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Abstract 

 
In this paper, we summarize our results for the shot 

boundary and high level feature detection task at 
TRECVID 2007. Our shot boundary detection 
approach of previous TRECVID evaluations served as 
a basis for our experiments this year and was modified 
in several ways. First, we have incorporated a new 
metric selection for cut detection based on the 
evaluation of a clustering result. Second, we have 
tested the possibility to improve cut detection results 
via self-supervised learning. Third, the unsupervised 
approach for gradual transition detection has been 
supplemented with a false alarm removal method using 
a state-of-the art camera motion estimation approach. 
Regarding high-level feature detection, one focus of 
this year’s task was to investigate the question how 
well a trained system generalizes from the TRECVID 
2005 news data to this year’s Sound and Vision data. 
However, only two institutes have submitted four runs 
of the related type “a” for evaluation (three of them 
were submitted by us). In this paper, we present our 
experiments for the high-level feature task with respect 
to the generalization capabilities of our system trained 
on broadcast news videos. For this purpose, we have 
conducted several experiments using our system which 
is based on low-level features as well as on state-of-
the-art approaches for camera motion estimation, text 
detection, face detection and audio segmentation. 
 
1. Structured Abstract 
 
In this section, the results of our participation in both 
tasks are presented in form of the requested structured 
abstract. The shot boundary detection approach and the 
related experimental results are presented in section 2. 
Our system developed for high-level feature extraction 

is described in section 3 along with the experimental 
results. Section 4 concludes the paper. 
 
The following definitions are used in this paper: 
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The high-level feature detection experiments were 
evaluated by the TRECVID team using the inferred 
average precision measure suggested in [22]. 
 
Shot Boundary Detection: “What approach or 
combination of approaches did you test in each of 
your submitted runs?” 
 
The investigated unsupervised approach relies on our 
TRECVID system of previous years [6, 8]. This 
approach does not need any training data and utilizes k-
means clustering to achieve robust results for both cut 
detection and gradual transition detection.  
To detect cuts, two different frame dissimilarity 
measures are applied: Motion-compensated pixel 
differences and histogram dissimilarities of subsequent 
DC-frames. A sliding window technique is used to 
measure the relative height of a peak value in a 
temporal neighborhood. The best sliding window size 
is estimated by evaluating the clustering quality of “cut 
clusters” for several window sizes [4]. In addition to 
our previous system, clustering quality is also used to 
select the most appropriate dissimilarity metric for a 
particular video. Furthermore, the unsupervised cut 



detection approach is extended by self-supervised 
learning [7] in order to obtain a robust result on a 
particular video.  
To detect gradual transitions, a temporal multi-
resolution approach is applied and dissimilarities are 
measured for several frame distances. Feature vectors 
are created similar to the cut detection approach using a 
sliding window technique. K-means is applied to 
cluster these feature vectors. This approach is extended 
by a fade detector following the proposal in [20]. In 
addition to our last year’s system, false alarms caused 
by camera motion are removed by employing the 
results of our state-of-the-art camera motion estimation 
approach [5].  
Nine runs were submitted, and the different parameter 
settings for each run are described in Table 1.  
 
Shot Boundary Detection:  
“What, if any significant differences (in terms of 
what measures) did you find among the runs?” 
 “Based on the results, can you estimate the relative 
contribution of each component of your 
system/approach to its effectiveness?” 
 
In terms of the f1-measure, the best run for cut 
detection was achieved using the self-supervised 
learning approach (f1=0.946). In particular, this run 
achieved the best precision among all submitted runs. 
Regarding false alarm removal for gradual transitions, 
the incorporation of the camera motion approach 
improved the results significantly. Interestingly, the 
consideration of pan detection (f1: 0.66-0.67) was more 
efficient than considering the detection of all motion 
types (f1: 0.55-0.56). Nonetheless, the consideration of 
all motion types still yielded better results than the 
baseline system without false alarm removal (f1: 0.35-
0.44). 
 
Shot Boundary Detection: “Overall, what did you 
learn about runs/approaches and the research 
question(s) that motivated them?” 
 
The cut detection approach is rather robust, the self-
supervised learning approach improved the results only 
slightly (in case when enough features are used), 
mostly in terms of precision.  
The incorporation of camera motion estimation was 
very useful in order to reduce the number of false 
alarms for gradual transition detection. It turned out 
that detections of horizontal camera motion (pan) were 
more suited for false alarm removal than considering 
all motion types (pan, tilt and zoom).  

