
The Web Service Browser: Automatic Client Generation and Efficient Data
Transfer for Web Services

Steffen Heinzl1, Markus Mathes1, Thilo Stadelmann1, Dominik Seiler1,
Marcel Diegelmann2, Helmut Dohmann2, Bernd Freisleben1

1Dept. of Mathematics and Computer Science, University of Marburg
Hans-Meerwein-Str. 3, D-35032 Marburg, Germany

{heinzl,mathes,stadelmann,seiler,freisleb}@informatik.uni-marburg.de
2Dept. of Applied Computer Science, University of Applied Sciences Fulda

Marquardstr. 35, D-36039 Fulda, Germany
{marcel.diegelmann,helmut.dohmann}@informatik.hs-fulda.de

Abstract

Web services are supported by almost all major software
vendors, but nevertheless there is still a certain barrier that
prevents a broader user community to actually use them.
The barrier is the lack of appropriate clients offered in con-
junction with the services. This paper presents a Web Ser-
vice Browser that automatically generates a dynamic user
interface when the user browses to the location of the ser-
vice description and additionally handles the invocation of
the service. To ease the use of the service, the browser takes
care of data management by using an implementation of the
Flex-SwA architecture. Results are presented to the user in
a human-readable manner. When the result contains multi-
media data, an audio or video player is used to present the
result. Use cases demonstrate the benefits of the browser.
With the Web Service Browser, web services simply become
a usable component offered in the WWW.

1 Introduction

Although web services are normally used for machine-
to-machine communication, there are areas like high-
performance computing, e-government or multimedia ser-
vices where humans communicate or interact with web ser-
vices. However, there are still some obstacles for people
who want to use web services. Most WSDL files found in
the WWW miss a working and easy to use client for in-
voking the corresponding web services, and potential web
service users have to write their own client software to test
and use a web service. Even if clients are available, these

are often built for specific platforms, such as the Microsoft
.NET framework. This limits their use to people using the
Microsoft Windows operating system or to computer ex-
perts who know how to compile or build their own client
software. There are already applications that generate user
interfaces (often as part of an integrated software develop-
ment environment), but to really allow web services to tar-
get a broader user community, a familiar environment like a
web browser that can be installed easily and that assists the
user in the invocation of the service is desirable.

In this paper, a Web Service Browser is presented. When
a user browses to the WSDL location of a web service, an
intuitive user interface is generated automatically. Using
the Web Service Browser, web services can be invoked eas-
ily. Data transfers are effectively managed to ease the send-
ing of large amounts of data. Documentation tags in the
WSDL/XML Schema allow to offer help to the user when
choosing the operation or providing the parameters for the
web service. If the service returns a result, it is presented
according to the contained data. Textual and multimedia
data are directly visualized or made audible, respectively.

The developed Web Service Browser also supports web
services built according to the Web Service Resource
Framework (WSRF), commonly called Grid services. The
particular problems associated with handling Grid services
have been published in a previous paper [3]. For Grid
services, the document/literal wrapped binding
style is supported. The Web Service Browser, however,
supports the SOAP over HTTP binding and the different
style/use combinations.

The paper is organized as follows. Section 2 describes
user requirements with respect to web service invocation.
Section 3 presents the components of the Web Service

2009 IEEE International Conference on Web Services

978-0-7695-3709-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICWS.2009.22

743

Browser. In Section 4, parts of the implementation are dis-
cussed. Section 5 presents two use cases. Section 6 dis-
cusses related work. Section 7 concludes the paper and out-
lines areas for future research.

2 User Requirements

Ordinary computer users have different requirements
with respect to web service invocation. If a user browses
to the service’s location with a web browser, (s)he normally
sees an XML tree showing the WSDL file, as shown in Fig-
ure 1. Most users cannot build a working client from such a
WSDL description.

Figure 1. Screenshot of Firefox showing a
WSDL file.

