving the probability that a track cluster contains ¢, ¢ < PT,
target pages.

An entire track cluster is kept on a single track. Thus, the number of pages in a track
cluster is determined by the number of target pages which are on the corresponding track.
The probability u;, 0 < ¢ < PT, that a track receives ¢ target pages is given as

(e

(PT;]TC’)

(6.2)

U =

Let us consider a track that contains ¢, 1 < 4 < PT, target pages, and a page P stored

on the track. For i < PT, page P is the first target page of a track cluster, if its predecessor

106 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

page is an empty page. The probability that a page on the track is the first page on a track

cluster is
(L) _,, PT—i €3
(PZ,T) PT(PT —-1) '
and the expected number of track clusters on one track is
PT (PT—Z) PT —i
1 . 7
Vi:Z (ZPT) =% 5r (6.4)
j=1 \i

For 1 = PT, one of the pages is randomly selected to be the first page of the track cluster.
Thus, the probability of a page being the first of the track cluster is %, and the expected

number of track clusters is exactly 1 (= Vpr).

The general formula for the expected number of clusters on a track can be derived from

formula 6.2 and formula 6.4. This yields

min(PT,N) (PT*]&[YLC"—I))
(PT]T[TC)

x Vi (6.5)

i=1
For a cylinder, the expected number of track clusters is simply given as

min(PT,N) (PT*(TC’—I))

CUN)=TC=x Y (P;Yi—;c) x V; (6.6)
=1 N

Now, let us compute the probability that a track cluster contains j, j < PT, target pages.
Let Q(i,j) denote the probability that a track cluster contains j, 1 < j < PT, target pages,
under the assumption that i, j < i < PT, target pages are on the track. Consider a track
with ¢, 1 < ¢ < PT, target pages. For ¢ < PT, a page is the first target page of a track

ix(PT—i

cluster with probability WTL)U' For 1 < PT —1, the track cluster is of length 7,1 < j <1

with probability

PT—j—2 « . i
QG,j) = Lii = P}; (J(DI;T— z')l) <PT¢ —]j 2) o0

PT+(PT—1)

For 1 > PT — 1, we obtain

1 =g
Qi J) _{ 0 otherwise (6.8)

6.2. TWO COST ESTIMATIONS 107

6.2.2 First Estimation

Let N be the target pages which are required from a cylinder. Then, we suggest using

CI(N)

GCosti1(N) = ICost(N,1) + N

(6.9)

as an estimate for the overall cost. The first term refers to the time required for reading N
target pages under the assumption of the idealized disk model. The second term estimates
the cost for the head switches. The number of track clusters CI(N) (see formula 6.6) serves
as a lower bound for the number of head switches. For each head switch, a cost of one page

transfer is charged.

Note that formula 6.9 can be generalized to the case when head switch time does not
correspond to one page transfer. In that case, a factor would be associated with the number

of track clusters.

6.2.3 Second Estimation

The second estimate is also computed using the cost function of the IDM. The basic idea is
to model a head switch as an additional target page. Let H(N) be the expected number of

required head switches (for simplicity it is assumed to be an integer). We suggest using
GCosto(N) = ICost(N + H(N),1) (6.10)

as an estimate of the expected cost of the schedules. Note that our basic assumption on the
cost function ICost is that target pages are uniformly distributed over the cylinder. This

assumption is not valid when additional target pages are created for modeling a head switch.

In formula 6.9, the number of track clusters is used for estimating the number of head
switches. In the following, we present another formula for estimating the number of head

switches related to the Elevator algorithm.

Consider a track cluster of m target pages, 1 < m < PT. If the first page of the track
cluster is hit, all of the m target pages are read from the track cluster. Otherwise, when the
i-th page of the track cluster is first hit, 1 < ¢ < m, only m — i + 1 pages are transferred
into main memory. Note that this situation may occur when either the Elevator algorithm

or the Look-Back algorithm is used. After the pages are transferred, the number of track

108 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

clusters remains the same and thus the number of head switches is not reduced. In order to
obtain the number of head switches, we need an estimate for how many times a track cluster

is accessed until it has been completely processed.

In order to make the analysis tractable, we assume that after a head switch is performed,
every page of the next track cluster is hit with the same probability. This is obviously a
simplification. For example, the Look-Back algorithm prefers those track clusters which are
completely transferred into main memory. For the Elevator algorithm, at least the first page

is hit with a higher probability than the other pages of a track cluster.

Let us assume that each page of a track cluster is hit with the same probability. Let X,
1 < ¢ < PT, denote the expected number of accesses on a track cluster with ¢ pages. It

immediately follows that X; = 1. For ¢ > 1, we yield the following recurrence relation:
Xi=1+-) X; (6.11)

This recurrence relation can be solved using well-known techniques [GKP89]. The final

equation is given as
i
1
X; = - 6.12
=X (6.12)

The number of head switches H(N) is then estimated using the following formula:

min(N,PT

%
Ug

)
7 * Q(4,1) * X (6.13)
- — Up
j=1
Note that the expression 1—1"% refers to the conditional probability that ¢ target pages are on

a track, under the assumption that there is at least one target page on the track.

6.2.4 Experimental Comparison

In the previous subsections, we addressed the problem of read schedules under a disk model
that incorporates the time for switching the disk head from one track to another. The
graphs in Figure 6.6 demonstrate that the cost of schedules depends substantially on the
head switch time. The experiments are performed on a cylinder that consists of 8 columns
and 20 tracks (PT = 8,TC = 20). The first graph shows the cost for reading target pages

without considering head switch time, whereas the other graph shows the cost under the

6.2. TWO COST ESTIMATIONS 109

5 T T \

45 without head switch time — |
: head switch time: 1 page —
4

Cost 3.5 1

(page transfers) 3L

2.5

2

1.5 | | | | |
5 10 15 20 25 30
number of target pages (N)

Figure 6.6: The cost of multi-page requests for reading N target pages when head switch

time is 0 and 1 page transfer

assumption that a head switch corresponds to one page transfer. The schedules are assumed
to be produced by the Elevator algorithm. The cost is given in units of page transfers required
for reading a target page. The cost varies in N, the number of target pages. Let us take a
closer look at N = 10. Without considering head switch time, the cost per target page is
2.14 page transfers, while 3.24 page transfers are required per target page when the expense
of a head switch is one page transfer. Overall, this experiment demonstrates the necessity

for cost functions which consider head switch time.

An obvious question is how accurate are the approximations which are proposed in the
previous section. In order to provide an answer, we compared in various experiments the
results obtained from these approximate formulas to the ones obtained from simulations.
Since all algorithms produce very similar schedules, the simulations are again restricted to
the FElevator algorithm. A cylinder consists of 8 columns and 20 tracks. The graphs in
Figure 6.7 plot the expected cost per target page for a multi-page request. Two of the
graphs are plotted using the cost estimations GCost; and GCosta, whereas the third graph

is obtained from simulations. The cost of a multi-page request varies with the number of

110 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

5 I I

simulation results >—
4.5 GCost; —
GCostg —

Cost
(page transfers)z'5

3_

25

2 | | | | |
) 10 15 20 25 30
number of target pages (N)

Figure 6.7: A comparison of cost estimates GCost; and GCosty with simulation results

(varying in N, TC = 20, PT = 8)

target pages. Both of the approximations produce results close to the actual cost.

In our experiments, the cost estimation GCosty is almost always more accurate than
GCosti. For N sufficiently small, GCosty overestimates the actual cost by at most a factor
of 6%. Only for a large N (i.e. large target sets), does the cost function underestimate the
actual cost. We do not observe a different behavior when parameters PT and T'C are varied.
In Figure 6.8 and Figure 6.9, results of a simulation are compared with the ones obtained
from the cost functions. In these experiments, the underlying query requires 10 target pages
from a cylinder, where T'C' and PT are varied. The cost estimate GCosty shows a high
accuracy almost independent of PT and T'C, whereas the quality of the estimation GCosty
worsens with an increasing number of columns and with an increasing number of tracks. We
conclude that GCosty provides an accurate cost estimation when the cost for a head switch

corresponds to one page transfer.

The two cost estimates can also be generalized to estimate the cost for a head switch
time of two (or more) page transfers. For example, we examined the formula ICost(N +

HST x« H(N),1) for estimating the cost when head switch time is HST page transfer,

6.2. TWO COST ESTIMATIONS 111

6
5.5
5 -

4.5

Cost
(page transfers)

3.5
3
2.5

9 I I I I I I I ! !
4 6 8 10 12 14 16 18 20 22 24
number of columns (PT)

simulation results —
Costy —
GCosty %— 7

Figure 6.8: A comparison of cost estimates GCost; and GCosty with simulation results

(varying in PT, N = 10, TC = 10)

HST € {1,2,...}. However, our experiments showed that the quality of the approxima-
tions worsens with an increasing value of HST. When HST = 2, the relative error of the

second approximation is about 10% compared to the results obtained from simulations.

Both of the cost estimates considered so far present several deficiencies. First of all,
the underlying disk model is still rather simple. The cost functions may not be suitable for
estimating the cost on a disk whose head switch time does not correspond to exactly one page
transfer. Moreover, the model that a cylinder corresponds to a two-dimensional array of pages
is not in agreement with the disk geometry of most of today’s disks. Instead, a cylinder can
be viewed as an array of sectors, and a page corresponds to a contiguous sequence of sectors.
Track skewing, for example, shifts the beginning of a track to the right by a certain number
of sectors with respect to the beginning of the previous track. Eventually, the capacity PT
of a track (in pages) will generally not be an integer, i.e. there are pages in a cylinder which
are spread over two tracks. Second, the practical use of these cost functions is questionable.
These functions require that two recurrence relations are solved. The computation of these

recurrence relations is time-intensive. Moreover, rounding errors may also become a problem.

112 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

3.5
34 |
3.3
32+
3.1+
)3T
2.9
2.8

Cost
(page transfers

simulation results — -
9.7 GCost; — |

GCostg »—
2.6 -

2.5 1 1 1 1 1
5 10 15 20 25 30
number of tracks (TC)

Figure 6.9: A comparison of cost estimates GCost; and GCosty with simulation results

(varying in TC, N = 10, PT = 8)

6.3 An Alternative Head-Switch-Time Disk Model

In this section, we address the problem of deriving simple cost formulas which can be employed
for estimating the cost of multi-page requests under the assumptions of an alternative head-
switch-time disk model. The cost functions will be given in an explicit form without needing
to solve recurrence relations. The disk model also considers track skewing and additionally,
some of the pages may belong to two adjacent tracks. We refer to the model as the head-

switch-time disk model, or HST model for short.

For the HST model, a cylinder of the disk corresponds to a sequence C; of pages, 0 <
i < PC. A page occupies SP contiguous sectors in the cylinder, where SP is an integer
with SP > 1. A cylinder consists of T'C tracks with addresses 0,...,TC — 1 where T'C is an
integer. A track is a contiguous sequence of ST sectors where ST > 0 is an integer. Note
that the parameter PT = g—; is generally not an integer. However, we make the simplifying

assumption that PC = PT « T'C is an integer.

On each of the tracks, a contiguous sequence of pages is stored. The first and the last

6.3. AN ALTERNATIVE HEAD-SWITCH-TIME DISK MODEL 113

page of that sequence are assumed to be only partially on the track. More precisely, for each
pair of adjacent tracks, there is a page whose first sector is on the one track and whose last
sector is on the other track. The time required for transferring a page which is entirely stored
on one track is used to express the cost of a multi-page request. Hence, 1 (page transfer) is
required to transfer such a page. In order to transfer a page that crosses a track boundary,
a head switch is also required. Thus, a transfer of such a page is 1 + HST where HST
denotes the time required to perform a head switch. The expected transfer time of a page in

a cylinder is then given as
TC -1

1+ HST
+SPC

(6.14)

The cost analysis is done under the assumption that pages are read with respect to an
SLTF schedule. Thus, clusters are read one by one into main memory. The basic idea of
the analysis is to compute the expected number of clusters, the expected number of pages
in a cluster, and the expected distance between two adjacent clusters. Cost estimations are
derived for two cases. The case for HST € (0,1] is discussed in the first subsection. In the
second subsection, the case for HST > 1 is studied. Since a head switch time that is requires

more than 2 page transfers very seldom occurs, special attention is given to the case when

HST € (1,2].

6.3.1 Inexpensive Head Switches

In this subsection, we assume that head switch time is at most 1 page transfer (HST < 1).
The target pages are read with respect to an SLTF schedule. In contrast to our previous
discussion, an SLTF schedule is not restricted to contain track clusters only, i.e. clusters
whose pages belong to one track. Instead, an SLTF schedule reads clusters one by one which
refer to a contiguous sequence of target pages in the cylinder. The sequence must either be
surrounded by a pair of empty pages or it must be at the beginning or at the end of the

cylinder.

First, an analysis is presented for the expected number of clusters in a cylinder. Let N be
the number of target pages, N < PC. A cluster occurs in a cylinder if one of the following

two properties holds. First, a cluster is at the beginning of the cylinder if page Cj is a target

114 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

v

Second, a cluster starts from the i-th page, 1 < ¢ < PC, of a cylinder if page C; is a target

page. The frequency of this event is

page and page C;_1 is an empty page. For a given i, the frequency of that event is

PC -2
N -1
The expected number of clusters NC' is therefore given as

(PC'fl) + (PC . 1) (PCfQ)

N-1 N-1
(‘%)

NC =

Some basic calculations simplify the equation to

NC:JW1—¥§;) (6.15)

The time required for performing all head switches can now be computed as HST « NC =
HST « N(1 - 552).

Second, let us compute the cost for transferring the pages. This is an easy task. Since an
SLTF schedule only transfers clusters and since a cluster only consists of target pages, the
expected transfer cost follows from equation 6.14. We obtain

TC -1

N(1+HST——

) (6.16)

What remains to be done is to compute the latency when the disk arm moves from the

end of a completely processed cluster to the beginning of the next unprocessed cluster.

For a given cluster, let p € [0,1) be the (relative) starting position in the corresponding

1 ST-1

track. Since a cluster is aligned to sectors, p adopts an element in the set {0, g7, ..., g7

For the sake of simplicity, we assume that the starting position of a cluster is uniformly
distributed in [0,1). In addition to a simplified analysis, this assumption also serves for

modeling track skewing to a certain degree.

Let CLy,...,CLy be the clusters whose starting positions are denoted by pi,..., Dk,
respectively (0 < p; < 1,1 <14 < k). Let xx, 0 < zx < 1 be the position of the disk arm.