High-level Feature Extraction: “What approach or 
combination of approaches did you test in each of 
your submitted runs?” 
 
The following runs were submitted: 
• a_ma1: Baseline, TRECVID 2005 training set with 

ground truth from Mediamill challenge system [19] 
• A_ma2: Baseline07, TRECVID 2007 training set, 

merged annotations from active learning and MCQ-
ECT-CAS 

• A_ma3: Baseline07 plus additional distinction 
between color and gray-scale shots 

• A_ma4: A_ma7 plus additional distinction between 
color and gray-scale shots 

• a_ma5: Context features for 101 Mediamill 
concepts, training set of Mediamill challenge 
system (subset of TRECVID 2005 training set) 

• a_ma6: a_ma5_6 plus transductive learning 
• A_ma7: Additional evaluation, context features for 

101 Mediamill concepts, TRECVID 2005 and 2007 
training set 

 
High-Level Feature Extraction: “What, if any 
significant differences (in terms of what measures) 
did you find among the runs?” 
 
To investigate the generalization capabilities of our 
system trained on broadcast news videos, we 
performed three experiments of the related category 
“a”. First, we compared our baseline system by using 
either the TRECVID 2005 development set or the 
TRECVID 2007 development set for system training 
(a_ma1 respectively A_ma2). In a second experiment 
(a_ma5), the generalization capabilities of context 
features have been investigated and finally, in the third 
experiment (a_ma6), we applied transductive learning 
to the set of context features, realized by transductive 
support vector machines [11]. The idea concerning the 
transductive learning approach is to improve the 
detection performance of those high-level features 
whose appearance is strongly related to the Sound and 
Vision video data. Further experiments of category “A” 
investigated the usefulness of distinguishing color and 
gray-scale images and consequently separate training 
data for each modality as well as the impact of context 
features. 
 
High-Level Feature Extraction: “Based on the 
results, can you estimate the relative contribution of 
each component of your system/approach to its 
effectiveness?” 
 



Even though the baseline system trained on the Sound 
and Vision data yields a clearly better result in terms of 
mean inferred average precision (7.03% compared to 
4.94%), several of the high-level feature models trained 
on the broadcast news videos generalize very well to 
the Sound and Vision video data (e.g. “car”, “charts”, 
“airplane”, “military” and “sports”). The second run 
related to category “a” investigating the generalization 
capabilities of context features showed a slight 
performance decrease compared to the baseline system 
(4.94% to 4.55% mean inferred average precision). 
However, the high-level features “sports” and “people 
marching” benefited from using context vectors. 
Interestingly the use of context concerning category 
“a” (a_ma5) outperformed the corresponding category 
“A” system (A_ma7) in terms of mean inferred average 
precision (4.55% vs. 4.08%). 
No performance gain could be obtained by transductive 
learning compared to the reference system (3.31% vs. 
4.55% mean inferred average precision). In comparison 
to the reference system, the retrieval results could be 
improved slightly for only a few high-level features, 
but these improvements might not be significant. 
Despite that, this approach achieved our best results for 
the high-level features “flag-us” and “airplane”. 
The distinction between color and gray-scale images 
(keyframes) and consequently learning different 
models for each modality ended up with similar 
performances for nearly all high-level features, 
showing slight reductions in comparison to the 
reference systems (7.03% vs. 6.69% and 4.08% vs. 
3.87% mean inferred average precision). 
 
High-Level Feature Extraction: “Overall, what did 
you learn about runs/approaches and the research 
question(s) that motivated them?” 
 
The experiments revealed that the generalization 
capabilities of systems trained on broadcast news 
videos to the sound and vision data are limited. 
However, several high-level feature models generalized 
very well to the sound and vision data like “car”, 
“explosion_fire”, “airplane”, “mountain” or “sports”. 
The experiments also showed that the use of context 
features brought no performance gain and the impact of 
distinguishing between color and gray-scale images 
had nearly no impact on the detection results of the 
high-level features. 
 
2. Shot Boundary Detection 
 
The shot boundary detection approach is split up into 
two parts in order to detect cuts and gradual transitions 

appropriately. It is basically the same approach as in 
TRECVID 2006 except for the modifications described 
in the next three subsections.  
 