Therefore, the primary requirement for ordinary users is
ease of use. The process of invoking a web service is too
complicated for most of the ordinary computer users. The
invocation of the first web service usually includes the fol-
lowing steps:

• installing a compiler for a programming language

• installing a SOAP engine that allows the creation of
clients using the chosen programming language

• downloading the WSDL description

• creating stubs from the WSDL description

• implementing a client with the help of the stubs

• building and starting the client

Instead, it would be desirable that users simply access a
WSDL file with their browser (like browsing to a HTML
file) and then see a user interface asking for the information
necessary to invoke the service. A simple operation (like
clicking a button) should start the invocation of the service.
When a result is returned, it should be shown to the user in
a human-readable manner.

A second requirement is efficient data transfers, espe-
cially of large amounts of data. Normally, data is embedded
into the SOAP message. This leads to a serialization effort,
larger messages due to encoding, and a high memory usage
since most SOAP engines manage the complete SOAP mes-
sage (or at least a whole element) in memory before sending
or processing it. If the messages get larger, memory prob-
lems may occur on the client machine. Thus, a framework
managing data transfers in a flexible way is needed to cir-
cumvent the performance and memory problems.

A third requirement is to assist a user when entering
complex data types, or when choosing the operation to in-
voke.

These requirements can be met by integrating the service
handling procedure into a web browser. The user works in
a familiar environment; services simply become a usable
component offered in the WWW.

3 Components of the Web Service Browser

Conceptually, the Web Service Browser needs several
components to assist the user in interacting with web ser-
vices. First, a component is needed that parses and inter-
prets the WSDL description and then fills a model holding
the information contained in the WSDL. A second com-
ponent has to generate a user interface (UI) based on the
model. After the user has filled in the fields, a third compo-
nent needs to generate the SOAP message according to the
style/use combination defined in the binding. When a re-
sponse is returned, a fourth component has to interpret the
response and create an appropriate presentation of the re-
sult. Figure 2 shows the detailed sequence of actions, from
retrieving the WSDL description over submitting the data
to displaying the results.

After the user browses to a WSDL file, the following
steps happen in the browser:

• The browser retrieves the WSDL description by send-
ing a HTTP GET to the webpage or a SOAP message
to a UDDI registry (1).

744

Figure 2. Invoking a service from the Web
Service Browser.

• Instead of showing an XML tree (which is normally
done by most browsers), the WSDL Parser parses and
interprets the WSDL description (2).

• The data of the parsing process is used to fill a model
holding the information of the WSDL file (3).

• The model information is then used as an input for a
User Interface Generator (4) that creates a graphical
representation.

• The representation is handed over to the browser (5).

• The user provides the data to an Execution Engine (6).

• The Execution Engine invokes the services according
to the style/use combination provided in the service’s
binding (7).

• The service returns a result that is handed over to the
Result Presentation component (8).

• The Result Presentation component uses the model in-
formation for the output structure of the result (9a) and
displays the result in that structure (9b).

In the following sections, the different components are
described in more detail.

3.1 WSDL Parser and Model

The WSDL Parser fills the Model with the information
of the WSDL description including the XML Schema infor-

mation of the WSDL types section. This information should
be easily retrievable from the model. Furthermore, annota-
tions and documentation should be accessible to later assist
the user in choosing the correct operation and entering the
correct data.

3.2 User Interface Generator

The model is then used as the input for the User Inter-
face Generator. The User Interface Generator retrieves the
information in the model to generate a graphical represen-
tation that can be implemented by making use of various
styles and technologies. HTML forms, for example, pro-
vide a natural look to the user. Silverlight, Flash, Flex,
JavaScript, etc. may provide a richer user interface, but a
server-side component may be needed. Alternatively, the
UI may also be presented as part of the browser (as, for
example, in Firefox chrome [5]). Independent of the gener-
ated UI, the user must be able to enter the data needed for
the service invocation.