We make the simplifying assumption that positions pi,...,pg, zx are uniformly distributed

6.3. AN ALTERNATIVE HEAD-SWITCH-TIME DISK MODEL 115

in [0,1). Then, the expected distance from position zj to the next position where a cluster,

say CL;, begins is given as
1
Pl (6.17)
After the pages of the cluster C'L; are transferred and a head switch is performed, the disk
arm arrives at a new position zy_1, 0 < z;_1 < 1. Again, we make the simplifying assumption
that positions p1,...,pj—1,Pj+1,---,Pk, Tk—1 are uniformly distributed. It follows that the
expected distance to the next cluster is % This process is repeated until all clusters are

processed. Overall, our equation for estimating the latency LT(k) is given as

k+1 1
LT(k)=PT*» = (6.18)
1=2

i
The sum is one less than the (k + 1)-st harmonic number. The computation of the sum can

be avoided by using the approximation presented in [GKP89]. We then obtain

LT (k) = PT % (In(k + 1) + 2(k1+ - 12(k1+ IR 1) (6.19)

where v = 0.5772156649 . .. is Euler’s constant.

By combining equations 6.15, 6.16, and 6.19, we obtain our cost estimation Estggsr,

HST € [0,1), as follows.

TC —1 NC -1, LT(NC)
+1-—

EStHST(N) :1+HST(PC N)‘I‘ N

(6.20)

6.3.2 Expensive Head Switches

The case when the cost of a head switch is more than one page transfer follows the same
approach as discussed above. We now assume that HST is in the range (m — 1,m]| for an
integer m, m > 2. In addition to the general cost formulas, simplified ones are derived for the
case m = 2. Note that the cases for m = 1,2 are the most interesting ones because the head
switch time of today’s disks is mostly less than two page transfers. For HST € (m — 1, m],

a cluster refers to a contiguous sequence of pages with the following properties:

e the first and the last page of the sequence are target pages

e the sequence does not contain a contiguous sequence of m empty pages

116 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

e the sequence is delimited on the left and on the right by a contiguous sequences of

empty pages (or pages outside of the cylinder) longer than m

Note that this definition of a cluster is almost the same as the one given on page 54. The
only difference is that a cylinder is now assumed to be limited in size. Thus, the following

analysis is not asymptotic, but exact.

Before going into more details, let us point out an important observation. An algorithm
that reads cluster one by one does not give us an SLTF schedule anymore. When an empty
page of a cluster is stored on two contiguous tracks, the cost for reading the page would be
1+ HST. In contrast, an SLTF schedule would have avoided the transfer of the page and
a head switch would have be performed instead. Therefore, the cost of an SLTF schedule is
less than the cost of a schedule that reads cluster one by one. For practical values of m, the
probability is very low that an empty page will cross the end of the track and that the same
page is in a cluster. For simplicity, our analysis is restricted to the case that clusters are read

one by one.

First, the expected number of clusters is computed again. Consider that N target pages
are uniformly distributed among the pages Cy,...,Cpc—_1 of the cylinder. For i > m, page
C; is the first page of a cluster if C; is a target page, and pages C}, 1 —m < j < i are empty

pages. This occurs with probability
(PCfmfl)
N—1
PC
(n)
For = < m, page C; is the first page of a cluster, if C; is a target page and pages C}, 0 < j < 1,

are empty pages. Then, the expected number of clusters NC(N,m) is given as
PC-3 PC—i
(PC - 2)(N-—1) + Z:’il (fo)

(')

NC(N,m) =

Some simple calculations result in the following equation:

(N=-1)("Y™

NC(N,m)=1+ e (6.21)
(n)
For m = 2, the formula can be further simplified to
NC(N,2) = N« (1 — WV -1)(2PC -1 N)) (6.22)

PC(PC — 1)

6.3. AN ALTERNATIVE HEAD-SWITCH-TIME DISK MODEL 117

Next, we compute the time required for transferring the target pages of a cluster into
main memory. This time corresponds to the time that would be required to transfer all pages
of a cluster (including the empty pages). Therefore, we compute the expected number of
empty pages in a cluster. For the special case NV = 1, there is only a cluster consisting of one

target page and hence, only one page has to be transferred.

In the following, we assume N > 1. In order to compute the expected number of empty
pages in the clusters, we investigate the dual problem of computing the expected number
of empty pages that are outside the clusters. First, we discuss the case where a contiguous
sequence of empty pages is at the beginning and the end of the cylinder. Later, we deal with
contiguous sequences of two (or more) empty pages between two clusters. In both cases of
the analysis, the following identity [GKP89] is of great importance.

-k k l 1
Z ¢+ = tat , for integers [, m > 0 and integers n > g > 0
0<k<l m n m+n+1

(6.23)

Consider that pages Cy,...,Ci_1, i > 0, are empty pages and that page C; is a target

PC—-1—1
N -1
Thus, the frequency of empty pages being at the beginning of the cylinder is given by

) ())

i=1 1=1

page. The frequency of this event is

Now, identity 6.23 can be applied to the formula on the right hand side. Then, we obtain

PC
() o2

as the frequency of empty pages at the beginning of the cylinder. For N > 1, the same

formula gives the frequency of empty pages at the end of the cylinder.

Consider a sequence Cg,...,Cgyi—1, ¢ > m, of 1 empty pages in the cylinder such that
pages Cx_1 and Cy,; are target pages. The position k of the first page has to be in the set
{1,...,PC —i — 1}. Otherwise one of the target pages would be outside of the cylinder.

Thus, there are PC' — ¢ — 1 possible positions to store such a sequence on the cylinder. For

118 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

each position, the frequency that such a sequence occurs is given as

PC—-2—3
N -2

Overall, the frequency of empty pages that are in a contiguous sequence of at least m empty

pages is then

PC—N
PC—-2-—
z:m< N _9)(PC—l—Z)’L
PC—N
PC—-1-—1
= (N-1) 1222 (N_1)z

(6.25)

Now, j = PC — N —i is used as the new index of the sum. Also, the order of the sum is

reversed. We obtain the following formula:

PC—N-m o . - o
o (7 1) (o)

§j=0
B (N_l)(PCZN<PC—N—j><N—1+j)_ PCZ*N <PC—N—j)<N—1—I—j>)
j=0 1 N-1 j=PC—N-m—1 1 N -1
The identity 6.23 can be applied to the first sum. We then obtain
PC PO N PC—-N—-j\(N—-1+j
(N — 1)(() — >) (6.26)
N+1 j=PC—N-m-1 1 N-1

Let us now consider the remaining sum. The sum can be simplified as follows.

P%N PC—-N—j\(N—-1+j
» 1 N -1

—pc-
_ ’J”;Ol i) <PCN— 1 —g)
RO E)
() B

- (75)-"E ()

6.3. AN ALTERNATIVE HEAD-SWITCH-TIME DISK MODEL 119

PC PER (PC—1—m—j\ " (PC-1-m—3)/(j
- <N+1>_m]Zo (N-1 > N-1 1

7=0
PC PC—m PC—-—m
— _ — 2
<N+1) m(N) <N+1> (6.27)
This expression replaces the sum in formula 6.26. Then, by a combination of formulas

6.24 and 6.26, we obtain the number of empty pages outside of a cluster as follows:

2<prl> + (N = 1)(m (PC]\; m) + <P§J:in>) (6.28)

Thus, the expected transfer cost TR(N,m) of the clusters is

TR(N,m) :N—2<prl) (V- 1)(m<PCN_m> + (PJS:”)) (6.29)

The formula can be simplified for m = 2 as follows

(N —1)(PC — N)
BO(PC—1)

TR(N,2) = N(1 + (6.30)

We are now able to estimate the cost of a multi-page request on a cylinder when HST €
(m —1,m], m > 0. Let N be the number of target pages, uniformly distributed among
PC pages. Then, NC(N,m), see formula 6.21, gives the expected number of clusters and
TR(N,m)), see formula 6.29, gives the cost for transferring the clusters into main memory.
The latency to move from one cluster to another is estimated by using equation 6.19. The

total cost function is then given as follows

TC -1 NC(N,m) , LT(NC(N,m))

Bstusr(N) = (1+HST—=—) (1+TR(N,m))+ HST~— K

(6.31)

For m = 2, a simplified formula can be achieved by using the formulas 6.22 and 6.30 for
computing NC(N,2) and TR(N,2)), respectively.

The cost function Estgsr, HST > 1, estimates the cost of multi-page requests under
the assumption of the head-switch-time disk model. In contrast to previous cost functions,
one of its most important advantages is that the calculation is very simple and inexpensive.
What remains to be shown is that its estimations are close to the cost on a real disk. For that
discussion, we refer to the next chapter where we first validate and calibrate a disk simulator.
After that, we are able to compare the cost functions and the results of the simulator. In order

to give a first idea of the cost function, the corresponding graphs are plotted for HST = 0.125

120 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

|
Tr Estigrs +— 7
Estg125 —

Cost
(page transfers)

0) 10 15 20 25 30
number of target pages (N)

Figure 6.10: Cost function Estygr varying in the number of target pages (PT = 8, TC = 20)

and HST = 1.875 in Figure 6.10. The parameters of the cylinder are PT = 8 and T'C' = 20.
For both of the graphs, it is assumed that a head switch also occurs when a request for one
page is issued. For HST = 1.825, the average response time is then not 5, but close to 7

(page transfers).

6.4 Conclusion

In this chapter, we addressed the problem of computing efficient read schedules under the
assumption of disk models that take into account head switches. Three algorithms were
presented, two of which were shown to produce close-to-optimum schedules under certain
assumptions. In an experimental comparison, we showed that all three algorithms produced
schedules whose expected cost was almost the same. We then derived two approximate cost
functions for estimating the cost of the read schedules. Although the cost functions were in
agreement with some of the results obtained from simulation, they did not cover all cases.
Moreover, their computation was expensive since the evaluation of two complex recurrence

relations was required. Therefore, we looked at an alternative disk model in Section 3. As a

6.4. CONCLUSION 121

result, we derived a cost function that requires only a few arithmetic operations. In addition
to head switch time, the cost function (and the underlying disk model) takes into account

track skewing and other properties of a real disk.

122 CHAPTER 6. DISK MODELS THAT CONSIDER HEAD SWITCH TIME

Chapter 7

A Comparison of the Disk Models

and a Validation

In the last three chapters, we examined several models for magnetic disk drives. Under the
assumptions of these models, algorithms were designed for computing efficient read schedules.
For these algorithms, exact and approximate formulas were derived for estimating the cost

of their schedules.

In the first section of this chapter, the head-switch-time disk model is validated and
compared with an implementation on a real magnetic disk drive. As a result, we obtain a
disk simulation that behaves almost the same as a real disk drive. The disk simulation gives
us freedom to vary the disk geometry and disk speed so that almost any disk drive can be
modeled accurately. In the second section, we compare the results of our cost functions with

the results obtained from the disk simulation. A third section concludes the chapter.

7.1 Validation of the Disk Model

In order to validate our simulation model, simulation results were compared against experi-
mental results obtained on a Sequent Symmetry, a shared-memory multi-processor system.
The system runs DYNIX, a version of the UNIX 4.3BSD operating system. The system has

several Fujitsu M2334K disks attached to it whose specifications are given in Table 7.1.

This section is structured as follows. First, the characteristics of the Fujitsu M2344K

123

124 CHAPTER 7. A COMPARISON OF THE DISK MODELS AND A VALIDATION

Number of cylinders 624
Tracks per cylinder (T'C’) 27
Sectors per track 66
Sector size [Byte] 512
Track skewing [Sector] 1
Rotational speed [rpm] 3600
Average seek time [ms] 4
Head switch time [ms] 0.25

Table 7.1: Disk parameters of the Fujitsu M2344K

disk are described in more detail. Next, we discuss the most important aspects of the im-
plementation and the simulation. Finally, the results of an experimental comparison are

reported.

The Fujitsu M2344K disk drive

In order to verify our disk model, we selected the Fujitsu M2344K disk drive for our
experiments. The specifications of the disk are listed in Table 7.1. It is certainly true that
the M2344K is a rather old-fashioned disk, but its basic properties still corresponds to those
of a modern disk. For example, properties such as track skewing and head switch time greater
than zero can already be observed for the M2344K. The disk differs from a modern disk only
with respect to the parameter settings. For example, the head switch time of the M2344K is
extremely low since the track density is low as a consequence of its 8 inch diameter. For our
experiments, it was also an advantage that the M2344K does not contain a disk cache. Such
a disk cache would have used optimization strategies (e.g. read ahead) which certainly run
the risk of conflicting with an efficient read schedule of a multi-page request. Additionally,
the performance of a disk without a cache can be more easily predicted than of a disk with
a cache. Let us mention that a disk cache has a great impact on the average access cost, as
shown in [RW93a]. However, buffers in general do not contribute to reducing the cost of a
query that requires target pages only once during query processing. In particular, this holds

for data-intensive selection queries on which we have primarily put our emphasis.

Our experiments are restricted to a single cylinder. Thus, seek time is not essential to the

validation of our disk model. For the sake of completeness, an approximation for the seek

7.1. VALIDATION OF THE DISK MODEL 125

Figure 7.1: Page layout of the M2344K disk

time is given. In [ZL92], it has been shown that

4+4+/d—1-0.02653(d —1) ifd<50

1
9.69995 + 0.04066(d — 50) otherwise (7.1)

seek_time(d) = {

is a suitable approximation. Seek time is modeled as a function of the seek distance d. The

function returns the seek time in ms.

In Figure 7.1, the page layout is depicted for the first tracks of a cylinder of the M2344K.
We assume a page size of 4 KB. A page is represented by one or more rectangles. The
M2344K offers track skewing, i.e. the beginning of a track is shifted by one sector (0.5 K B)
with respect to the beginning of its predecessor track. Assume that the first tracks starts at
sector 0. Then the second track starts at sector 1, the third track at sector 2, and so on. In
addition to its 66 sectors, a track contains a special sector at the beginning. In Figure 7.1
these sectors are illustrated as black rectangles. Such “free” sectors are rather common on
disks mostly because they serve as spare sectors (when a sector on the same track is defective).
Since the ratio of sectors per track to sectors per page is not an integer, some of the pages
are distributed over two tracks. Note that the transfer time of these pages is increased by
two sectors compared to pages completely stored on a single track. The number depicted in a
rectangle refers to the address of the corresponding page. If a page crosses a track boundary,
it is represented by several rectangles without reporting its address. Instead, the rectangles

are illustrated using a common pattern.