2.1 Automatic Metric Selection 
 
In our baseline system for cut detection, the best sliding 
window size is estimated by evaluating the clustering 
quality of the “cut” clusters for several window sizes 
[4]. In addition, we employ the clustering quality also 
to select the most appropriate dissimilarity metric for a 
particular video. The clustering results of histogram-
based dissimilarity values and motion compensated 
pixel differences are compared with respect to the 
quality of the resulting “cuts” cluster. It is evaluated 
using the Silhouette coefficient [4].  
 
2.2 Self-Supervised Learning for Video Cut 
Detection 
 
Last year, we have extended the unsupervised basic 
system with several unsupervised classifiers. This year, 
we investigated the possibility to extend the basis 
system with two additional supervised classifiers which 
are trained directly (without any supervision) and 
automatically on the test video under consideration.   
It has been shown that an ensemble of classifiers can 
improve accuracy in recognition tasks [13]. Since most 
transitions in a video are abrupt (without any 
transitional frames between the different shots), self-
supervised learning is applied for cut detection. The 
extension of the basis system to an ensemble with self-
supervised classifiers works as follows. First, cuts are 
detected in a video using the basis system. The 
detection results are employed as training data for the 
subsequent processing steps. Then, the best features are 
selected for the given video via Adaboost (as described 
in [21]). For cut detection, we have defined 42 features 
for two frame distances (1 and 2) describing the 
dissimilarity of DC-frames with respect to: 
 

• motion compensated pixel differences, 
• histogram differences, 
• luminance mean and variance,  
• edge histograms of Sobel-filtered (vertically 

and horizontally) DC-frames,  
• local histogram differences, and  
• ratio of the second largest dissimilarity value 

divided by the local maximum for several 
sliding window sizes. 

 
The selected features are split up into two disjoint sets 
and two SVMs are trained (using only the 



automatically labeled data of the particular test video) 
on either feature set. Thus, we finally get three 
classifiers evaluating each frame (considering the 
unsupervised approach as a kind of classifier as well). 
A majority vote is employed, i.e. a cut is detected if at 
least two “experts” vote that a frame belongs to a new 
shot. Details of this approach can be found in [7]. 
 
2.3 Gradual Transition Detection 
 

The proposed approach for gradual transition detection 
consists of three main components: a fade detector, an 
unsupervised gradual transition detector, and false 
alarm removal based on camera motion estimation. The 
general gradual transition detection process is preceded 
by fade detection [20]. The main idea of the proposed 
approach for gradual transition detection is to view a 
gradual shot change as an abrupt shot change at a lower 
temporal resolution. For this purpose, subsampled 
frame dissimilarity time series are used. Given a time 
series with a frame distance m which is subsampled 
accordingly by factor m, a gradual transition of length n 
≤ m/2 should be represented by an isolated peak in the 
time series - as it is the case for a cut at the highest 
temporal resolution. Feature vector creation and the 
clustering process take place in a similar way as in the 
cut detection approach. Finally, false alarms are 
removed based on the results of a high-quality motion 
estimation algorithm [5]. Summarizing, the main 
components of the unsupervised gradual transition 
detection are: 

1. Fade detection according to [20]; 

2. Unsupervised gradual transition detection  

a. Measure frame dissimilarities for 
several frame distances and create 
feature vectors; 

b. Cluster feature vectors for several 
frame distances in one or several 
clustering processes; 

c. Post-processing of cluster(s) – there 
might be several clustering results for 
the different frame distances, i.e. 
results must be united appropriately; 

3. False alarm removal, based also on camera 
motion estimation. 

A gradual transition candidate is removed in case it is 
completely covered by a camera motion event (either 
pan or of any type). The start and end positions of the 

remaining transitions are refined by comparing the 
histogram dissimilarity.  

Details of our approach can be found in [8]. 
 