From the types section of the WSDL description, dif-
ferent fields can be created. By using the XML Schema
appInfo element or the documentation tag of XML
Schema or WSDL, information can be provided about
which graphical element to use for which field and which
texts to display to help the user fill out the forms. For ex-
ample, when XML Schema’s datetime type is used, a
graphical calendar to select the date can be used instead of
having to enter a string in a hardly human-readable format.

To support file transfers, a framework for efficiently han-
dling data transfers should be integrated into the Web Ser-
vice Browser. An implementation of the Flex-SwA archi-
tecture (an overview is given in Section 3.4) fits nicely into
the Web Service Browser’s architecture. When a service
uses the Reference type from Flex-SwA, the UI Generator
should generate a field allowing a user to select a file from
hard disk or to enter a URL referencing a file on a network
or in the Web. Flex-SwA’s data transfer capabilities are then
used to transfer the file.

Using a User Interface Generator to automatically gener-
ate a UI has several advantages: A service provider does not
have to offer a client or web interface for its services, and
the service developer does not have to program a client for
a web service. Furthermore, an efficient file transfer facil-
ity can be added to the UI. Even a non-computer expert can
then easily transfer files and does not need to learn “new”
techniques to transfer files (like SSH, GridFTP, etc.).

3.3 Execution Engine

The Execution Engine is responsible for actually
invoking the service. It takes the data of the user
and creates the SOAP message according to the

745

style/use combination defined by the service. The
following style/use combinations exist and must
be supported: RPC/encoded, RPC/literal,
document/encoded, document/literal,
document/literal wrapped (not being a real
combination of style/use, instead depending on the
schema).

After the creation of the SOAP message, the Execution
Engine sends the message to the service. For the efficient
transfer of bulk data, an extra Data Transfer Unit is used.

3.4 Data Transfer Unit

The Data Transfer Unit is used for efficient and flexible
bulk data transfer. Since SOAP is inefficient for this task
due to the required encoding effort, the Data Transfer Unit
is based on the Flex-SwA architecture [4].

The Flex-SwA architecture provides a flexible way to
handle bulk data in service-oriented environments. A ref-
erence builder is used to create an XML description that
refers to the actual location of a file and the protocols used
to transmit the binary data objects. The service provider
uses a reference to retrieve the data directly from a remote
server (on a client computer or anywhere else in the web) in-
stead of transferring data from a remote server to the client
and from the client to the service provider. A reference may
use a MIME type to describe the referenced data. Refer-
ences do not need to be handled by a service provider di-
rectly but can be forwarded to other service providers with
negligible additional communication cost. From an applica-
tion developer’s point of view, service invocation and data
transmission remain coupled in a single service invocation
operation. A service developer can choose between dif-
ferent communication patterns, thus configuring how the
Flex-SwA platform should handle the referenced data, e.g.
should the data be completely transferred before the service
is executed or should the transmission overlap the service
execution.

As an additional benefit, service developers can use the
protocol handling capabilities of Flex-SwA to leverage high
performance binary protocols by simply specifying a policy
to use them, without having to deal with the protocol details
in the application code. Binary protocols can be selected for
each message part individually. Services may use a commu-
nication policy [2] to describe which protocols they support
and a temporal policy [7] to add a validity period to the poli-
cies used.

For applications that repetitively send data to a service,
the Flex-SwA architecture has been extended to enable ref-
erences to point to data in memory identified by a unique
ID [9].

3.5 Result Presentation

The Result Presentation component is responsible for
creating the visualization of a result message that is then
shown in the browser. The visualization might probably be
similar to the way the input parameters are visualized. The
user should be able to easily see what kind of data has been
visualized. Besides textual data, a download link should
be provided for bulk data. Furthermore, the Result Pre-
sentation should be extensible, for example, for multimedia
data, such that an audio player is embedded for music, and
a video player for movies.