Let us discuss the cost of reading pages by the following examples. For simplicity, only
the transfer time is considered. When page 2 and then pages 9 are read, the cost is 2.125

(page transfers). Note that these pages can be read in a single disk revolution. When page

126 CHAPTER 7. A COMPARISON OF THE DISK MODELS AND A VALIDATION

| |
7 experiments —
simulations —%—

Cost
(page transfers) A 7

) 10 15 20 25 30
number of target pages (N)

Figure 7.2: Validation of the simulation on the M2344K disk

2 and then page 11 are read, more than one revolution is required. The exact cost is 12.125.
Recall that the head switch time of the M2344K is one sector. This allows us to read page 2

after page 9 was read. However, page 2 and page 11 cannot be read in one disk revolution.

Implementation

Multi-page requests are implemented in C using concurrent light-weight tasks, also called
threads . A thread is similar to a coroutine in Modula-2, and like a UNIX process it presents an
independent unit of activity. Our implementation exploits the thread library of the uSystem
[BS90]. The uSystem provides simple but effective mechanisms to deal with threads. In
particular, synchronization and execution of threads is under control of the pSystem. Context
switching between threads is done by by-passing the much slower context switches of ordinary
UNIX processes. On the Sequent, a context switch is only 44 pys for the puSystem, whereas a
context switch of a DYNIX process takes about 10 ms.

Instead of using ordinary UNIX files, the implementation is based on the raw disk for
the following reasons. First, I/O-operations on the raw disk by-pass the UNIX buffers and

therefore they are performed directly on the disk. The time required for such an operation is

7.1. VALIDATION OF THE DISK MODEL 127

the actual time spent on the disk. Second, a raw disk corresponds to a contiguous sequence
of sectors on the disk. Thus, if the layout of sectors is known, it is possible to get control of

the physical placement of pages.

In order to process a multi-page request with respect to a given schedule, asynchronous
single-page read requests are issued. In our implementation, several reader threads are first
created and the page addresses of the multi-page request are written on a stack. A read
schedule is then computed that causes a reorganization of the page addresses in the stack.
Then, each of the reader threads are concurrently processed as follows: A page address that is
fetched from the stack is used for issuing a synchronous read request. The thread waits on the
disk until it is completely serviced, i.e. the required page is transferred into main memory. The
thread then fetches the next address from the stack, and so on. This processing is repeated
as long as the stack contains a page address. In general, at any point in time, one thread
occupies the disk, while the others are waiting in a queue in front of the disk. A non-empty
queue is essential to our implementation. While one request is on the disk, the disk controller
is preparing the waiting requests for their execution. However, this is only possible without
delays because context switches produce almost no overhead for the uSystem. In particular,
the time delay that occurs between two adjacent requests can be neglected. However, it is
important to note that the disk controller does not change the ordering of the requests in the
queue if the required pages are located on the same cylinder. Thus, it is guaranteed that the

ordering in the read schedules is indeed preserved on the disk.

It is interesting to note that our implementation uses the ordinary read command of
the DYNIX operating system. For the purpose of our experiments, it was not required to
interact with the disk controller or to write channel programs as was reported in [Wei89]. As
mentioned above, our implementation runs on a multi-processor machine. So far, the same

experiments have not succeeded on a single-processor machines.

Comparison

The main purpose of the first experiment was to validate and calibrate the simulation model.
Experimental results obtained from the Sequent machine were compared with simulation

results obtained by setting the parameters of the disk model appropriately. The experiment

128 CHAPTER 7. A COMPARISON OF THE DISK MODELS AND A VALIDATION

r head switch time: 1 sector — 7|
head switch time: 2 sectors —
6 - head switch time: 4 sectors >$— —

Cost
(page transfers)

) 10 15 20 25 30
number of target pages (N)

Figure 7.3: Comparison of the cost of a multi-page request for different head switch times

was done using the shortest-latency-time-first policy. For a given number of target pages, 100
target sets of that size are created. Target pages are uniformly distributed among the pages
of a cylinder. Thereafter, the pages are read into main memory with respect to the ordering
given by an SLTF schedule. Figure 7.2 shows the expected elapsed time for reading one
target page averaged over the number of target pages in the 100 target sets. As usual, cost is
measured in page transfers. The one curve refers to the simulation results, whereas the other
curve depicts the experimental results obtained from our implementation. As demonstrated,
the simulation results are in agreement with the experimental results. The relative difference
of the experimental results to the simulation results is at most 6% when the head switch time
is assumed to be one sector. The relative difference is increased when the number of target
pages increases. One reason that may explain this behavior is that the disk controller cannot

keep pace with the high transfer and request rate of the disk.

The same experiment was repeated under the assumption that the head switch time
corresponds to two and four sectors. The experimental results are depicted in Figure 7.3.
There is almost no difference in the results when head switch time is one or two sectors. This

can be clearly observed for a large number of target pages. However, the results obtained for

7.2. A COMPARISON OF THE DIFFERENT COST ESTIMATES 129

a head switch time of 4 sectors do not approach the other results. Moreover, we observed
that the difference between the experimental results and the simulation results is indeed less
when the head switch time is set slightly higher than the actual head switch time. For a head
switch time of two sectors, the relative difference in the costs was not more than 2% in our

experiments.

Overall, we conclude that the results obtained from our experiments are in good agreement
with the simulation results. Therefore, it is justified that in our following experiments I/O
requests are simulated rather than performed on a real disk. In addition, the simulation
approach offers the advantage that an arbitrary disk can be modeled by setting the parameters
appropriately. The essential parameters of our simulation model are the number of tracks
per cylinder (T'C), the number of pages per track (PT), page size, track skewing, and head
switch time (HST). For most disks, the head switch time determines track skewing and

therefore, it is not considered as a separate parameter in the following.

7.2 A Comparison of the Different Cost Estimates

In this section, simulation results are compared against the cost estimations obtained from

our cost functions. The following cost functions are considered in our comparison:

e ICost (see formula 5.15),
e GCosty (see formula 6.9),

e Estygsr (see formula 6.20 and 6.31).

For all our experiments, a sector consisted of 512 bytes and the page size was assumed to
be 8 sectors. Parameters PT and HST are reported in units of pages. For example, a head

switch time of 1 sector results in HST = 0.125.

In Figure 7.4, results are reported from experiments with the following setting of values
for the parameters: PT = 8.25, T'C' = 24, and HST = 0.125. This setting refers to the
specification of the Fujitsu M2344K with the exception that T'C is chosen slightly lower.
There are three curves in Figure 7.4 which are varying in the number of target pages. Each

of the curves estimates the expected cost for reading a target page. The cost is given in page

130 CHAPTER 7. A COMPARISON OF THE DISK MODELS AND A VALIDATION

7 simulation results — |
ICost —
6 - GCost; >— -

Cost
(page transfers)

3L M*W

VN
2 - —
| | | i F—

5 10 15 20 25 30

number of target pages (N)

Figure 7.4: Simulation results compared with cost functions GCost; and ICost (varying in

N, PT =825, TC = 24, HST = 0.125)

transfers. The lower curve refers to ICost, the cost function of the idealized disk model. The
middle curve is obtained from simulations and the upper curve refers to the cost function
GCost. Note that GCost assumes a head switch time of one page transfer. This may be
one of the reasons that it overestimates the actual cost. In contrast, the cost function ICost
underestimates the actual cost since head switch time is considered to be zero in the idealized

disk model.

For the same experiment, the curve of the cost function Estg 125 is reported in Figure 7.5.
For comparison, the curve of the simulation results is plotted as well. As demonstrated, there
is good agreement between these curves. For small N, the cost function underestimates the
actual cost, whereas for N € {5,...,25} there is an excellent match between the simulation
results and the cost function. For large N, the cost function underestimates the simulation
results. The relative errors between the cost function and the simulation results is always
below 10%. Except for N = 4, relative errors are even below 6%. We conclude that cost

function Esty 195 provides good cost estimations in the experiment.

7.2. A COMPARISON OF THE DIFFERENT COST ESTIMATES 131

7 simulations *— |
Estg105 —

Cost
(page transfers)

5 10 15 20 25 30
number of target pages (N)

Figure 7.5: Simulation results compared with cost function Esty 195 (PT = 8.25, TC = 24,
HST = 0.125)

In summary, the cost function of the idealized disk model already shows considerable
errors for small head switch times. Since we might expect an increase in the errors for larger
values of HST, we disregard that cost function in further experiments. The same is true for
the cost function GCost. However, we expect to obtain more accurate results when HST is
closer to 1. Since the cost function Estggr shows the best match among these cost functions,

further experiments are restricted to a comparison of Estygr against simulation results.

In the next sequence of experiments, the cost function Estggr was compared against
simulation results. In Figure 7.6, results are depicted for varying N (number of target pages).
In contrast to the previous experiment, the head switch time was set rather high (HST =
1.875). Let us emphasize that the cost for a head switch is now almost double the cost for a
page transfer. As a result, the expected cost for reading one page (N = 1) is about 7 page
transfers. For N = 30, the expected cost for reading a target page is only half of the expected
cost for reading a single page. Although performance improvements are now not as high as
for low head switch times, there is a considerable performance gain when pages are read with

respect to an efficient schedule. Furthermore, Figure 7.6 again demonstrates that the cost

132 CHAPTER 7. A COMPARISON OF THE DISK MODELS AND A VALIDATION

function ESTg gt is indeed an accurate estimation of the cost.

In Figure 7.7, results are depicted for varying T'C' (number of tracks). We assumed a
target set of 10 pages (N = 10). The two curves again show an excellent match for various
TC'. The relative difference between cost estimation and simulation results slightly increases
with an increasing TC. For TC = 28, the relative difference is about 7%. However, disk
drives with more than 28 surfaces are seldom found. Moreover, today’s disk drives tend to
have less surfaces than the ones manufactured five to ten years ago. This experiment also
shows how clustering on a cylinder affects the cost of a read schedule. If the target pages
are distributed on 4 and 28 tracks, the cost per target page is 3.5 and 4.9, respectively. The
difference in performance increases with an increasing head switch time, i.e. the higher the
head switch time, the more impact clustering has (in a cylinder) on the performance of read

schedules.

In Figure 7.8, results are depicted for varying HST (head switch time). We again assumed
a target set of 10 pages. The graphs clearly show a linear dependency between cost and
HST. As for our previous experiments, there is an excellent match between cost estimation
and simulation results. Furthermore, the experiment demonstrates the importance of small
HST for the performance of a multi-page request. The cost for a multi-page request on a

disk with HST = 2 is about 5, i.e. 75% more than the cost on a disk with HST = (0.125.

These results are interesting with respect to assessing the performance of disk systems.
The old-fashioned Fujitsu M2344K disk drive offers a head switch time of 0.125. From
Figure 7.8, we know that the expected cost for a multi-page request of 10 pages is 2.8 (page
transfers). A modern disk like the Quantum ProDrive 1050S [Qua92] has a head switch time
of 1.75 (for a track that contains 66 sectors). The cost of the multi-page request would be
4.75. However, the advantage of the Quantum disk is that it rotates at 5400 rpm, a factor of
1.5 faster than the Fujitsu disk. In order to compare the cost measures, the result obtained
on the Quantum disk is divided by a factor of 1.5. The (normalized) cost is then 3.167, which
is still higher than the cost for the request on the Fujitsu disk. This example shows that
current developments in disk technology do not always result in improved performance for

multi-page requests. Paradoxically, older disk might be faster.

7.3. CONCLUSION 133

] T

7 simulations —+*— 7

Est1.875 —
6 - —
Cost]
(page transfers)

'\\A&*ﬂ‘*ﬁ(

3 - —

2 - —

| | | | |

5 10 15 20 25 30

number of target pages (N)

Figure 7.6: Simulation results compared with cost function Est g7 (TC = 24, PT = 8.25,
HST = 1.875)

Finally, in Figure 7.9, results are shown when the number of pages on a track (PT) is
varying. So far, our cost is given in page transfers required for reading a target page. In this
experiment, the cost unit of page transfers is not suitable anymore since the number of pages
on a track is not a constant. Instead, cost is measured in the number of disk revolutions
required for reading a target page. Additionally, the head switch time is assumed to be 15%
of a total disk revolution. The two curves in Figure 7.9 are again in good agreement. They

show that best performance can be achieved when the number of pages on a track is high.

7.3 Conclusion

In this chapter, various comparisons were presented on the cost of multi-page requests. First,
details were given on how to implement multi-page requests on a UNIX system. The basic
idea of our implementation is to perform a multi-page request as a sequence of single page
requests. Each request for a single page is performed in an asynchronous fashion using light-

weight tasks (threads). Instead of using an ordinary UNIX file, the raw disk interface is used,

134 CHAPTER 7. A COMPARISON OF THE DISK MODELS AND A VALIDATION

|
Tr simulations *— |
Est g75(10) —
6 _
Cost 5 |
(page transfers)
3 _
2+ _
| | | | |
5 10 15 20 25 30

number of tracks (T'C')

Figure 7.7: Simulation results compared with cost function Est g75(10) (N = 10, PT = 8.25,
HST = 1.875)

T T T
Tr simulations *— 7|
Estgsr(10) —
6 _
Cost i]
(page transfers)
3 [—
2 - _
| | | | | | | | |

0 02 04 06 0.8 1 1.2 14 16 1.8 2
head switch time (HST)

Figure 7.8: Simulation results compared with cost function Esty g75(10) (N = 10, PT = 8.25,
TC = 24)

7.3. CONCLUSION 135

0.62 | T
7 . .
06 Bl >
0.58 PT .
0.56 - _
Cost 054 — -
(disk revolutions) o | i
0.5 - _
0.48 - e 1

0.46 |-]

0.44 | | | | \\

5 6 7 8 9 10 11
number of pages on a track(PT")

Figure 7.9: Simulation results compared with cost function %& (N =10, PT = 24)

which allows control of the physical page layout on disk.

Second, a disk simulation was implemented and simulation results were compared against
the ones obtained from a real disk. We showed that both results were in excellent agreement.
The simulation basically varies in four parameters: the pages on a track, the tracks in a
cylinder, the head switch time and the number of target pages. By setting these parameters

appropriately, our disk simulation can be adapted to any given real disk.

Third, three of the cost functions derived in the previous sections were compared against
the results of our implementation. The cost function Estggr, see formula 6.20 on page 115
and formula 6.31 on page 119, was shown to be very accurate for various settings of the
parameters. In all experiments, the relative difference between the cost function and the
simulation results was less than 10%. We thus conclude that the cost function may serve as

an excellent estimate for the cost of a multi-page request.

136 CHAPTER 7. A COMPARISON OF THE DISK MODELS AND A VALIDATION

Chapter 8

Tuning Index Structures

So far, we have studied the very general problem of computing efficient read schedules for
multi-page requests. This problem occurs in different areas of computer science such as
computer architecture, operating systems and database systems. In this chapter, the benefits

of efficient read schedules will be demonstrated for query processing in a database system.