2.4 Experimental Results 
 
The MDC decoder was used for MPEG decoding [14] 
in our experiments. The shot detection approach was 
tested with the following parameter settings for all 
runs. The baseline system with one metric uses 1D-
histogram (YUV color space, with 512 bins) 
dissimilarities of DC-frames, the “2metrics” runs use 
also motion compensated pixel differences of DC-
frames. The range of possible sliding window sizes was 
between 5 and 20. In case of automatic metric 
selection, motion compensated pixel differences are 
used as well. The frame distances for gradual transition 
detection were set to: 6, 10, 20, 30, 40, 50; the 
parameter describing the initial sliding window size for 
the finest temporal resolution was set to 24. The 
experimental settings and the results for the different 
runs are shown in Table 2 and 3.  
Overall, shot boundary detection worked very well: 
Regarding all transitions, our best run achieved an f1-
measure of 0.92. The cut detection performance was 
very good: recall is about 95% and precision about 
93% in nearly all runs, yielding an f1-measure of about 
0.94. The results did not differ with respect to 
automatic metric selection. For self-supervised 
learning, using only 11 features was not sufficient and 
performance degraded. However, our best result for cut 
detection in terms of the f1-measure (0.946) was 
obtained for the self-supervised learning approach 
using 45 features, in particular, precision was improved 
and recall decreased only slightly. In this run (marburg-
self45), gradual transition detection has been disabled 
to measure only the performance of the self-supervised 
cut detection approach. 
For gradual transition detection, the results vary 
noticeably depending on the used false alarm removal. 
The incorporation of camera motion estimation 
improved the results for gradual transition detection 
significantly (f1 of best run: 0.67). Only three institutes 
obtained better results for gradual transition detection. 
When horizontal camera motion (pan) was employed, 
precision was clearly increased by nearly 30%, while 
recall decreased only very slightly by 1.6% (both 
compared to the baseline system). In this best case, the 
highest precision (57.0% and 59.5%) could be achieved 
for our runs while recall was nearly as high as without 
false alarm removal (about 77%).  
 



Run Cuts: 
Metric 
Selection 

Cuts: 
Self-Supervised 
Learning 
(#Features) 

Graduals: 
False Alarm 
Removal  

marburg-2metrics-motion-all Yes No All Motion Types  
marburg-2metrics-motion-pan Yes No Pan 
marburg-2metrics Yes No No  
marburg-base No No No 
marburg-motion-all No No All Motion Types 
marburg-motion-pan No No Pan 
marburg-self11-motion-pan Yes Yes (11) Pan 
marburg-self11 Yes Yes (11) No 
marburg-self45 Yes Yes (45) - 

Table 1: The parameter settings for the different runs: The columns indicate whether metric selection or self-
supervised learning (both for cuts) was applied, and whether and how a false alarm removal based on 

camera motion took place for gradual transition detection. 

 
Run Cuts Gradual  

Transitions 
Gradual Trans. 
Frame-based 

All Transitions 

 Recall Prec. Recall Prec. Recall Prec. Recall Prec. 
marburg-2metrics-motion-all 95.5% 93.3% 53.7% 57.7% 46.7% 90.4% 92.2% 90.7% 
marburg-2metrics-motion-pan 95.7% 93.0% 77.7% 57.0% 43.7% 90.6% 94.2% 89.3% 
marburg-2metrics 96.0% 91.5% 79.3% 28.3% 43.7% 90.2% 94.6% 79.5% 
marburg-base 94.6% 93.0% 78.2% 30.6% 43.9% 90.1% 93.3% 81.7% 
marburg-motion-all 94.4% 94.4% 53.2% 61.0% 46.6% 90.2% 91.1% 92.1% 
marburg-motion-pan 94.5% 94.2% 76.6% 59.5% 44.0% 90.6% 93.1% 90.7% 
marburg-self11-motion-pan 81.4% 93.0% 40.4% 43.7% 47.8% 89.7% 78.1% 88.8% 
marburg-self11 90.6% 91.9% 73.9% 22.9% 44.5% 89.4% 89.3% 76.5% 
marburg-self45 93.2% 96.0% - - - - 85.7% 96.0% 

Table 2: Recall and precision for the different runs, separated for cuts, gradual transitions, for gradual 
transitions on a frame basis, and for all transitions. 