4 Implementation Issues

The components of the Web Services Browser have been
implemented as part of a Firefox 3 plugin. The plugin needs
a Java version between 1.6.0 04 and 1.6.0 07. Newer Java
versions that enable a preview to the new Java 7 features
cause problems with LiveConnect that is used to connect
Firefox with Java. The LiveConnect issues are presum-
ably resolved in Java 1.6.0 12. The embedding of the audio
player used in one of the use cases described later has been
tested with Quicktime 7.6.

This section gives a short overview of the implementa-
tion of the plugin. The WSDL Parser component, the struc-
ture of the created HTML page, and the Result Presentation
component are presented in more detail. The way the plu-
gin integrates into Firefox (via XPCOM components and
browser overlay) and the user interface generator and exe-
cution engine are explained in detail in a previous publica-
tion dealing with Grid service support [3].

4.1 Firefox Plugin

The Web Service Browser can be realized by extending a
wide-spread browser such as Microsoft Internet Explorer or
Mozilla Firefox. Both web browsers offer extension points
to add functionality to them. Since the Internet Explorer can
only be used on Windows operating systems, an extension
for Mozilla Firefox was created. To avoid a reimplementa-
tion of a web service engine, it is reasonable to use an ex-
isting SOAP engine in conjunction with the Firefox plugin.
For the Web Service Browser, Apache Axis was used. Two
popular extension mechanisms were used to extend Firefox’
functionality: overlays and Cross Platform Component Ob-
ject Model (XPCOM) components.

Two XPCOM components have been developed. The
first one is an observer, the second one a stream
converter. The observer subscribes to three topics:
xpcom-startup, http-on-examine-response,
http-on-modify-request. The xpcom-startup
subscription is persisted by adding a category entry to

746

the category manager during the registration process of
the add-on. The category entry registers a persis-
tent subscription to the other two topics. Now, when-
ever a HTTP response arrives, the observer reacts to
an http-on-examine-response event and changes
the content type from text/xml to text/mywsdl;
text/mywsdl is a custom content type for which the
stream converter component is registered.

The stream converter processes the HTTP response. If
the document is a WSDL document, user interface gen-
eration will take place. The document will be replaced
by a HTML page that contains HTML forms for the cor-
responding fields in the WSDL description. The genera-
tion of the HTML page is done in Java by using a Java
Bridge—an adapted XPCOM component of the SIMILE
project (http://simile.mit.edu). A browser over-
lay is used to initialize the Java Bridge, directly after the
browser’s main window has opened.

The generator returns a string containing the HTML
page with JavaScript and some HTML forms. A Flex-SwA
Reference type in the WSDL indicates a bulk data transfer.
For each Reference, a file input that allows the selection of
the file to transfer is generated.

JavaScript allows the user to select which port and port
type to use, which operation to invoke, and assists the
user to select which type to use for a message part. All
inputs are collected when the user clicks the invoke but-
ton, and put into a SOAP message that is transmitted
via an XMLHttpRequest to an Execution Engine. The
http-on-modify-request topic allows the observer
to cancel the HTTP request before Firefox submits it to the
remote site. Instead, the Execution Engine is started locally
via the Java Bridge.

The result is returned to the browser by identifying the
tab that made the XMLHttpRequest and change its con-
tent. To achieve this, to each already opened tab an attribute
named gridbrowser-tab is assigned with a consecu-
tive number as its value. A TabOpen event listener is used
to add the attribute to each newly created tab. This guaran-
tees that each tab has an associated number that cannot be
altered by moving or closing existing tabs or opening new
tabs.

Right before the generation of the client, the stream
converter retrieves the current tab by requesting a ref-
erence to the window mediator’s most recent window.
The associated gridbrowser-tab number is added to
the XMLHttpRequest’s request headers of the gener-
ated code. When the user clicks the invoke button, the
XMLHttpRequest possesses a request header with a ref-
erence to the tab that sent it. This tab number can then be
obtained by the observer component from the HTTP request
when it reacts to the http-on-modify-request.
When the Execution Engine returns the result of the service

invocation, this result can then be shown in the result
section of the referenced tab.