There are many operations in a DBS which may exploit multi-page requests and efficient
read schedules. Weikum [Wei89] has shown in various experiments that large objects can
be read from magnetic disk more efficiently when multiple pages are transferred in a single
request. This is also called set-oriented I/O. Zheng and Larson [ZL92] found that external
sorting consistently performs better (in comparison to traditional approaches) when the re-
quired pages are read following a well-computed schedule. Brinkhoff and Kriegel [BK94] have

exploited multi-page requests for processing spatial joins.

In this chapter, we focus on the problem of evaluating data-intensive selection queries
on a file using an index structure. In contrast to an exact match query (on a primary
key), a data-intensive selection query is expected to be satisfied by several records in the
file. In our discussion on query optimization, we showed that I/O performance of complex
queries largely depends on how efficiently selection queries (operators) are performed. The
importance of supporting this type of query efficiently is also demonstrated by the fact that
database benchmarks [Gra91] put their emphasis on these queries. Range queries are one of

the most frequently used selection queries.

The B*-tree is the most important index structure, we can even say data structure, in a

137

138 CHAPTER 8. TUNING INDEX STRUCTURES

DBS especially designed for supporting range queries on a dynamicly growing and shrinking
file. Any commercial DBS offers BT-trees for indexing records. In the following, it is assumed
that the reader is familiar with the concept of BT-trees. Descriptions of BT -trees can be found
in various textbooks, see [Wie88] for example. In our discussion, a B -tree implements a so-
called sparse index. The records of the file are stored, with respect to their order, in the leaf
nodes of the BT-tree. These index structures are also termed local order preserving [HSW88],
because the proximity of records is preserved in a data page, but not beyond a page. Since
each node in the BT-tree directly corresponds to a page on secondary storage, we also call

the leaf nodes and the branch nodes data pages and directory (index) pages, respectively.

There are many implementations of BT-trees, but we are not aware of any which make
use of efficient read schedules. There are two reasons that may give an explanation. First,
most of the previous studies measure performance of range queries by simply counting the
number of page accesses. Under such a cost model, the read schedule does not influence
performance and therefore, it is not considered in these studies. Second, other studies have
differentiated the cost for a page access into positioning time and transfer time. VSAM
[KL74], for example, reduces positioning time by clustering data pages, whose records are
close to each other, in a preallocated partition of the disk (e.g. a cylinder). When a new page
is required and no space is left in the partition, a new partition will be allocated. The first
half of the pages remains in the old partition, whereas the other half is moved to the newly
allocated partition. Obviously, clustering of data results in reducing the seek time. However,
as shown previously, query performance is not solely determined by clustering, but there is
still a great potential for improving seek time and rotational delay by using efficient read
schedules. Similarly to VSAM, the SB-tree [O’N92] is a modified BT-tree with the object of

supporting data-intensive range queries efficiently.

In the following, we present a generally applicable approach to improve the performance
of a broad class of index structures. Our approach is easy to implement assuming that the
underlying system offers multi-page requests and possibilities to cluster pages in a file. For the
sake of concreteness, we base the presentation in this thesis to BT-trees; it is implicit how to
apply our approach to other methods, e.g. R-trees. Qur variant of the B*-tree is termed CB™-

tree. The CBT-tree exploits clustering similar to VSAM, as well as efficient read schedules.

8.1. MOTIVATION 139

In comparison to VSAM, the CBT-tree offers an improved approach to preserving clustering
dynamically. The reorganization process of a cluster is distributed among several insertion
and deletion operations such that the cost of these operations is only slightly higher than the
cost of the same operation executed on an ordinary BT-tree. Moreover, the accumulated cost
of clustering (in terms of page accesses) can almost be neglected in comparison to the cost of
building up the index. In addition to clustering, the CBT-tree exploits efficient read schedules

for an efficient processing of range queries and other data-intensive selection queries.

The remainder of the chapter is organized as follows. In the next section, our work is
motivated by following a simple example. The design of the CBT-tree is given in section 2.
In section 3, we introduce an abstract data structure that allows us to implement clustering
without dealing with the physical properties of the underlying disk. In section 4, we present
an approach for improving the local page layout in a cylinder of the CB*-tree. In section 5,
we report the results of an experimental performance comparison. In section 6, our approach
is compared with an alternative approach. Finally, a summary on the most important results

is given in section 7.

8.1 Motivation

In this section we discuss an example for BT -trees to identify the problems of dynamic index
structures without the benefits of clustering pages and issuing multi-page requests. For sake
of simplicity, it is assumed that a record only consists of an integer key. At most 3 records
and 8 entries can be kept in a data page and directory page of the BT -tree, respectively. The

following sequence of records is inserted into the B*-tree:

146,75, 3,95, 189, 165, 106, 229, 239, 14, 208, 90, 8,222, 122

After record 239 is inserted, the BT-tree consists of four data pages, see Figure 8.1. The
pages are labeled E,C,G, M. In our example, the data pages of the BT-tree are stored on
a common cylinder of the disk. As depicted on the right hand side of Figure 8.1, the disk
consists of five cylinders. The parameters of the cylinders are given as follows: TC = 4,

PT =4.25 and HST = 0.25.

140 CHAPTER 8. TUNING INDEX STRUCTURES

A range query, e.g. find all records which are in the range [100, 230], is performed in the
following way: First, an exact match query is performed using the lower key of the specified
range. This operation results in reading a data page that serves as initial page for traversing
data pages in key-order following the corresponding pointers. During traversal, all records
are retrieved which are in the specified range. If a record is found whose key is greater than
the upper key of the range (or the highest key is found in the file), all answers of the range
query have been retrieved. For example, if [100,230] is the range, pages C,G, M are read

into main memory.

The algorithm for performing a range query on a BT-tree is asymptotically optimal ac-
cording to the number of required data pages, i.e. O(g/b) data pages are required in the
worst case where g denotes the size of the response set and b denotes the capacity of the data
pages. However, the example in Figure 8.1 already shows that the number of page accesses is
only a coarse performance measure. Under the assumption that the disk belongs exclusively
to the query, only one seek is required for reading the qualifying pages into main memory.
After the seek is performed, let the position of the disk arm be on sector 0. Assuming no
processing delays of the pages, the rotational delay and the transfer time for reading the qua-
lifying pages then corresponds to 2%—1 rotations. If, however, the addresses of the qualifying
pages are known in advance, the pages could be read with only one multi-page request. The
cost would then correspond to only lg—j rotations. In order to exploit multi-page requests
qualifying pages cannot be read sequentially one at a time and therefore, the original range

query algorithm of the B*-tree cannot be used anymore.

In the following, we show that pages are generally not clustered in (dynamic) BT -trees. If
a data page of a BT-tree has to be split into two, the BT-tree sends a request for a new page
to the disk manager. Here, let us assume that the policy of allocating a new page is similar
to the one of the fast UNIX file system [MJLF84]: For each file, the disk manager marks the
cylinder which satisfied the last request for a new page. If a page is still available from the
marked cylinder, the disk manager will give one of the free pages to the BT-tree. Otherwise,
the disk manager randomly determines a new cylinder where a large number of free pages
can be found. Obviously, this policy is very efficient as long as all pages of a B*-tree can be

kept on a cylinder.

Figure 8.1: An example of a BT-tree and its data page layout on disk

For large BT-trees, the capacity of a cylinder is much too low for storing all the data
pages. In particular, the dynamic behavior of the BT-tree is responsible for worsening the
page layout such that for a range query the cost of retrieving a qualifying page increases.
The reason for the increasing cost is that when a data page is split into two the new page is
mostly allocated on a different cylinder. Under the assumption that an overflow can occur
in every page with the same likelihood, adjacent pages are stored on different cylinders with
high probability. Figure 8.2 shows this property for the example BT-tree after all remaining
records are inserted. The BT -tree consists of three new pages X,Y, Z which are stored on the
fourth track of the fifth cylinder of the disk. We have assumed that no space was available
to store these pages on the first cylinder. The 2nd, 3rd and 4th cylinder of the disk do not
contain pages of the BT-tree and therefore, are not depicted in Figure 8.2. Note that adjacent
data pages of the example BT -tree are always stored on different cylinders. The range query
[100, 230] now requires five data pages. In addition to rotational delay and the transfer time,
five seeks have to be performed for reading the qualifying pages. Thus, the average cost
for reading a qualifying page is substantially higher for this BT-tree compared to the one of

Figure 8.1.

In the following, we discuss two solutions to reduce the cost of a range query. The first
one is to compute all addresses of the required data pages before accessing one. Then, these
addresses are sorted with respect to the cylinder of their pages. For each cylinder hit by the

query, all pages with qualifying records are read from the cylinder. However, there are two

Figure 8.2: The example after all records are inserted

important drawbacks to this approach. First, this method only improves the performance
of large and medium-sized range queries. Small range queries still suffer from the fact that
nearby data pages are stored on different cylinders. Second, the answers of the range query
are not delivered in key-order anymore and therefore, this approach is only appropriate for
queries which do not require that the answers are in key-order. Moreover, qualifying pages
are clustered not only on a few cylinders, but on almost all cylinders where data pages of the
BT-tree are stored. This has an important impact on the response time of small and medium-
sized range query. For these types of queries, the potentiality of improving performance is

exploited only partly.

The second solution is to cluster data pages which contain adjacent records on the same
cylinder. This can easily be achieved for a static file. Moreover, pages can then be stored
always contiguously on disk with respect to the key-order '. For dynamic files, however, this
solution would frequently trigger expensive reorganizations on the file. In order to reduce
reorganization cost, a different clustering policy is used: Adjacent pages are still clustered on
a common cylinder with high probability, but they will not necessarily be stored contiguously.
This results in a loss of clustering which can however be compensated by using multi-page
requests for retrieving the qualifying pages of a query. In the following section, we show in full

detail how both techniques (clustering and multi-page requests) can be applied to B -trees.

!We assume a key that consists of only one dimension.

8.2. THE CB*-TREE 143

8.2 The CB*-Tree

In this section, we present a new approach to B*-trees, called cluster B -trees (CB* -trees),
which dynamically maintain clustering of pages on magnetic disks and perform range queries
using multi-page requests. Our intention is not primarily the design of a new B™-tree, but
to provide efficient techniques that improve the performance of queries for a broad class
of access methods. BT-trees are only our running example in this chapter. The section is
structured into four subsections. First, the data structure is briefly discussed. Splitting is
then explained for directory pages and clusters. Finally, the algorithm for performing range

queries is outlined.

8.2.1 The Data Structure

There is almost no difference in the data structure between a BT-tree and a CB™-tree. The
CB™-tree is a balanced tree with directory and data pages whose capacity is limited to b
entries and a records, respectively. The basic idea of the CB™-tree is that a set of adjacent
pages which belong to the same level of the tree is dynamically clustered close together on
disk. Dynamic in this context means that clustering can be preserved without performing
expensive reorganizations on the CBT-tree. For sake of simplicity, we restrict the approach

to data pages in the following. The same approach can also be applied to directory pages.

Similar to clustering adjacent records in a data page, the CB™-tree clusters adjacent data,
pages in so-called bags. A bag is best compared with a small file which can contain at most
¢ data pages. In general, the pages of a bag cannot always be stored contiguously on disk,
but they may be scattered in a small partition of the disk. In the following, we assume that
a bag completely belongs to one cylinder of the disk. Thus, one multi-page request can read
all pages of a bag into main memory. Important to our design is that deletions of arbitrary
pages and insertions of pages are supported as basic operations on bags. The requirements

on the underlying file system will be discussed in more details in section 8.3.

The directory pages in the level above the data pages are partitioned into so-called sub-
pages. A subpage contains all the entries which refer to the same bag. There are several

subpages in a directory page and therefore, ¢ < b has to be fulfilled.

144 CHAPTER 8. TUNING INDEX STRUCTURES

In order to provide clustering under insertions and deletions of records (data pages), bags
have to be reorganized in an appropriate fashion. There are two cases which will be discussed

in more details in the following subsections:

e After a data page is split into two, the new data page may belong to a full bag (with
¢ pages). This is called a bag overflow. Similar to an ordinary page overflow, a bag

overflow is eliminated by splitting the full bag into two.

e When the original algorithm of the B*-tree is used for splitting directory pages of the

CB™-tree, a problem might be that a subpage is distributed over several directory pages.

8.2.2 Splitting of a Bag

The approach to splitting a bag is first a direct adaptation from the splitting algorithm of the
BT-tree. A similar approach has been already proposed for VSAM [KL74]. The basic idea is
as follows. First, space for a new bag is allocated on a new cylinder and the second half of
the data pages in the full bag is moved to the new bag. Next, the corresponding references
in the subpage are updated and the directory page is written back to disk. This is called
a complete reorganization. In contrast to the original VSAM algorithm, pages which are
inserted in the new page are removed from the original bag. Moreover, the new bag occupies
only disk space for the new pages (and does not pre-allocate space for ¢ pages). Otherwise,
as it can be observed for VSAM, average storage utilization would drop below 50% which is

not acceptable for many applications.

Under the assumption that a sufficiently large space can be found on a cylinder, this
approach guarantees that subpages contain at least [c/2] entries. Another advantage is that
the cost of moving the data pages from one cylinder to another can be performed in two multi-
page requests. Therefore, the cost for moving one of the pages in a complete reorganization
is substantially lower than the average cost for a disk access. However, the total cost of
an insertion operation which triggers a complete reorganization step is substantially higher
than the cost for an insertion operation in an ordinary BT -tree. For some applications (e.g.
databases with real-time constraints), the total cost of an insertion operation might be not
acceptable anymore. In the following, therefore, we present a more general approach which

allows to control the reorganization cost of an insertion operation if necessary.

8.2. THE CB*-TREE 145

The basic idea is to relax the requirement that a bag consists of at least [¢/2] data pages.
Instead, it is only required that a bag with less than [¢/2] pages has a left sibling bag such
that both have more than ¢ pages. Such a pair of bags is also called a reorganization pair.
When a bag overflow occurs, the split algorithm performs similarly to the one introduced
above. First, some space for at least r data pages is allocated on a new cylinder. Here,
r is a parameter, 1 < r < [c¢/2], which is set during initialization of the CBT-tree. It
specifies the maximum number of pages involved in such a reorganization step. Then, the r
rightmost data pages of the bag are moved to the newly allocated cylinder. Typically, r will
be much smaller than ¢/2. Therefore, several reorganization steps have to be performed to
distribute the pages of a reorganization pair evenly over its bags. Such a reorganization step
is triggered when a new page is inserted in one of the bags of the reorganization pair. Then,
the 7 rightmost pages (with respect to the key-order) are moved from the left bag to the right
bag. Accordingly, r references are moved from the left subpage into the right. Thereafter,
the corresponding directory page is written back to disk. For each reorganization step, two
multi-page requests are only required to read and write the r pages. If r is set to a value
considerably smaller than ¢/2, the cost for performing a reorganization step is substantially
lower than the cost of a complete reorganization. However, the total cost for performing all

the required reorganization steps increases with a decreasing value of r.