 
 
Run 

Cuts 
 

Gradual  
Transitions 

Gradual  
Transitions 
Frame-based 

All  
Transitions 

marburg-2metrics-motion-all 0.944 0.556 0.616 0.914 
marburg-2metrics-motion-pan 0.943 0.658 0.590 0.917 
marburg-2metrics 0.937 0.417 0.589 0.864 
marburg-base 0.938 0.440 0.590 0.871 
marburg-motion-all 0.944 0.568 0.615 0.916 
marburg-motion-pan 0.944 0.670 0.592 0.919 
marburg-self11-motion-pan 0.868 0.420 0.624 0.831 
marburg-self11 0.913 0.350 0.594 0.824 
marburg-self45 0.946 - - 0.906 

Table 3: F1-measures for all runs, separated for cuts, gradual transitions, frame-based detection 
performance of gradual transitions, and all transitions. 



3. High-level Feature Extraction Task 
 
In this section, we present our system for high-level 
feature extraction. First, in section 3.1 we describe the 
automatically extracted low-level features plus 
additional mid-level features, which are the result of 
state-of-the-art algorithms in the field of camera 
motion estimation [5], text detection [9], face detection 
[21] and audio segmentation. The following parts of 
our system are discussed in detail in sections 3.2 and 
3.3. Finally, the experimental results are presented in 
section 3.4. 
 
3.1 Low-Level and Mid-Level Features 
 
Our video analysis system automatically extracts 
several low-level as well as mid-level features. In 
section 3.1.1 we describe our visual features, followed 
by the audio features in section 3.1.2. Furthermore, we 
created context information based on 101 high-level 
concepts. These context features are described in 
section 3.1.3. 
 
3.1.1 Visual Features 
 
Several visual features are extracted for each video 
shot. The frame in the middle of a shot is used as 
keyframe. If a keyframe contains black bars, these top 
and bottom regions of the image are automatically 
detected and removed in a preprocessing step. The 
removal of the black bars is realized by zooming into 
the image. In addition to the keyframe based low-level 
features (color moments, color correlograms, texture 
and gabor features) several mid-level features are 
extracted automatically from the entire shot by 
utilizing camera motion estimation [5], face detection 
[21] and text detection [9]. In the following, the 
extracted features are briefly described. 

Color moments: Color moments are extracted at two 
different granularities. The first three global color 
moments are computed for the whole keyframe. 
Corresponding values are extracted for each region of 
a 3 x 3 grid in HSV (Hue, Saturation, Value) color 
space. The i-th pixel of the j-th color channel of an 
image region is represented by cij. Then, the first three 
color moments are defined as: 
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Texture features: The gray-scale image co-occurrence 
matrices mk are constructed at 8 orientations. We use 
these matrices to extract the following values 
representing the global texture:  
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where N is the number of gray values and mkij is the 
value of the co-occurrence matrix mk at position (i, j). 

Color autocorrelograms:  Color correlograms describe 
the spatial relationship between colors, whereas auto-
correlograms are limited to identical colors. An 
autocorrelogram expresses the probabilities of colors 
re-occurring in a certain distance. We preferred small 
distances (1, 4, 7, 10, 13, 16 and 19 pixel), so that local 
spatial correlations of identical colors are represented 
by the correlogram. Colors are described in HSV (hue, 
saturation, value) color space. By choosing a smaller 
number of bins representing the brightness component 
we get more independent of illumination changes. In 
total, each color correlogram results in a 350-
dimensional feature vector. 

Gabor wavelet features: Gabor wavelet features are 
extracted for eight orientations and five frequencies. 
The functions to compute the wavelet coefficients can 
be expressed as follows [12]: 
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A Gabor wavelet is controlled by five parameters: 
orientation θ, wave length λ, phase ϕ, radius σ of the 
Gaussian function, and the aspect ratio γ. The radius of 
the Gaussian function is chosen proportionally to the 
wave length, and the aspect ratio is fixed to 1. Gabor 
energies of a pixel for the different orientation and 
spatial-frequency combinations are obtained by a 
superposition of the phases 0 and π/2 using the L2-
Norm. The resulting 40 Gabor energies per pixel are 
summarized in a Gabor histogram describing the whole 
image. By distinguishing ten energy classes we obtain 
400 histogram feature values. We further compute the 
average result of each Gabor energy filter for each 
region of a 4 x 4 grid. Thus, the total number of Gabor 
wavelet features amounts to 1040 values. 