4.2 WSDL Parser

The WSDL Parser used in the plugin is based on our
implementation of an XML2Java Model Generator. The
XML2Java Model Generator creates a Java class for each
XML element in an XML file. For each child element,
a corresponding object is added to the class. If multiple
elements of the same type occur, then a list of the ob-
jects is added to the class. For each attribute, a string is
added to the class with the corresponding getters and set-
ters. For each list type, an add()-method is added to the
class. Each created Java class furthermore contains a field
elementNamespace to save the current namespace of
the XML element and a field elementValue to save the
string data between start and end tag. XML namespaces are
converted to Java packages whereupon numbers (for exam-
ple years) are preceded by an ’n’, as packages may not start
with a number.

The XML2Java Model Generator builds a “best practice”
model. The model becomes finer the more input data it gets,
i.e. it reflects the union of the structures of all XML exam-
ple files. For policies that usually have a simple model, a
short number of examples is sufficient to build a complete
model of the policy in Java. For a complex specification
like WSDL, more files are needed. An advantage of this ap-
proach is that the model is only as complex as the files to be
processed. In the case of WSDL, there are many parts of the
specification that might not be used, so the model does not
reflect these parts. For example, the definitions tag in
all the files encountered so far only has one service ob-
ject, whereas according to WSDL 1.1 it could contain many
services. In practice, a WSDL file is only used to describe
exactly one service. By only taking into account the fea-
tures that are really used, the complexity of the model is
lower and hence it is easier to work with the model and, for
example, build a parser on top of the model.

If the model is not sufficient for a specific WSDL file,
it can simply be extended by being fed with the file. This
approach is useful if the developer has in-depth knowledge
of the XML specification. The Java representation reflects
the structure of the XML files very closely and can thus be
easily used.

4.3 HTML Structure

For the graphical presentation, we have chosen to gen-
erate an HTML page that completely abstains from using
server-side components. Therefore, the necessary parts of
the model information have to be reflected in the automat-
ically generated HTML page. The creation of the SOAP

747

<div id="divop0.0" ...">...

<input id="input1" type="file">

<input onmouseover="showInputTooltip(...)" onmouseout="hideTooltip()" value="12" type="text">

<input onmouseover="showInputTooltip(...)" onmouseout="hideTooltip()" value="5" type="text">

 ...
</div>

Figure 3. Schematic representation of the wav2splice operation.

body has been completely reimplemented in JavaScript and
embedded into the HTML page, such that it can be used di-
rectly from the generated user interface. For each operation
in each port type, a div container is added to the HTML
page holding a span for each variable. The id attribute
of a span describes which of the data belongs together,
as can be seen in Figure 3 showing the schematic HTML
representation wav2splice operation of the WebVoice
Web Service (see Section 5.2).

The first span defines an element named
ref. The class attribute is used to describe
the namespace of the ref element, namely
http://core.flexswa.fb12.de. The next
span defines an element ref:resourceUrl that indi-
cates that the resourceUrl element is part of the ref
element. The other elements (preservedBlockSize,
etc.) are top-level elements just like the ref element.

Dependent on the binding style, the SOAP message is
created from the field information the user entered.

4.4 Result Presentation Engine

For the result presentation, different plugins can be im-
plemented. Currently, the Result Presentation Engine visu-
alizes textual information, the original SOAP message, and
takes care of multimedia data. Whenever bulk data is part
of the service’s result, the service can use Flex-SwA Refer-
ences to reference the bulk data and assign a MIME type to
them. Depending on the MIME type, different result pre-
sentations are used. For the MIME types audio/x-wav
and audio/mpeg, an audio plugin has been implemented
as part of the extension that embeds a player for and a down-
load link to the referenced audio files into a new section of
the HTML page. For the MIME types image/png and
image/jpeg, a new section with previews of the pictures
is created.