8.2.3 Splitting of a Directory Page

The split of a data page is treated in the CB*-tree as in an ordinary B*-tree, whereas the split
of a directory page slightly differs from the one in a B*-tree. An important goal in the design
of the CB™*-tree is to preserve the property of the BT-tree that insertions are processed
on a single path of the tree. This property is essential for many of the well-investigated
concurrency control protocols [LY81]. In order to achieve this goal, the CB™-tree stores both

subpages of a reorganization pair in a common directory page.

The basic idea of the new split algorithm is to relax the property of the B*-tree that a split
has to distribute entries evenly. Instead, the CB*-tree considers only those possibilities for a
split which do not result in cutting a subpage or a pair of subpages which belong to the same

reorganization pair. Among all these possibilities, the split is selected which distribute the

146 CHAPTER 8. TUNING INDEX STRUCTURES

entries most evenly among the two directory pages. Consequently, there might be directory
pages less than half full. In the worst case, our approach can only guarantee that [(b— c)/2]
entries are stored in a directory page. This might have an impact on the number of the

directory pages as well as on the height of the tree.

8.2.4 Range Queries

The range query is one of the most frequently used selection queries in a DBS. For a dynamic
file, range queries are “efficiently” supported by BT-trees if the cost of the query is only
expressed in the number of qualifying pages. The classical algorithm for performing range
queries in BT-trees sequentially (in order of the search key) traverses the data pages where
answers to the query can be found. Consequently, the algorithm reads one page at a time

and therefore is not able to exploit multi-page requests.

The reading strategy of “one page at a time” has a serious impact on the performance,
as the example has shown in section 8.1. When the data pages are not clustered with respect
to the order of the search key, the probability is high that adjacent data pages are stored on
different cylinders of the disk. The expected cost for reading the next (in key order) data page
will be close to the average access time of the disk. When adjacent pages are clustered on
disk (preferably stored on a common cylinder) a seek can generally be avoided and therefore,
the expected cost of a disk access can be reduced. Several experiments with IBM’s research
prototype R* [ML86], for example, have confirmed that clustering of data pages reduces the
I/O cost of range queries. In these experiments, VSAM was used as the underlying access

method.

Our approach for performing range queries is different from previous ones. Our key obser-
vation is as follows: In addition to clustering, the cost of a range query can be substantially
reduced when the required data pages are read by issuing multi-page requests. However, it
is important for a low response time of a multi-page request that the target pages are read

according to an efficient schedule.

The algorithm for performing a range query in a CB™-tree is given as follows. First, the
range query is initiated by an exact match query where the search key corresponds to the

lower search key of the specified range. This results in traversing a path in the CB™-tree. In

Figure 8.3: Double buffering for performing range queries in a CB*-tree

contrast to the Bt-tree, the traversal process already stops at the lowest index level directly
above the leaves of the tree. Then, subpages are sequentially processed until an index entry
is found whose (separator) key is greater than the upper search key of the specified range
(or the last index entry is found). For each subpage, the (page) references of the qualifying
entries are given as input to one multi-page request which retrieves the qualifying data pages

of the bag.

If the order of the answers is of no concern, the data pages can immediately be processed
when they are in main memory. Otherwise, the query has to wait, (at least) until the page
which belongs to the leftmost entry in the subpage is in memory. In order to avoid processing
delays, we suggest using double buffering in the CB*-tree. There are two buffer areas, each
of them containing ¢ buffer frames, where ¢ denotes the capacity of bags (subpages). First,
the (qualifying) data pages of the first bag are read into the first buffer. Then, while the
pages of the second bag are being read into the second buffer, the answers from the data
pages of the first buffer are reported in key order. While the data pages of the third bag are
being read into the first buffer, the records can be processed in the second buffer, and so on.
For range queries whose answers are reported in key-order, double buffering compensates for
the delays caused by the fact that an efficient read schedule does not necessarily read data

pages in key-order anymore.

148 CHAPTER 8. TUNING INDEX STRUCTURES

This policy of query processing is illustrated in Figure 8.3. For the sake of simplicity, a
view on a subtree is given that consists of two directory pages and several data pages. Let us
assume that data pages A, ..., L are required for answering a range query. The first request
reads data pages A, B, and C into the first buffer. The second request reads data pages
D, E, and F into the second buffer. The read schedule of that request was (E, F, D) and
therefore, the pages are not ordered anymore with respect to their keys. While these pages
are being processed, the first buffer receives pages from the third read request. The snapshot
in Figure 8.3 shows that page H is already in the first buffer, whereas pages G and I still

have to be retrieved.

8.3 File System Support for Bags

Our discussion on CB™-trees is based on the following two assumptions:

e For a split of a data page, it is always possible to allocate a new page on the same

cylinder where the other pages of the bag are located.
e Whenever a bag is split into two, we can find a cylinder with [¢/2] free pages.

In general, however, these assumptions are not fulfilled. The reason is simply that an almost
full disk does not give any freedom in clustering data. In practice, the relationship between
disk storage utilization and performance is already observed. A rule of the thumb [Gel89] is

therefore to keep only 50% of the disk space occupied.

In order to present a complete solution, we introduce another level of abstraction between
the file system and the disk system. In our approach, a file consists of several logical cylinders,
also called bags previously, which the underlying file system assigns to one or more physical
cylinders of the disk. Whenever it is possible (in case of low disk occupancy), a bag should
be kept on only one physical cylinder. An interface for dealing with bags is made available
to a programmer. In contrast to ordinary file processing, the management of files with bags
is different with respect to the following operations.

First of all, when a file is created, the maximum size of a bag is given as an additional
parameter to the file system. In addition, a bag is created by default. The size of a bag is
required to be below a threshold that depends on the underlying disk.

8.4. THE ORGANIZATION OF PAGES IN A CYLINDER 149

If a new page is allocated in the file, the following strategy will be employed. In addition
to the file handle, the identifier of the desired bag is given as a parameter to the file system. If
possible, the file system allocates a new block on one of the physical cylinders where the pages
of the bag are kept. Otherwise, a new physical cylinder will be selected which is adjacent to
the other physical cylinders of the bag. One obvious requirement for allocating a new page

is that the bag is not already full.

In addition to pages, a file can also be expanded by a new bag. In particular, a new bag
is necessary when a new page is allocated, but all bags are already full. A new bag is located
on an arbitrary physical cylinder that contains a large number of free blocks. Thus, physical

clustering is only preserved in a bag, but not beyond a bag.

In order to maintain clustering in dynamic files, a function is provided for copying and
moving pages from one bag to another. Such a function, for example, can be used for

implementing the split policy of the CB™-tree.

The concept of bags is an elegant way to avoid dealing with physical dependencies, without
losing control on clustering. Whenever possible, pages of a bag (logical cylinder) are assigned
to a single physical cylinder. If not, a few contiguous cylinders will keep the pages of a bag.
Moreover, the programmers of an index structure can control the assignment of pages to

bags, which is particularly suitable for dynamic files.

8.4 The Organization of Pages in a Cylinder

Up to now, we have only studied the problem of mapping the pages of the CB-tree to
cylinders. The local organization of pages in a cylinder, however, also has a substantial
impact on query performance. Let us consider an example where a range query supported by
a CBT-tree requires two pages from a cylinder. When the pages are on different tracks and
one page is above the other page (i.e. on the same sector), more than two disk revolutions are
required for reading these pages, in the worst case. Otherwise, when pages do not overlap,
only two page transfers are required in the best case and a full revolution is required in the
worst case. This simple example already gives the basic idea how pages should be organized

in a cylinder.

150 CHAPTER 8. TUNING INDEX STRUCTURES

For the sake of simplicity, let us assume a disk that follows the idealized disk model (i.e.
alignment of pages, no head switch time). Hence, only the column (sector) where the page is
stored influences performance, but not its track. Let PT denote the number of columns on
a cylinder. Consider a subpage of the CB™-tree with ¢ references to data pages. The layout
of the data pages would be optimal if the i-th page of a container, 1 < i < ¢, is assigned to
the (i % PT)-th column. Then, when a range query requires n, 1 < n < ¢, of the ¢ data
pages, the transfer time of the request is minimal, i.e. n page transfers. This approach is
very beneficial for static files. For dynamic files, it would be very expensive to maintain the
proposed ordering of the data pages on a cylinder. When the i-th data page, 1 <i < ¢, is
split into two, the j-th page has to be copied from column j % PT into column (54 1) % PT
forall j € {5,i+1,...,c}.

In order to avoid expensive reordering of pages on a cylinder, we present an alternative
approach. This approach [SL91] has already been proposed for distributing pages of a B -tree

over a set of magnetic disks. The new algorithm is motivated by two goals:

e In order to reduce the cost for large range queries (i.e. large multi-page requests), it is
sufficient to distribute the data pages evenly over the columns of a cylinder. As a side
effect, such an even distribution also reduces the expected cost for multi-page requests

of arbitrary size.

e In order to reduce the cost of small range queries, a new page is assigned to a column
that does not contain a nearby page. Nearby here means within a window of size PT —1

or PT — 2 pages centered around the new page.

These requirements should be fulfilled without reorganizing pages, i.e. once a page is assigned
to a column, it will stay there forever. The algorithm for finding an appropriate column for

a new page is as follows.

Algorithm FindColumn(page);
1. CS:={0,..,PT — 1}; left := page; right := page;

2. FORi:=1TO [£L —1] DO
right := RightPage(right);

8.4. THE ORGANIZATION OF PAGES IN A CYLINDER 151

left := LeftPage(left);
CS := CS\ { Column(left), Column(right)};
END:

3. RETURN (min{i|load[i]| = minjccs load[j]});

END FindColumn;

The page for which we require a column is used as the input parameter of the algorithm
FindColumn. In case of a split, FindColumn is called with the new page as the input para-
meter. This is done just before the new page is written to the disk. C'S denotes the set of
columns which can be used for storing the pages. The main part of the algorithm is in the
second step. All columns on which a page close to the input page resides are rejected from the
candidate set C'S. The functions LeftPage or RightPage are assumed to return the address
of the left page or the right page of the given page in a container, respectively. If there is
no neighboring page in the same container, the address of the given page is assumed to be
returned. The function Column returns the column number of the input page. If the input
page is not currently assigned to a column, Column returns some value greater than PT. In
step three, ties are resolved. The array load is assumed to contain the number of pages assi-
gned to each column in a cylinder. The columns with the lowest load are first selected and, if
there is more than one such column, the one with the lowest column number is chosen. The
functions LeftPage and RightPage can be easily implemented by investigating the pointers in
the subpage of the CBT-tree index. Since a subpage is kept on a single directory page, no

additional page request is required.

An example subtree of a CB*-tree is shown for PT = 5 in Figure 8.4. We assume that the
capacity is three and ten for data pages and subpages, respectively. The number on top of a
data page indicates on which column the page is stored. (This information is stored as part of
the pointer referring to the page.) The subtree of the CB*-tree in Figure 8.4 corresponds to
the ideal case where the load is optimally balanced over the columns. Every column (except
the last) contains the same number of pages and, for any range query, the transfer cost of

the multi-page request is minimal.

However, this ideal situation cannot be preserved under further insertions without a global

152 CHAPTER 8. TUNING INDEX STRUCTURES

Figure 8.4: Example for distributing data pages on a cylinder with 5 columns

Figure 8.5: The example after split of page D

8.4. THE ORGANIZATION OF PAGES IN A CYLINDER 153

reordering of the pages. Now let us insert a record with key 28, which causes a split of page
D. The records {26, 28} remain on the old page and the records {30,31} are moved to the
new page J. Then the pointers are updated and FindColumn is called. After step one of
FindColumn we have: CS = {0,1,2,3,4}, left = J and right = J. The loop will be executed
twice, yielding left = C, right = F and CS = {1}. The new page is thus assigned to column

one. Figure 8.5 shows the resulting subtree.

Theorem 8.4.1 If pages have been assigned to columns using algorithm FindColumn and
there have been no deletions, then, for PT < ¢, no two pages of a contiguous subsequence of

[%1 or fewer data pages in a container are stored on the same column.

Proof: It is easy to verify that, if the CBT-tree consists of at most PT data pages, the
algorithm will assign each page to a different column. In this case, the theorem is trivially

true.

Now assume that the file consists of more than PT data pages and consider the assignment
of a new page in a given container. The condition in the theorem can be violated only by
the new page. However, because of step two in the algorithm, the new page will be assigned
to a column in such a way that none of the % — 1] pages to the left and none of the

% — 1] pages to the right of the new page are stored on the same column of the container.
All contiguous subsequences of at most [%] pages in which the new page participates are
contained within the range of pages checked in step three. Consequently, the condition in the
theorem must still hold after a page split. This proves the theorem. O

Recall that the minimum number of disk revolutions we can expect for s qualifying data

s

pages in a container is 5. Our CB™T-tree is close to that, even in the worst case, which is

expressed in the following corollary.

Corollary 8.4.1 Let q be a range query. For a given container, let s, s < ¢, be the number of
data pages required by the range query. If pages have been assigned to columns using algorithm
FindColumn and there have been no deletions, then an upper bound for the number of disk
revolutions is given as follows:

2

154 CHAPTER 8. TUNING INDEX STRUCTURES

Our CB™-tree guarantees that, for range queries that retrieve no more than [%] data
pages from a cylinder, no column will be accessed more than once. In other words, less than
one disk revolution is required. For range queries, which require more than [%] data pages
we can guarantee that the number of disk revolutions required for reading the target pages
of a container is not more than twice the optimal number. These are all worst case results;

we can expect average performance to be significantly better.

So far we have assumed that there are no deletions. The question is how to perform
deletions so that the condition in theorem 8.4.1 is satisfied. We can apply the same solution
proposed for the multi-disk BT-tree to the CB*-tree. The interested reader is therefore

referred to [SLI1].

8.5 Experimental Performance Comparison

In this section, we report the results of a performance comparison of the BT-trees and CB™-
trees. All results (which are related to the I/O cost) were obtained by simulating the disk
accesses. In all of our experiments, we used a buffer of 100 pages which followed the least
recently used policy. Moreover, the capacity of data pages and directory pages was 20 and 160
in our experiments, respectively. Experiments were also performed with other page capacities,

but the results were in agreement with the ones obtained for the above setting.