Camera motion features: Motion vectors embedded in 
MPEG videos are employed to compute camera 
motion at the granularity of P-frames, according to the 
approach presented in [5]. The following camera 
motion types are distinguished: translation along the x-
axis, respectively y-axis, rotation around the x-axis, 
respectively y-axis and z-axis, and zoom. The 
distribution of the values for a shot concerning the 
different camera motion types are described by using 
the following statistical values: mean, median, 
minimum, maximum, standard deviation, and 
skewness. Additionally, the percentages of a shot 
concerning the different camera motion types pan, tilt 
and zoom are considered, so that we finally get a 39-
dimensional camera motion vector. 

Text features: A robust text detection approach [9], 
which can automatically detect horizontally aligned 
text with different sizes, fonts, colors and languages, is 
applied at the granularity of I-frames. First, a wavelet 
transformation is applied to the image and the 
distribution of high-frequency wavelet coefficients is 
considered to statistically characterize text and non-
text areas. Then, the k-means algorithm is used to 
classify text areas in the image. The detected text areas 
undergo a projection analysis in order to refine their 
localization. We use the detected text areas to derive 
the following features per shot: the number of 
appearing text elements, the average text position, the 
mean text frame coverage, and the average number of 
text elements per frame. 

Face features: Frontal and profile faces are detected in 
each video frame using the face detector provided by 
Intel’s OpenCV library [www.intel.com/technology/ 
computing/opencv]. The face detection approach is an 
implementation of the approach suggested by Viola 
and Jones [21] with Lienhart’s extensions [15]. The 
Adaboost-based approach of Viola and Jones was 
chosen since it is a very fast approach that nearly 
operates in real-time on today’s computers and thus 
can even be applied to every single frame of a 
sequence. Since their approach usually reports many 
detections of slightly different sizes and positions, an 
average rectangle is computed based on the reported 
detections, in case that the number of detections 
exceeds a threshold. A tracking procedure also based 
on the OpenCV library is used to assemble face 
appearances of the same person in subsequent frames 
of a shot using the optical flow computation of 
Bouguet [2], which is an extension of the Lukas-
Kanade [18] algorithm. The extension processes image 
pyramids to enable the estimation of fast movements as 
well. For each shot, the number of face sequences, the 
number of detected faces, front faces respectively 
profile faces, the average frontal respectively profile 
shot size, the mean number of detection hits for frontal 
faces respectively profile faces and the percentage 
length of a shot, where a person appears, are 
considered as mid-level features. 
 
3.1.1 Audio Features 
 
For analyzing audio data, we extracted several low-
level audio features, which are fed into a content-based 
audio classification and segmentation system based on 
the approach of Lu et al. [17]. The following low-level 
features are extracted from non-overlapping 25ms 
frames [17]: 8th-order mel frequency cepstrum 
coefficients, zero crossing rate, short time energy, sub-
band energy distribution, brightness and bandwidth, 
spectrum flux, band periodicity and a measure of frame 
noisiness. 
The audio classification system produces mid-level 
features on a per-second (sub-clip) basis in the form of 
acoustic class labels and related probabilities for 
“silence”, “speech”, “pure speech”, “non-pure speech”, 
“music”, “background” and “action” sounds (an error 
label, “undefined”, may also be produced). The low-
level features are therefore aggregated per second, 
normalized and then concatenated to form one feature 
vector per sub-clip, which is processed by a 
hierarchical tree of support vector machines, if it was 
not previously classified as silence by a threshold 
based classifier. Figure 1 shows this classification tree, 
which is trained on more than 32 hours of audio 



samples including, among others, the TIMIT data for 
clean speech [16] and the NOIZEUS [10] corpus. Five-
fold cross-validation on a subset of 15000 feature 
vectors was used to find the best parameter settings for 
each two-class support vector machine with a RBF 
(radial basis function) kernel using the libSVM library 
[3]. Finalizing the classifier’s decision, short silence 
periods within speech are labeled as “pause” by a 
heuristic decision function. A second algorithm based 
on the work of Ahmadi and Spanias [1] processes 
energy, zero-crossing rate and cepstral peak low-level 
features to add “voiced” and “unvoiced” speech labels 
to the mid-level features. 
 

silence / non-silence

speech / noise
SVM 1

music / other
SVM 3

pure / non-pure speech
SVM 2

background / action
SVM 4

silence pure speech non-pure
speech music background action

 
Figure 1: Scheme of the hierarchical audio type 
classifier: A single feature vector per sub-clip 
serves as input; output is a single acoustic class 
label and its corresponding probability. 