5 Use Cases

In this section, two different example web services
are presented to show the feasibility of the Web Service
Browser. The first service is a hotel booking service, and
the second one is an audio analysis service.

5.1 Hotel Booking Service

First, we selected a hotel booking service as a typical ex-
ample for a web service. It allows users to book a hotel by
specifying their given name, surname, age, and e-mail ad-
dress. The e-mail address is used for verification purposes.

The user simply browses to the WSDL file of the service.
Instead of seeing an XML tree (as without the plugin), the
user sees a user interface that allows him or her to add and
submit data to the service. The screenshot in Figure 4 shows
how the Web Service Browser automatically assists the user
when selecting a date. Otherwise, the user would have to
enter the XML Schema datetime type.

5.2 Audio Analysis Service

To show that the browser is extensible with more com-
plex plugins and supports services with other than textual
data types, a service from the area of automatic speaker
recognition for multimedia analysis is presented as a sec-
ond use case. It offers possibilities to “hear” what is going
on inside different stages of the internal pattern recognition
chain (i.e. different features and statistical models) by mak-
ing intermediate results audible again. This eases the under-
standing and debugging of the underlying methods and re-
sults. Figure 5 shows the user interface of the audio analysis
service called WebVoice that is generated when the user
browses to the location of the service’s WSDL description.
Among others, the service offers the wav2splice opera-
tion that segments the signal into blocks of specifiable size

748

Figure 4. Screenshot of the hotel booking
service user interface.

Figure 5. Screenshot of the WebVoice service
user interface.

and randomizes the order of these blocks, helping to judge
the importance of sequential information in the signal.

When the user slides over the operations drop down
menu, a tooltip helps choosing the right operation. The
form fields are already filled with the default values set in
the XML schema part of the WSDL file. To transfer an au-
dio file, the user pushes the browse button and selects a file
from the hard disk. The audio file is then transferred to the
web service via Flex-SwA. The data is pushed to the service
when the user is in a private network. If the user has a pub-
lic IP address, the local file is streamed to the service, such
that the processing of the data can overlap with the trans-
mission. After the analysis, the result presentation engine
generates an HTML page offering the user to download or
listen to the resynthesized audio (see Figure 6).

Figure 6. Result of the wav2splice opera-
tion.

In the first section of the result page, the data of the re-
sulting SOAP message is shown. When the mouse slides
over the white exclamation mark, the data type is shown as
a tooltip. The second section is reserved for the original
SOAP message (hidden in the screenshot). By clicking on
the green “down” arrow, sections can be hidden and shown
again. In the third section, a media player is embedded into
the result page that plays the resynthesized audio file.

749

6 Related Work

Gemstone [1] is an application based on the Mozilla Ap-
plication Framework and XULRunner that allows users to
browse to a set of web services and enables dynamic inte-
gration of the user interface elements. The service providers
have to specify the service and user interface. Gemstone is
used to select services from a proprietary repository. Hence,
Gemstone lacks a real browser integration. It only provides
the integration of web services for which visualization code
is written in XUL and JavaScript. This limits the use of
Gemstone to service providers offering visualization code
to their services and using the proprietary repository format
supported by Gemstone.

Web and Grid portals like GridSphere (http://www.
gridsphere.org) provide access to a collection of
services and a set of tools such as single-sign on, data
management, and certificate management or collaboration
capabilities (sharing, interlinking, and integrating multi-
disciplinary data sets) like the GEON portal [8] directly
through the browser. However, in order to operate portals,
maintenance and administration efforts are needed. Further-
more, for each new service to add to the portal, a portlet has
to be written.

The Web Services Remote Portlet (WSRP) specification
[6] addresses part of the problem. A user interface defined
at a remote site can be included in the portal. Still, each
provider has to define the user interface for each of its ser-
vice descriptions on the web or in a repository.

soapUI (http://www.soapui.org) is a popular
test suite for inspecting, invoking, and developing web ser-
vices. Unlike the Web Service Browser, soapUI does not
integrate into the browser. It is used for testing purposes
to assist the web service developer and not a service user.
Furthermore, it does not provide the integration of different
multimedia data types.