The objective of our first set of experiments was to find out how much the insertion and
storage cost are affected by the techniques of multi-page requests and clustering. The corre-
sponding results are reported in the first subsection. In the second subsection, the response
time of range queries is examined for both B*-trees and CB*-trees under the assumption of

the disk model which has been introduced in section 4.2.

8.5.1 The Cost of Building up

In our first experiment, BT-trees and CBT-trees were created by inserting the same set of

records, one record at a time. The records are uniformly distributed. The trees differed

8.5. EXPERIMENTAL PERFORMANCE COMPARISON 155

#records dir. pages data pages I/0 (dir.) I/O (data)
CB™-tree 100,000 69 7105 19,452 201,172
BT -tree 100,000 65 7105 19,219 193,521
CB*-tree | 200,000 129 14237 81,803 415,093
BT -tree 200,000 129 14237 80,719 399,481

Table 8.1: Performance for creating some BT -trees and CB™-trees

only in how data pages were clustered on disk. The BT-tree did not provide any clustering
(i.e. data pages are randomly distributed over the disk), whereas the CB'-tree dynamically
clustered the data pages with respect to the algorithm given in section 8.2. The capacity of
the bags in the CBT-tree (c) was 32. The number of data pages involved in one reorganization
step (r) was assumed to be 8. Let us mention that a pessimistic cost estimation is made for
the CBT-tree. The cost of copying r pages from one cylinder to another is assumed to be
equivalent to the cost of performing 2r ordinary disk accesses (under the assumption that
none of the pages is in the buffer). This is considerably higher than the actual cost for

performing the two multi-page requests.

Table 8.1 shows the results obtained from two of our experiments. The second column
refers to the number of records in the tree after it was completely built up. The third and
fourth column give the number of directory and data pages in the tree, respectively. Finally,
the number of disk accesses (read and write) to directory and data pages are reported in
the fifth and sixth column, respectively. As it should, the number of data pages is the same
for both trees, whereas the number of directory pages is only slightly lower for the original
BT-tree (in one of the experiments). Recall that bags occupy disk space only for page which
actually contains data records of the CB™-tree. This property is not fulfilled for the extents
in VSAM. Moreover, the number of disc accesses required for building up the structure is
about 4% higher for the CB™-tree compared to the BT-tree. The difference in the number of
disk accesses to data pages can be explained as follows. About half of the data pages remain
on the cylinder where they were originally created. The other half is copied onto a different
cylinder. Since a copy operation consists of a read and a write request, the number of data

pages provides a good estimate for the number of additional disk accesses required by the

156 CHAPTER 8. TUNING INDEX STRUCTURES

CBt-tree.

Overall, insertion cost and storage cost is only slightly higher for the CB*-tree compared
to the original B*-tree. Thus, we conclude that the cost overhead of clustering data pages is

very low.

8.5.2 Range Query Performance of B*-trees and CB*-trees

In the next set of experiments, we examined the range query performance of the access
methods. We restrict our experiments to a data file with 100,000 uniformly distributed
records. For data-intensive queries, the number of qualifying index pages is considerably
lower than the number of qualifying data pages. Moreover, many of the index pages are
expected to be already in the buffer. For the purpose of this thesis, therefore, accesses to
index pages are largely disregarded in the sequel and the following results consider only the

cost for retrieving qualifying data pages.

In the following, we consider range queries of size a, 0 < a < 1. The size of a range
query refers to the ratio of expected number of answers to number of records in the file. In
our experiments, the cost for performing a range query of size a is computed by taking an
average over 1000 queries. More precisely, we proceed as follows. For each run consisting of
1000 range queries of size «, there is a counter u for the seeks and an array v whose i-th
component v;, 1 < ¢ < ¢, counts the number of multi-page requests of size i. First, these
parameters are initialized (v = 0 and v; = 0 for 1 < i < ¢), and the buffer is reset. Then,
the queries are performed one at a time. For each of the range queries, the value of u is
incremented by the number of bags which include at least one of the required data pages. If
[, 1 <1 < ¢, pages of the bag are qualifying pages, the value of v; is incremented by one. Let
g be the total number of qualifying pages of the 1000 range queries; the cost for reading a
qualifying page is then computed by

u * seekqyg + 2521 vj * Cost(j)
q

(8.1)

Here Cost(j) corresponds either to the cost function of the idealized disk model (see for-
mula 5.15 on page 80) or to the one of the model that considers head switch time (see

formula 6.31 on page 119).

8.5. EXPERIMENTAL PERFORMANCE COMPARISON 157

parameter symbol | default value
#cylinders Cyl 840
#tracks TC 20
#pages per track PT 8
#sectors per page SpP 8
sector size [Byte] 512
avg. seek time [ms] seekqyg 18
avg. rotational delay [ms] 8
page transfer time [ms] 2
head switch time [ms] hst 0
capacity of data pages a 20
capacity of directory pages | b 160
capacity of bags c 32
size of reorganization step | r [c/2]
query size « 0.5%
number of records 100,000

Table 8.2: Parameters of the disk and the CBT-tree

In the following sets of experiments, the disk parameters are specified as given in the
first rows of Table 8.2. The default values are adopted from the Fujitsu Eagle disk which is
frequently used for experiments of this type. The essential difference to the Fujitsu Eagle is
only that head switch time is neglected. The other rows of Table 8.2 refers to the parameters
of the CBT-tree. In the sequel, we report the results of several sets of experiments. For each
set, the cost is given as a function of a parameter, whereas the values of the other parameters

are equal to their their default values.

Varying the query size

In our first set of experiments on range queries, results vary with the size of the range query
from 0.025% to 0.5%. A range query of size 0.1% (i.e. 100 answers are expected), for example,
requires on the average 8.1 data pages. The results of our experiments have been plotted in
Figure 8.6. In addition to the graph of the total cost, three graphs are given for the cost

components of transfer time, rotational delay and seek time.

As expected, the total cost for retrieving a qualifying page of a range query from the

CB™-tree decreases with an increasing size of the query. Let us take a closer look to a range

158 CHAPTER 8. TUNING INDEX STRUCTURES

7 | | |
6 L overall costs — |
transfer time <—
5L rotational delay —+— |
seek time —
Cost ar
(page transfers) 3L
2 -
1 -
0 | | | N N O S S O SO O S

0 0.05 01 015 02 025 03 035 04 045 0.5
size of the query (per cent)

Figure 8.6: Cost for retrieving a qualifying page of a range query (as a function of the query

size)

query of size 0.5% (500 answers). The cost to read a qualifying page is less than 5 ms. The
expected number of qualifying pages is 36.36 and therefore, the total I/O-time of the query is
roughly 182 ms. In comparison, an ordinary BT -tree would require the average access time
for reading a qualifying page (28 ms) and therefore the I/O-time of the same query would
be 1018 ms.

Another interesting observation is related to the cost components. In contrast to an
ordinary (single) page request, the transfer time generally dominates the total cost. For large
range queries, it is by a factor of three higher than the seek time. Only for small range queries

it can be observed that the seek time is higher than the transfer time.

Varying the capacity of the bags

In our second set of experiments, results vary with ¢, the capacity of the bags (subpages). A
split of a bag was performed in a single reorganization step (i.e. r = [¢/2]). The size of the
range queries is 0.5% (about 500 answers). In these experiments, there is an average number

of 35.9 target pages for a range query. In Figure 8.7, the cost has been depicted for retrieving

8.5. EXPERIMENTAL PERFORMANCE COMPARISON 159

| T
overall costs — |
transfer time ©—
rotational delay —— |

seek time —
Cost]
(page transfers) |
. —
0 5 10 15 20 25 30 35

capacity of the bag

Figure 8.7: Cost for retrieving a qualifying page of a range query (as a function of the capacity

of the bags)

a qualifying page of a range query. There are again four graphs which show the total cost,

transfer time, rotational delay, and seek time.

As expected, the total cost decreases with an increasing value of ¢. The cost rapidly
improves up to ¢ = 10. For bags of capacity 10, a qualifying page of the query is read in
8 ms. For larger capacities, the performance still improves, but at a slower rate. The cost

for ¢ = 32, for example, corresponds to 5 ms which is 60% less than the cost for ¢ = 10.

Overall, the results of these experiments impressively demonstrate the benefits of cluste-
ring data pages. Even when only two adjacent pages are kept on the same cylinder, the cost

for range queries is substantially reduced compared to using no clustering of data pages.

One remaining question is how much does the read schedule of a multi-page request
influence the cost of a range query. First of all note that the read schedule does not affect the
seek time of a range query and therefore seek time remains the same as plotted in Figure 8.7.
In comparison to our schedules which follow the SLTF policy, we consider random read
schedules in the following. Under the assumption that data pages are randomly distributed

on a cylinder, the cost for reading the next page in a random schedule corresponds to the

160 CHAPTER 8. TUNING INDEX STRUCTURES

r size of the range query

005] 01] 02] 03] 04] 05
2 | 10.198 | 7.762 | 6.174 | 5.544 | 5.312 | 5.064
16 || 10.048 | 7.654 | 6.082 | 5.510 | 5.180 | 4.954

Table 8.3: Cost for retrieving a qualifying page of a range query (r = 2,16)

sum of average rotational delay and transfer time (10 ms). For ¢ > 8, the cost of retrieving a
qualifying page of a range query is then by at least a factor of two higher than the cost when

the read schedules are computed according to the SLTF policy.

Varying the size of the reorganization steps

The results of the previous experiments are obtained from a CB*-tree whose bags are split
in a single reorganization step (i.e. 7 = ¢/2). This case is most appealing to range queries,
but a long processing time may occur for an insertion of a record. The question is therefore
how much does the parameter r influence the performance of range queries. The results
on the cost of range queries are reported in Table 8.3. The second row refers to the size
to a range query (in percent) and the first column indicates the number of pages involved
in a reorganization step. Consider a range query of size 0.1%. The cost of retrieving a
qualifying page is 7.762 ms for r = 2, whereas for 7 = 16 the cost is 7.654 ms, that is only
an improvement of 1.5%. A similar effect can be observed for other query sizes. Thus, we

conclude that query performance is almost independent from the setting of r.

Varying the head switch time

Our previous studies were done under the assumptions of an idealized disk model which
neglects head switch time. This assumption is however not in agreement with todays disk
technology. Therefore, we present in this section a preliminary performance study on range
query performance when head switch time contributes to the total cost.

In Figure 8.8, the results are reported for the cost of reading a qualifying page of a range
query of size 0.5% (500 answers). The cost depends on the head switch time (hst) which

varies from 0 to 4 ms. Disks with head switch time higher than 4 ms are seldom found in

8.5. EXPERIMENTAL PERFORMANCE COMPARISON 161

10 \ T

9 | /

8 /

7 — —

6 — —
Cost 5 _
(in ms)

4 total cost >— -

3L cylinder time —

seek time —

2 - —

1 = —

0 | | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4
head switch time (in ms)

Figure 8.8: Cost for retrieving a qualifying page of a range query (as a function of the head

switch time)

practice. There are three graphs in Figure 8.8. The one shows the total cost, whereas the
others refers to the cost components. In this experiment, the sum of seek time and cylinder
time yields the total cost. The cylinder time is defined as the sum of transfer time and

rotational delay.

First of all, let us emphasize that the results confirm the trends observed in our previous
experiments when head switch time was neglected. There is a substantial performance im-
provement of the CBT-tree in comparison to the BT-tree. For a head switch time of 1 ms, the
total cost of the CBT-tree is about 6.5 ms for reading a qualifying page, whereas an ordinary
BT-tree requires 28 ms. The graph for the total cost shows an almost linear dependency

from the head switch time. Only the value obtained for hst = 0 behaves differently.

The graphs of the seek time and the cylinder time indicate that the influence of cylinder
time on the total cost increases with an increasing value of hst. This is because head switch
time does not affect seek time in our experiments. In practice, however, there is a correlation
between seek time and head switch time. The seek time contains a component, called the

settle time, which is about two to three times higher than the seek time [RW94]. Also if we

162 CHAPTER 8. TUNING INDEX STRUCTURES

would have taken this correlation into account our statement would be still the same.

Overall, we conclude that cylinder time dominates query processing cost in most of our
experiments. In order to improve query performance, we would not be primarily interested

in disks with a low seek time, but in disks with a low cylinder time.

The effect of clustering pages in a cylinder

So far, we assumed that the data pages are randomly distributed over all tracks on a cylinder.
This is obviously a pessimistic assumption in the sense that both average-case and worst-case
performance is expected to improve when pages are distributed in a more sophisticated way.
Note that the local distribution of pages on a cylinder does not have any influence on the
seek time. Thus, a lower bound for the expected cost of range queries is given by formula 8.1,

when Cost(j) =1, 1 < j < PT. The formula can then be modified to

u * seekgyg ‘1
T

We will refer to this formula as the lower bound.

In order to improve the local organization of pages in a cylinder, we investigated the
following two strategies. The first strategy does not distribute the pages over all of the
tracks, but only on a few of them. A parameter ¢, 1 <t < TC, refers to the number of tracks
on which data pages are randomly distributed. The second strategy followed the approach

presented in section 8.4. This strategy is called balanced assignment in the following.

We performed experiments with a CB™-tree using the same parameter settings as pre-
viously introduced (a = 20, b = 160, ¢ = 32, r = 16, 100,000 records). In Fig 8.9, results
are plotted varying in the size of queries from 0.025% to 0.5%. Two of the graphs depict the
results when the first strategy is used for ¢ = 20 and ¢ = 4. Note that the capacity of the
containers is 32 and therefore, pages have to be distributed on at least four tracks (¢ = 4).
Hence, this strategy gives best performance for t = 4. 2 A third graph shows the results
obtained from our strategy of balanced assignment. A fourth graph depicts the lower bound

of the cost.

*Notet that the BT-tree with large pages (see our discussion in the next section) cannot give better query

performance than the CBT-tree in combination with this strategy for ¢t = 4.

8.6. LARGE PAGES: AN ALTERNATIVE TO CLUSTERING? 163

7 I T \

6.5 t=20 — 7
6 — \\ t: 4 'e_ —
L balanced assignment —+— _|
5.5
\ lower bound —

Cost 4.5 -
(page transfers) 4 [
3.5

3 -

2.5

2 -

15 | | | | | | | [T

0 005 01 015 02 025 03 035 04 045 0.5
size of the query (percentage)

X

Figure 8.9: Expected cost of range queries for different methods of clustering pages locally

in a cylinder

The results presented are interesting. The first two graphs show very similar performance
for small range queries, although the corresponding methods substantially differ in the number
of tracks where target pages might be found. For larger range queries, the performance is
slightly better for ¢ = 4. Our strategy of balanced assignment already shows for small range
queries that it is close to the lower bound. For queries retrieving 0.1% of the records, the
strategy of balanced assignment is about 25% faster than the other methods. The difference
between balanced assignment and the lower bound seems to be almost independent of the

size of the query.