All 11 mid-level features are then processed to 
describe the audio-content of a video shot by statistical 
values: mean, median, minimum, maximum, standard 
deviation, and skewness of the per-frame label-
probabilities are calculated. Furthermore, the 
percentage of each audio type label with respect to the 
shot length is calculated. Finally, these percentages and 
the distribution properties of the probabilities are fed 
into the further learning algorithm as the final audio 
mid-level features, resulting in a 77-dimensional 
feature vector. 
 
3.1.2 Context Features 
 
Besides the previously mentioned features, context 
information between high-level concepts were 
considered. Based on the TRECVID 2005 training set 
101 concept models related to the Mediamill 
annotations [19] were built using support vector 
machines, which is described in more detail in the next 
section. The probability output of the support vector 

machines form a 101-dimensional model vector, which 
describes the context information of a shot.  
 
3.2 High-Level Feature Detection System 
 
The goal of the proposed system is to learn models for 
the high-level semantic features based on the extracted 
audiovisual low-level and mid-level features described 
in section 3.1. In our baseline system, we concatenated 
the multi-modal low-level and mid-level features in an 
early fusion scheme and fed them directly into a 
support vector machine with a radial basis function 
kernel using the implementation provided by the 
libSVM library [3]. 
We also extended our system to consider context 
information. Here, the model vectors described in 
section 3.1.2 serve as input for a further support vector 
machine, which learns the context between the 101 
Mediamill concepts for each high-level feature. 
 
3.2.1 Distinguishing Color and Gray-Scale Images 
 
Several of the 36 high-level features like “sky”, 
“vegetation”, “flag-us”, “snow”, “road” or 
“waterscape” seem to be strongly related to color 
features. We randomly selected 2099 color and 1210 
gray-scale images (key frames) from the sound and 
vision training set. The colors of an image are 
transformed to the HSV (hue, saturation, value) color 
space and the both image subbands hue and saturation 
are described by the statistical values mean, standard 
deviation, median and skewness. Together with two 
20-dimensional histograms based on the hue 
respectively saturation subband of the image we 
formed a 48-dimensional feature vector (the brightness 
values are ignored). A support vector machine with a 
RBF kernel provided by [3] is used to build a model 
based on these feature vectors, which is able to 
distinguish between color and grey-scale images. This 
subdivision of the sound and vision training set is 
exploited to build separate high-level feature models 
for each modality. The decision, which model should 
be applied to a shot in the sound and vision test set, is 
based on the prediction of the previously described 
support vector machine. 
 
3.2.2 Transductive Learning 
 
The appearance of certain high-level features is 
strongly related to contextual information. For 
example, the appearance of semantic concepts, such as 
e.g. entertainment or news anchors, is determined by 
the used editing layout which usually is typical for a 
certain broadcasting station. The idea of our 



transductive learning approach is to adapt the 
appearance models of the semantic concepts based on 
broadcast news videos to the Sound and Vision video 
data and thus avoiding the time consuming task of 
creating a training set for the new kind of video data. 
In a transductive setting, in addition to the training 
samples, the unlabeled test samples are considered in 
the learning process as well. We applied transductive 
learning to the set of context features, realized by 
transductive support vector machines [11]. 
 
3.3 Experimental Results 
 
In this section, we present our results for the high-level 
feature detection task. We submitted three runs for 
each of the related categories “a” and “A” plus an 
additionally evaluated category “A” run. The focus 
was on the question how well a trained system 
generalizes from the TRECVID 2005 news data to this 
year’s Sound and Vision data. First, we compared our 
baseline system by using either the TRECVID 2005 
development set or the TRECVID 2007 development 
set for system training. Even though the system trained 
on the Sound and Vision data yields a clearly better 
result in terms of mean inferred average precision 
(7.03% compared to 4.94%), several of the high-level 
feature models seem to generalize very well to the 
Sound and Vision video data, e.g. “car”, “charts”, 
“airplane”, “military” and “sports” (see Figure 3).  
In a second experiment (a_ma5), the generalization 
capabilities of context features were investigated. Due 
to lack of time, we limited the training samples to the 
training set of the Mediamill challenge, which is a 
subset of the TRECVID 2005 training set. Overall, this 
system showed a slight performance decrease 
compared to the baseline system (4.94% to 4.55% 
mean inferred average precision). However, the high-
level features “sports” and “people marching” 
benefited from using context vectors.  
In the third experiment, we applied transductive 
learning to the set of context features, realized by 
transductive support vector machines. The idea was to 
improve the detection performance of those high-level 
features whose appearance is strongly related to the 
Sound and Vision video data. Overall, no performance 
gain could be obtained by transductive learning in 
terms of mean inferred average precision compared to 
the reference system (3.31% vs. 4.55%). In 
comparison to the reference system (a_ma5), the 
retrieval results could be improved slightly for only a 
few high-level features, but these improvements might 
not be significant. Despite that, this approach achieved 
our best results for the high-level features “flag-us” 
and “airplane”.  