Although the Web Service Browser has many advantages
compared to the related approaches presented above, it has
the disadvantage that it depends on the Firefox releases of
the Mozilla Foundation. Thus, possibly the plugin has to
modified for major Firefox releases (like upgrading from
Firefox 3 to Firefox 4).

7 Conclusions

In this paper, a Web Service Browser that automatically
creates a user interface when a user browses to a WSDL file
has been presented. To efficiently handle file transfers, an
implementation of the Flex-SwA architecture has been in-
tegrated. Implementation issues dealing with the WSDL
parser, the model and the HTML structure of the gener-
ated HTML page have been described. Two use cases have
shown how the Web Service Browser works.

There are several areas for future work. For example, a
notification system will be added to the browser, such that
asynchronous service invocation is supported. A statisti-
cal analysis of user experience is planned. The support of
REST services is planned. Furthermore, more result pre-
sentation styles will be added. Finally, an evaluation of the
functionality in further use cases will be performed.

Acknowledgements

This work is partially supported by the German Ministry
of Education and Research (BMBF) (D-Grid Initiative) and
the Deutsche Forschungsgemeinschaft (DFG, SFB/FK 615,
Teilprojekt MT).

References

[1] K. Bhatia, B. Stearn, M. Taufer, R. Zamudio, and D. Catarino.
Extending Grid Protocols onto the Desktop using the Mozilla
Framework. In 2nd International Workshop on Grid Comput-
ing Environments (GCE 2006), 2006.

[2] S. Heinzl, M. Mathes, and B. Freisleben. A Web Service
Communication Policy for Describing Non-Standard Appli-
cation Requirements. In Proc. of the IEEE/IPSJ Symposium
on Applications and the Internet (Saint 2008), pages 40–47.
IEEE Computer Society Press, 2008.

[3] S. Heinzl, M. Mathes, and B. Freisleben. The Grid Browser:
Improving Usability in Service-Oriented Grids by Automat-
ically Generating Clients and Handling Data Transfers. In
Proceedings of the Fourth IEEE International Conference on
eScience, pages 269–276. IEEE Press, 2008.

[4] S. Heinzl, M. Mathes, T. Friese, M. Smith, and B. Freisleben.
Flex-SwA: Flexible Exchange of Binary Data Based on
SOAP Messages with Attachments. In Proc. of the IEEE Int’l
Conf. on Web Services, pages 3–10. IEEE Press, 2006.

[5] J. Huff. Building firefox extensions. Linux Journal,
2007(160):8, 2007.

[6] A. Kropp, C. Leue, R. Thompson, C. Braun, J. Broberg,
M. Cassidy, M. Freedman, T. N. Jones, T. Schaeck, and
G. Tayar. Web Services for Remote Portlets Specification.
OASIS Standard, August 2003.

[7] M. Mathes, S. Heinzl, and B. Freisleben. WS-
TemporalPolicy: A WS-Policy Extension for Describing Ser-
vice Properties with Time Constraints. In Proceedings of the
First IEEE International Workshop On Real-Time Service-
Oriented Architecture and Applications (RTSOAA 2008),
pages 1180 – 1186. IEEE CS Press, 2008.

[8] U. Nambia, B. Ludaescher, K. Lin, and C. Baru. The
GEON Portal: Accelerating Knowledge Discovery in the
Geosciences. In 8th ACM Int’l Workshop on Web Informa-
tion and Data Management, pages 83 – 90. ACM, 2006.

[9] D. Seiler, S. Heinzl, E. Juhnke, R. Ewerth, M. Grauer, and
B. Freisleben. Efficient Data Transmission in Service Work-
flows for Distributed Video Content Analysis. In Proc. of the
6th Int’l Conf. on Advances in Mobile Computing & Multime-
dia, pages 7–14. ACM Press, 2008.

750