8.6 Large Pages: An Alternative to Clustering?

In order to support range queries efficiently, another approach can be pursued for B*-trees
that seems to be much simpler than the one presented in the previous sections. The basic
idea is to use large data pages, see [Lom88]. The advantage of large pages are that the

number of index pages is considerably reduced and that large range queries are supported

164 CHAPTER 8. TUNING INDEX STRUCTURES

Figure 8.10: An example for a partition of an R-tree and for a window query

very efficiently.

For a range query that requires n data pages, every record in n — 2 of the n data pages,
n > 2, satisfies the range condition, and only for the other two pages records might be found
that do not satisfy the query. Such records are also called false drops. Now, increasing the
page size, say by a factor of d, reduces the number of seek operations almost by a factor of d,
whereas the transfer time slightly increases because the number of false drops is increasing as
well. However, it is always guaranteed that at most two pages contain false drops. Obviously,
small range queries are performed less efficiently when the page size is large. Moreover, a
small range query occupies a (relatively) large fraction of the buffer. Also, in comparison to
an ordinary BT-tree, more buffer space is required for an insertion and a deletion of a record.
In addition, other disadvantages occur when a BT-tree with large pages is integrated in a
DBS. In general, a DBS supports only one page size and therefore, a BT-tree would not have

been able to use a different page size.

In general, a DBS provides the user with several index structures and each of these
index structures should take advantage of tuning techniques, particularly from large pages.
Of particular interest are multi-dimensional index structures. One of the most important
multi-dimensional index structures are R-trees [Gut84], particularly R*-trees [BKSS90]. It is
assumed here that the reader is familiar with the basic concepts of R-trees. There are great
similarities between R-trees and B*-trees with respect to splitting a page. Therefore, we do

not see any difficulties for incorporating our approaches into R-trees.

8.6. LARGE PAGES: AN ALTERNATIVE TO CLUSTERING? 165

In contrast to B*-trees, a multi-dimensional index structure cannot considerably improve
the performance of range queries by simply increasing the page size. A multi-dimensional
index structure partitions the data space into regions. A data page is associated with a region
such that all multi-dimensional records stored in the data page must be in the correspon-
ding region. For most multi-dimensional index structures, regions correspond to rectilinear
rectangles. An example for a partition is given on the left hand side in Figure 8.10. This
example shows a partition of an R-tree. In our example, there are 7 regions Ry, ..., R; and so
the R-tree consists of 7 data pages. As illustrated, R-trees allow that regions have a common

intersection.

The window query is the most common query which is supported by an R-tree. A window
query, also called multi-dimensional range query, searchs for records that are in a multi-
dimensional rectilinear rectangle (window). In order to perform a window query, an R-tree
proceeds as follows. For each region that intersects the window, the corresponding page
is read from secondary storage. Thereafter, each record of that page is checked for being
in the window or not. For example, a window query is illustrated on the right hand side
of Figure 8.10. The query window illustrated as a gray rectangle intersects with regions
Ry, Ry, Rs, Rg, R7. Thus, 5 pages have to be retrieved from secondary storage. Only the
page associated with region R7; does not contain false drops, whereas all the other pages
contain false drops. In general, for a given query, false drops can be found in every target
page. As a consequence, increasing the page size does not necessarily improve the query
performance since the number of target pages may not decrease. Moreover, large pages can
result in performance loss since the number of false drops increases with an increasing page

size.

In summary, the use of large pages is an interesting alternative to our approach. In
particular, large range queries can take advantage of that approach since the number of
seeks is expected to be substantially reduced. However, there also several drawbacks when
index structures exploit large pages. First, there is a high consumption of buffer space,
particularly for small queries. Second, the performance improvements of multi-dimensional
index structures is expected to be low due to an increase in the number of false drops. Finally,

it is difficult to integrate the approach of large pages into a DBS.

166 CHAPTER 8. TUNING INDEX STRUCTURES

8.7 Summary

In this chapter, we dealt with the design of index structures that exploit clustering and
efficient read schedules. Although emphasis was put on BT-trees, we want to stress that
the proposed techniques are generally applicable. In particular, multi-dimensional index

structures may also take advantage of these techniques.

A new type of BT-trees was proposed, called a CB*-tree. The CB*-tree behaves very
similarly to the BT-tree with respect to insertions and deletions of records, but it offers sub-
stantially better performance for range queries. In contrast to previous approaches, clustering
of data pages is dynamically maintained. Moreover, it is almost given for free in the CB™-
tree. In addition to clustering, we showed that efficient read schedules are essential to an
efficient processing of range queries. In order to obtain hardware independence, we proposed
a new concept, called bag (logical cylinder), that allows programmers of index structures
(and other disk data structures) to cluster its data without dealing with physical constraints
(e.g. data layout on disk). Special attention was given to the local layout of pages of the
CBT-tree on a physical cylinder. We presented a method that balances the load among the

columns of a cylinder and that keeps adjacent pages on different columns.

A performance comparison based on a simulation demonstrated that range queries are

performed several times faster when the CB™-tree is used, in comparison to ordinary B*-trees.

Chapter 9

Conclusions and Future Work

The success of DBSs depends not only on the degree of hardware independence, but also on
the ability to translate queries into an equivalent sequence of operations which are efficiently
implemented on the underlying hardware. The problems of how to find an optimal execution
plan and how to implement the basic operations have created an important and fertile area
for DBS research. Due to the continued development of the hardware components, queries
suffer more and more under a severe I/O bottleneck and therefore it is of vital importance

to counteract the bottleneck on all implementation levels of a DBS.

In order to improve the I/O performance of today’s DBSs, this thesis has stressed the
importance of modeling magnetic disk drives more accurately than is generally the case.
In particular, we showed that data-intensive queries, which frequently occur in engineering
applications, can be improved by using multi-page requests rather than reading one page
at a time. Reading multiple pages in a single request is, of course, not a new idea, but so
far, it was not studied, analyzed and implemented in its full generality. Only a special and
limited form of multi-page request, known as prefetching, is generally accepted as a method
for improving the I/O performance of a computer system. In order to incorporate multi-page
requests into a DBS it is not sufficient to only design algorithms, but to derive cost formulas

which are required by the query optimizer to find a good execution plan.

The main contributions of the thesis are several analyses of the cost of retrieving a given
number of qualifying pages (so-called target pages) from a magnetic disk drive. The various

analyses are different with respect to both algorithms and the underlying disk models. The

167

168 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

first analysis has assumed a disk as a linear sequence of pages. Due to its simplicity, we were
able to integrate the size of the buffer into our model. We showed that performance improves
substantially although buffers are rather small (i.e. about 10 pages). Larger buffers still result
in improved response times, but at a much slower rate. Despite its simplicity, the practical

importance of the approach has been demonstrated in [BK94] for reading large objects.

The second analysis was performed under a much more complicated disk model which
takes into account the disk components, namely cylinders and tracks. Moreover, the access
time of a page depends on the position of the page previously read. In contrast to our
first model, we assumed an infinitely large buffer into which the disk pages are transferred.
Moreover, the model assumes that a head switch causes no time delay. When target pages are
on a cylinder, we derived the exact cost formula which unfortunately requires the solution of
two complex recurrence relations. This suggests that exact cost formulas will be very difficult

to obtain for a more complex disk model.

The third analysis provides the most important contribution of the thesis. The underlying
disk model is rather complex, and in particular, includes track skewing and head switch
times greater than zero. A simulation showed that the model gives almost the same results
as the ones observed on a real disk. Despite its complexity, the derived cost function is
simple to compute, requiring only a few arithmetic calculations. Moreover, the results of the
cost function were shown to be in excellent agreement with the results obtained from our

simulation.

The approach of multi-page requests is then applied to improve the performance of the
B+-tree. We designed a new variant of the B+-tree, called CB+-tree, that offers the property
of clustering adjacent pages close to each other on disk. The combination of both clustering
pages and using multi-page requests results in a new approach to index structures. Data-
intensive queries such as range queries can be performed much more efficiently on a CB*-tree
than on a BT-tree. Several experimental comparisons demonstrated the advantages of the
CB™-tree over the Bt-tree. The approach used for improving the Bttree can be directly
applied to other index structures such as the R-tree, one of the most important structures

for indexing multidimensional spatial data.

The three analyses and the new approach to index structures represent important con-

169

tributions to the development of a completely new approach to query processing in a DBS.
Instead of reading one page at a time, we expect that future DBSs will perform their data-
intensive queries using multi-page requests. The contributions of this thesis are basic to the
effective use of magnetic disk drives and provide a foundation for further study not solely
limited to DBSs. In comparison to other approaches for I/O optimization such as disk arrays
and caches, the technique of multi-page requests is an algorithmic solution and therefore, it
will not increase the cost of a system when it is introduced. However, we believe that only a

combination of all these approaches might prevent the threatening I/O crisis.

Future Research

The very general approach of multi-page requests creates a rich source of research problems.

Some of them are discussed below.

One direction of future research is to investigate the impact of multi-page requests on
the replacement policy of a buffer. In order to find the next page for replacement, the
policy generally uses the last reference (sometimes the last few references) to pages without
considering the actual cost of reading these pages. This might be a reasonable solution when
pages are read one at a time. However, when a page is read as one of several pages in a
multi-page request, the cost of reading the page is low. Therefore, the priority of keeping

such a page in the buffer should be lower than for those pages which are read one at a time.

Other promising research problems are related to exploiting multi-page requests on optical
and magneto-optical storage devices. Such devices have some unique characteristics and

advantages that make them very attractive storage devices for the future.

Moreover, another interesting research question is about the impact of multi-page requests
on the design of disk arrays. So far, the only operations considered for the evaluation of disk
arrays are the ones that read (write) a logically contiguous sequence of bytes. However,
such an access pattern is seldom found when data-intensive queries are supported in large

databases. In particular, this holds when queries are evaluated by using multi-page requests.

Abbreviations

CAD
CPU
DBS
DRAM
1/0
KB
LRU
MB

MTTF
MTTR
NVS
0OS
RAID
rpm
RPS
SLTF
SSD
SSTF
tpm
VSAM

s

bits per millimeter

computer aided design
central processing unit
database system

dynamic random access memory
Input/Output

210 bytes

least recently used

220 Bytes

1073 seconds

mean time to failure

mean time to repair
non-volatile storage
operating system

redundant and inexpensive (independent) disks
(disk) rotations per minute
rotational positioning sensing
shortest latency time first
solid state disk

shortest seek time first

tracks per millimeter

virtual storage access method

105 seconds

170

Index

algebraic optimization, 11
artificial target page, 91

average access time, 31

buffer
fault, 16
frame, 16

replacement policy, 16

cache, see buffer
CB™-tree
balanced assignment, 141
logical cylinder, 140
range query, 137
lower bound, 151
split of a directory page, 137
split of a subpage, 135
clustering, 14
column, 65
container, 134
cylinder, 28
cylinder skewing, 33
cylinder time, 154

density
area, 28
linear, 28

171

track, 28

disk arm, 28

disk array, 19
controller, 22
write cache, 23

double buffering, 139

Elevator algorithm, 89
empty page, 41
Estgsr, 109, 113
expanded storage, 18
extent, 15

false drop, 155

file cylinder, 77
FindColumn, 142
force policy, 17
Fujitsu M2344K, 117

gap, 47

GCostq, 101
GCostsg, 101

group (of size 2), 93

head switch, 29
head switch time, 29
head-switch-time disk model, 39, see HST

model

172 INDEX

HST model, 106 MTTR, 21

1/0 rate, 31 multi-page request, 23
ICost, 79 no-force policy, 17
idealized disk model, see IDM non-volatile storage, 17
IDM, 37, 65

physical level of a DBS, 9
read schedule, 66

physical operator tree, 11
expected rotational delay, 74

piggy-back policy, 19
expected seek time, 78

positioning time, 30
expected transfer time, 75

prefetching, 23
rotational delay, 67

seek time, 66 query execution plan, 9
transfer time, 67 queuing delay, 32
large page, 155 R-tree, 156
lcost, 51, 54, 57 RAID, 21
light-weight task, see thread raw disk, 119
linear disk model, 37 read/write head, 28
cluster, 53 ReadSubset, 47
cost of a read schedule, 43 regular schedule, 44
cost of a v-read schedule, 59 reorganization step, 136
ordered read schedule, 42 reorganization unit, 136
ordinary read, 42 replacement policy
read schedule, 42 LRU, 16
v-read schedule, 59 LRU-k, 17
vector read, 42 response time of a query, 8
logical algebra, 9 rotational delay, 30
logical cylinder, 140 average, 30
logical level of a DBS, 9 rotational positioning sensing, see RPS
Look-Back algorithm, 94 RPS, 32
RPS miss, 32

mirrored disks, 20

MTTF, 21, 31 schedule graph, 44

INDEX

scheduling
first-come-first-serve, 13
SCAN, 13
shortest-seek-time-first, 13

scheduling policy, 13

sector, 28

seek, 29

seek time, 30
average, 30
track-to-track, 31

servo surface, 29

shadowed disks, see mirrored disks

shortest-latency-time-first, see SLTF

SLTF, 67, 90
SLTF schedule, 90
solid state disk, 17
spare sector, 34
subpage, 134
splitting, 135

target cylinder, 77
target page, 41
target set, 41
thread, 119
throughput, 8
total cost of a query, 9
track, 28
track cluster, 88
complete, 88
partial, 88
track index, 33

173

track skewing, 33

transfer time, 30

vcost, 62

VReadSubset, 59

window query, 157
write-back policy, 17
write-through policy, 17

zoned bit recording, 34

Bibliography

[ABC+76]

[ACTS5]
[AG92]
[BGSS]
[Bil92]
[BK94]

[BKSS90]

[BP83]

[BS90]

[CABKSS]
[Car75]

[CD85)]

[CDRS86]

[CHMWSS7]

M. Astrahan, M. Blasgen, D. Chamberlin, K. Eswaran, J. Gray, P. Griffiths, W. King,
R. Lorie, P. McJones, et al. System R: Relational approach to database management.
ACM Transactions on Database Systems, 1(2):97-137, jun 1976.

M.M. Astrahan and D.D. Chamberlin. Implementation of a structured English query
language. Communications of the ACM, 18(10):580-588, oct 1975.

R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance
evaluation. ACM Transactions on Database Systems, 17(3):513-560, 1992.