We conducted two further experiments related to 
category “A” investigating the impact of distinguishing 
color and gray-scale images and context features. 
Classifying gray-scale images was more difficult than 
expected, because several of the video shots show old 
discolored gray-scale images or videos (many of the 
keyframes indicate a red cast). Furthermore, dark 
colors in gray-scale images do not necessarily have 
small hue and saturation values. Finally, the distinction 
between color and gray-scale images and consequently 
learning different models for each modality ended up 
with similar performances for nearly all high-level 
features in comparison to the reference systems, 
showing slight reductions in terms of mean inferred 
average precision (7.03% vs. 6.69% and 4.08% vs. 
3.87%).  

 
Figure 2: Overview of the results of our six runs in 
terms of mean inferred average precision. 

Furthermore, we investigated the impact of context 
features based on the 101 concept models related to the 
Mediamill annotations. The performance of these 
context systems (A_ma4 and A_ma7) suffers from 
heavy performance losses (from 7.03%/6.69% to 
4.08%/3.87% mean inferred average precision). 
Interestingly, the use of context features concerning 
category “a” shows only a slight decrease (from 4.94% 
to 4.55% mean inferred average precision) and thus 
outperforms the category “A” systems. Further 
investigations are necessary to find the reasons for this 
performance loss.  
Overall, the best result in terms of mean inferred 
average precision was achieved by our baseline system 
using the sound and vision training set (7.03% mean 
inferred average precision).  
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Figure 3: Comparison of our submitted runs plus an additional one concerning all evaluated high-level 
features. The mean values refer to the average of all our runs related to the categories “a” and “A”. 

 

4. Conclusions  
 
In this paper, we have presented our experiments for 
two tasks at TRECVID 2007: shot boundary detection 
and the high-level feature detection task.  
Our shot boundary detection system of last year was 
extended in several ways. First, we have incorporated 
an automatic metric selection for cut detection based 
on the evaluation of a clustering result. Second, we 
have tested the possibility to improve cut detection 
results via self-supervised learning. Third, the 
unsupervised approach for gradual transition detection 
has been supplemented with a false alarm removal 
using a state-of-the art camera motion estimation 
approach. 
Overall, shot boundary detection worked very well: 
Regarding all transitions, our best run achieved a f1-
measure of 0.92. The cut detection performance was 
very good, achieving a f1-measure of about 0.94 in 
nearly all runs. The best run based on self-supervised 
learning obtained a f1-measure of 0.946. The 
incorporation of camera motion estimation improved 
the results for gradual transition detection significantly 
(f1 of best run: 0.67). In case when horizontal camera 
motion was employed, precision clearly increased by 
nearly 30%, while recall decreased only very slightly 
by 1.6% (both compared to our baseline system).  
The experiments for high-level feature detection 
revealed that the generalization capabilities of systems 
trained on broadcast news videos to the sound and 

vision data are limited. Systems trained on the Sound 
and Vision data except the context system achieved 
clearly better results in terms of mean inferred average 
precision. Our best system achieved a mean inferred 
average precision of 7.03%. However, several high-
level feature models generalize very well to the Sound 
and Vision video data (e.g. “car”, “charts”, “airplane”, 
“military” and “sports”). 
The experiments also showed that the impact of 
distinguishing between color and gray-scale images is 
negligible, it had nearly no impact on the detection 
results of single high-level features. It is planned to 
further investigate the influence of the gray-scale 
image detection performance on the final result. 
In total, we achieved the second best result for the 
high-level features “meeting” and “people marching”, 
probably due to our face processing approach. For 10 
out of the 20 evaluated high-level features, we were 
among the top seven teams.  
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