D. Bitton and J. Gray. Disk shadowing. In Proc. of the Conf. on Very Large Databases
(VLDB), pages 331-338, 1988.

A. Biliris. The performance of three database storage structures for managing large
objects. In Proc. of the ACM SIGMOD, pages 276-285, 1992.

T. Brinkhoff and Hans-Peter Kriegel. The impact of global clustering on spatial database
systems. In Proc. of the Conf. on Very Large Databases (VLDB), 1994.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and
robust access method for points and rectangles. In Proc. of the ACM SIGMOD, pages
322-331, 1990.

A. J. Borr and F. Putzolu. High performance SQL through low-level system integration.
In Proc. of the ACM SIGMOD, pages 342-349, 1988.

P. A. Buhr and R. A. Stroosbosscher. The puSystem: Providing light-weight concurrency
on shared-memory multiprocessor computers running UNIX. Software - Practice and
Experience, 20(9):929-964, 1990.

George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data placement
in Bubba. In Proc. of the ACM SIGMOD, pages 99-108, June 1988.

A. F. Cardenas. Analysis and performance of inverted data base structures. Communi-
cations of the ACM, 18(5):253-263, 1975.

H.-T. Chou and D. J. DeWitt. An evaluation of buffer management strategies for
relational database systems. In Proc. of the Conf. on Very Large Databases (VLDB),
pages 127-141, 1985.

M.J. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita. Object and file manage-
ment in the EXODUS extensible database system. In Proc. of the Conf. on Very Large
Databases (VLDB), pages 91-100, 1986.

P. Christmann, T. Hérder, K. Meyer-Wegener, and A. Sikeler. Which kinds of OS mecha-
nisms should be provided for database management. In J. Nehmer, editor, Fxpiriences
with distributed systems, pages 213—-252. Springer-Verlag, 1987.

174

BIBLIOGRAPHY 175

[Chrg4]
[CIL8Y]

[CK89]

[CKBS9)
[CKKS89]
[CKR72]
[CKV93]
[CLSW84]
[Dei90]
[Den67]
[DF82]
[EH84]
[Fra69]
[Ful74]
[GD87]
[Gel89)
[GHW90]
[GKPgY]
[GR93]

[Gra91)
[Gra93]

S. Christodoulakis. Implications of certain assumptions in database performance eva-
luation. ACM Transactions on Database Systems, 9(2):163-186, jun 1984.

M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS resource scheduling. In Proc.
of the Conf. on Very Large Databases (VLDB), pages 397-410, 1989.

E. E. Chang and R. H. Katz. Exploiting inheritance and structure semantics for effective
clustering and buffering in an object-oriented DBMS. In Proc. of the ACM SIGMOD,
pages 348-357, 1989.

E. I. Cohen, G. M. King, and J. T. Brady. Storage hierarchies. IBM System Journal,
28(1):62-76, 1989.

George Copeland, Tom Keller, Ravi Krishnamurthy, and Marc Smith. The case for safe
RAM. In Proc. of the Conf. on Very Large Databases (VLDB), pages 327-335, 1989.

E. G. Coffman, L. A. Klimko, and B. Ryan. Analysis of scanning policies for reducing
disk seek times. STAM Journal of Computing, 1(3):269-279, 1972.

K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data compres-
sion. In Proc. of the ACM SIGMOD, pages 257-266, 1993.

J. M. Cheng, C. R. Loosley, A. Shibamiya, and P. S. Worthington. IBM Database 2
performance: design, implementation, and tuning. IBM System Journal, 23(2):189-210,
1984.

H. M. Deitel. Operating Systems. Addison-Wesley, 1990.

P. J. Denning. Effects of scheduling on file memory operations. In Proc. AFIPS, pages
9-21, 1967.

L. W. Dowdy and D. V. Foster. Comparative models for the file assigment problem.
Computing Surveys, 14(2):287-313, 1982.

W. Effelsberg and T. Harder. Principles of database buffer management. ACM Tran-
sactions on Database Systems, 9(4):560-595, 1984.

H. Frank. Analysis and optimization of disk storage devices for time-sharing systems.
Journal of the Association of Computing Machinery, 16(4):602-620, 1969.

H. Fuller. Minimal-total-processing-time drum and disk scheduling disciplines. Com-
munications of the ACM, 17(7):376-381, 1974.

Robert Geist and Stephen Daniel. A continuum of disk scheduling algorithms. ACM
Transactions on Computer Systems, 5(1):77-92, 1987.

J. P. Gelb. System-managed storage. IBM System Journal, 28(1):77-103, 1989.

Jim Gray, Bob Horst, and Mark Walker. Parity striping of disk arrays: Low-cost reliable
storage with acceptable throughput. In Proc. of the Conf. on Very Large Databases
(VLDB), pages 148-159, 1990.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, 1989.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufman, 1993.

Jim Gray, editor. The Benchmark Handbook. Morgan Kaufmann, 1991.

G. Graefe. Query evaluation techniques for large databases. ACM Comp. Surveys,
25(2):73-170, 1993.

176

[Gut8&4]

[H4r87]

[HBP+81]

[HD90]

[HGPG92]

[Hoa85]
[HP90]

[HSWS8S]

[1C91]

[JCL90]

[JK84]
[TW91]
[KGMY1]
[Kin90]
[KL74]
[Kol78]
[Lom&8]
[LY81]

[MC93)

BIBLIOGRAPHY

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of the
ACM SIGMOD, pages 47-57, 1984.

T. Harder. Realisierung von operationalen Schnittstellen (in german). In P.C. Locke-
mann and J.W. Schmidt, editors, Datenbank Handbuch, pages 167-342. Springer Verlag,
1987.

J. M. Harker, D. W. Brede, R. E. Pattison, G. R. Santana, and L. G. Taft. A quater
century of disk file innovation. IBM Journal of Research and Development, 25(5):677—
689, 1981.

H. Hsiao and D. J. DeWitt. Chained declustering: A new availability strategy for mul-
tiprocessor database machines. In Proc. of the IEEE Conference on Data Engineering,
1990.

Robert Y. Hou, Gregory R. Ganger, Yale N. Patt, and Charles E. Gimarc. Issues and
problems in the I/O subsystem, part I — The magnetic disk. In Proceedings of the 25th
Annual Hawaii Conference on System Sciences, pages 4857, 1992.

A. S. Hoagland. Information storage technology — a look at the future. IEEE Computer,
pages 60 — 67, 1985.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufman, 1990.

A. Hutflesz, H.-W. Six, and P. Widmayer. Globally order preserving multidimensional
linear hashing. In Proc. of the IEEE Conference on Data Engineering, pages 572-579,
1988.

Y_.E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join
results. In Proc. of the ACM SIGMOD, pages 268-277, 1991.

R. Jauhari, M. J. Carey, and M. Livny. Priority hints: an algorithm for priority-based
buffer management. In Proc. of the Conf. on Very Large Databases (VLDB), pages
708-721, 1990.

M. Jarke and J. Koch. Query optimization in database systems. ACM Comp. Surveys,
16(2):111-152, 1984.

D. Jacobson and J. Wilkes. Disk scheduling algorithms based on rotational position.
Technical Report HPL-CSP-91-7, Hewlett-Packard, 1991.

T. Keller, G. Graefe, and D. Maier. Efficient assembly of complex objects. In Proc. of
the ACM SIGMOD, pages 148-157, 1991.

Richard P. King. Disk arm movement in anticipation of future requests. ACM Transac-
tions on Computer Systems, 8(3):214-229, 1990.

D. G. Keehn and J. O. Lacy. VSAM data set design parameters. IBM System Journal,
13(3):186—212, 1974.

J. G. Kollas. An estimate of seek time for batched searching of random and index
sequential files. Computer Journal, 21(2):132-133, 1978.

D. Lomet. A simple bounded disorder file organization with good performance. ACM
Transactions on Database Systems, 13(4):525-551, 1988.

P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations on B-trees.
ACM Transactions on Database Systems, 6(4):650-670, 1981.

J. Menon and J. Cortney. The architecture of a fault-tolerant cached RAID controller.
In Proc.IEEE, pages 7686, 1993.

BIBLIOGRAPHY 177

[McF90]
[MJLF84]
[ML86]
[O'N92]
[OOW93]
[Ouc78]
[OV91]
[PBDY3]
[PGKSS]

[PSS+87]

[PZ91]

[Qua92]
[Rah92]

[Rams7]
[RW93a
[RW93b]
[RW94]
[SAC*79)]
[Sci93]
[SCO90]

[SF73]

Ronald G. McFadyen. Sequential Access in Files used for Partial Match Retrieval. PhD
thesis, University of Waterloo, 1990.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems, 2(3):181-197, 1984.

L. F. Mackert and G. M. Lohman. R* optimizer validation and performance evaluation
for local queries. In Proc. of the ACM SIGMOD, pages 84-95, 1986.

P. E. O’Neil. The SB-tree an index-sequential structure for high-performance sequential
access. Acta Informatica, 29:241-265, 1992.

E.J. O'Neil, P.E. O'Neil, and G. Weikum. The LRU-K page replacement algorithm for
database disk buffering. In Proc. of the ACM SIGMOD, pages 297-306, 1993.

N. K. Ouchi. Systems for recovering data stored in failed memory. Technical Report
#4,092,732, US Patent, 1978.

M. Tarmer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems.
Prentice Hall, 1991.

C. A. Polyzois, A. Bhide, and D. Dias. Disk mirroring with alternating deferred updates.
In Proc. of the Conf. on Very Large Databases (VLDB), pages 604—617, 1993.

David Patterson, Garth Gibson, and Randy Katz. A case for redundant arrays of
inexpensive disks (RAID). In Proc. of the ACM SIGMOD, pages 109-116, June 1988.

H.-B. Paul, H.-J. Schek, M. Scholl, G. Weikum, and U. Deppisch. Architecture and
implementation of the Darmstadt Database Kernel System. In Proc. of the ACM SIG-
MOD, pages i1196-207, 1987.

M. Palmer and S. B. Zdonik. FIDO: A cache that learns to fetch. In Proc. of the Conf.
on Very Large Databases (VLDB), pages 255-264, 1991.

Quantum Cooperation. ProDrive 700/1050/1255 Product Manual, 1992.

Erhard Rahm. Performance evaluation of extended storage architectures for transaction
processing. In Proc. of the ACM SIGMOD, pages 308-317, 1992.

M. V. Ramakrishna. Computing the probability of hash table / urn overflow. Comm.
in Statistics - Theorey and Methods, 16(11):3343-3353, 1987.

C. Ruemmler and J. Wilkes. Modeling disks. Technical Report HPL-93-68 (revision 1),
HP Laboratories, 1993.

C. Ruemmler and J. Wilkes. UNIX disk access patterns. Technical Report HPL-92-152
(revision 1), HP Laboratories, 1993.

C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer,
27(3):17-28, 1994.

P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. Access
path selection in a relational database management system. In Proc. of the ACM SIG-
MOD, pages 23—-34, Boston, MA, 1979. acm.

Science, August 1993.

M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. In Proceedings of the
1990 Winter USENIX Conference, pages 313-323, 1990.

H. S. Stone and H. Fuller. On the near-optimality of the shortest-latency-time-first
drum scheduling discipline. Communications of the ACM, 16(6):352-353, 1973.

178

[SG76]
[SGH90]
[SGMS6]
[SLO1]
[SLM93]
[Smi76]
[Smi81]
[S090]
3586
[Sto81]
[TG84]
[TP72]

[Tri79]
[Wat76]
[Wei89)

[WGP94]
[Wie8s]
[Wil94]

[Wo0090]
[WSZ91]

[YaoT77]

[Z1.92]

BIBLIOGRAPHY

B. Shneiderman and V. Goodman. Batched searching of sequential and tree structured
files. ACM Transactions on Database Systems, 1(3):268-275, 1976.

D. Stodolsky, G. Gibson, and M. Holland. Parity logging overcoming the small write
problem in redundant disk arrays. In Proc. IEEE, pages 64-75, 1990.

Kenneth Salem and Hector Garcia-Molina. Disk striping. In Proc. of the IEEE Confe-
rence on Data Engineering, pages 336—-342, 1986.

B. Seeger and P.-A. Larson. Multi-disk B-trees. In Proc. of the ACM SIGMOD, pages
436-445, 1991.

B. Seeger, P.-A. Larson, and R. McFadyen. Reading a set of disk pages. In Proc. of the
Conf. on Very Large Databases (VLDB), pages 592-603, 1993.

A. J. Smith. Sequentiality and prefetching. ACM Transactions on Database Systems,
8(3):223-247, 1976.

A. J. Smith. Input/output optimization and disk architectures: A survey. Performance
and Evaluation, 1:104-117, 1981.

J. A. Solworth and C. U. Orji. Write-only disk caches. In Proc. of the ACM SIGMOD,
pages 123-132, 1990.

G. M. Saco and M. Schkolnick. Buffer management in relational database systems. ACM
Transactions on Database Systems, 11(4):473-498, 1986.

M. Stonebraker. Operating system support for database management. Communications
of the ACM, 24(7):412-418, 1981.

J. Z. Teng and R. A. Gumaer. Managing IBM Database 2 buffers to maximize perfor-
mance. IBM System Journal, 23(2):211-218, 1984.

Toby J. Teorey and Tad B. Pinkerton. A comparative analysis of disk scheduling policies.
Communications of the ACM, 15(3):177 — 184, 1972.

K. S. Trivedi. An analysis of prepaging. Computing, 22:191-210, 1979.
S. J. Waters. Hit ratio. Computer Journal, 19(1):21-24, 1976.

G. Weikum. Set-oriented disk access to large complex objects. In Proc. of the IEEE
Conference on Data Engineering, pages 426-433, 1989.

B.L. Worthington, G.R. Ganger, and Y.N. Patt. Scheduling for modern disk drives and
non-random workloads. Technical Report CSE-TR-194-94, University of Michigan, Ann
Arbor, 1994.

Gio Wiederhold. File Organization for Database Design. McGraw-Hill, 1988.

M. Wilkes. Operating systems in a changing world. Operating Systems Review, 28(2):9—
21, 1994.

R. Wood. Magnetic magabits. IEEE Spectrum, pages 32-38, 1990.

G. Weikum, P. Scheuermann, and P. Zabback. Dynamic file allocation in disk arrays.
In Proc. of the ACM SIGMOD, 1991.

S. B. Yao. Approximating block accesses in database organizations. Communications
of the ACM, 20(4):260-261, 1977.

L. Q. Zheng and P-A. Larson. Speeding up external mergesort. Technical Report
(C8-92-40, Comp. Science Department, University of Waterloo, 1992.

