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Let (X, g) be a compact Kahler manifold of complex
dimension n and £ a torsion-free coherent sheaf on X. S
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Let (X, g) be a compact Kahler manifold of complex
dimension n and £ a torsion-free coherent sheaf on X. S

Definition

» The g-degree of £ is defined as

(c1(E) U lwg" H) N [X]
c1(€)

= Awn L
/. g

deg,(€)
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Let (X, g) be a compact Kahler manifold of complex
dimension n and £ a torsion-free coherent sheaf on X. S

Definition

» The g-degree of £ is defined as

deg,(€) = (c1(&) U [wy]" ") N [X]
_ / e1(€) Awp L.
X

» If rank(€) > 0, the g-slope of £ is defined as

deg, (&
Hg(€) = rariiigi'
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Definition Stability
» & is called g-semistable if
Mg(]:) < #9(5)

holds for every coherent subsheaf F of £ with
0 < rank(F).
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Stability

Definition

» £ is called g-semistable if

1g(F) < pg(€)
holds for every coherent subsheaf F of £ with
0 < rank(F).
» If, moreover,
tig(F) < pg(€)

holds for every coherent subsheaf F of £ with
0 < rank(F) < rank(&), then £ is called g-stable.



Stability

Definition
& is called g-polystable if £ is g-semistable and &
decomposes as a direct sum

E=E1D®-DE,

of g-stable coherent subsheaves &y, ..., &, of the same
g-slope 11g(&;) = pg(E).
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Definition o
& is called g-polystable if £ is g-semistable and &
decomposes as a direct sum

E=E1D®-DE,

of g-stable coherent subsheaves &y, ..., &, of the same
g-slope 11g(&;) = pg(E).

Remark

These notions are also defined for a holomorphic vector
bundle E:
Consider £ = Ox (F).



Stability

Lemma
Every g-stable holomorphic vector bundle E is simple, i. e.

End(E) = C - idg .
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Let F be a holomorphic vector bundle on X. Hermitian-Einstein metrics

Definition
A Hermitian metric h in E is called a
g-Hermitian-Einstein metric if

iAth = Aidg with A € R,

where
» iA, = contraction with wy,

» F}, = Chern curvature form of (E, h).
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Rema rk Hermitian-Einstein metrics
From the Einstein equation

iNgFp, = Midpg,

it follows by taking the trace and integrating, that we

must have
2y (E)

(n —1)!volg(X)"

A:
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Let E be a holomorphic vector bundle. K-H correspondence

Theorem (S. Kobayashi '82, Liibke '83)

If E admits a g-Hermitian-Einstein metric, then E is
g-polystable.
In particular, if E is irreducible, then it is g-stable.
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Let E be a holomorphic vector bundle. K-H correspondence

Theorem (S. Kobayashi '82, Liibke '83)

If E admits a g-Hermitian-Einstein metric, then E is
g-polystable.
In particular, if E is irreducible, then it is g-stable.

Theorem (Donaldson '83-'87, Uhlenbeck/Yau '86)

If E is g-stable, then E admits a unique (up to a
constant multiple) g-Hermitian-Einstein metric.



Kobayashi-Hitchin correspondence

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi '82, Liibke '83)

If E admits a g-Hermitian-Einstein metric, then E is
g-polystable.
In particular, if E is irreducible, then it is g-stable.

Theorem (Donaldson '83-'87, Uhlenbeck/Yau '86)

If E is g-stable, then E admits a unique (up to a
constant multiple) g-Hermitian-Einstein metric.
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Definition

Poincaré-type metric
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Proof.

» Start with a fixed “background metric” hg.
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Proof.

» Start with a fixed “background metric” hg.

K-H correspondence

» Construct a family (h¢) of Hermitian metrics solving
the evolution equation

hithy = —(iNgFp, — Nidp)

for all finite values of the time parameter ¢, where A
is as before.



Kobayashi-Hitchin correspondence emiton-Einkein

metrics

Matthias Stemmler

Proof.

K-H correspondence

» Start with a fixed “background metric” hg.

» Construct a family (h¢) of Hermitian metrics solving
the evolution equation

hithy = —(iNgFp, — Nidp)

for all finite values of the time parameter ¢, where A
is as before.

» In case of convergence as t — oc:
The limit is a Hermitian-Einstein metric.
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Proof.

» In case of divergence:

K-H correspondence

» Construct a “destabilizing subsheaf” contradicting
the stability hypothesis, i. e. a coherent subsheaf F
of £ = Ox(FE) with 0 < rank(F) < rank(€) and

,Ug(]:) 2 Ng(g)-
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Proof.

» In case of divergence:

K-H correspondence

» Construct a “destabilizing subsheaf” contradicting
the stability hypothesis, i. e. a coherent subsheaf F
of £ = Ox(FE) with 0 < rank(F) < rank(€) and

,Ug(]:) 2 Ng(g)-

» This is done by first constructing a weakly
holomorphic subbundle of E, i. e. a section
7 € L?(End(E)) satisfying

m=n"=n and (idg—7)odr =0,

and applying a regularity theorem of Uhlenbeck-Yau.
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Framed manifolds

Definition
» A framed manifold or logarithmic pair is a pair
(X, D) consisting of
» a compact complex manifold X and
» a smooth divisor D in X.
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Definition
» A framed manifold or logarithmic pair is a pair
(X, D) consisting of Defiition
» a compact complex manifold X and
» a smooth divisor D in X.
» A framed manifold (X, D) is called canonically
polarized if Kx ® [D] is ample.



Framed manifolds

Definition
» A framed manifold or logarithmic pair is a pair
(X, D) consisting of
» a compact complex manifold X and
» a smooth divisor D in X.

» A framed manifold (X, D) is called canonically
polarized if Kx ® [D] is ample.

Example

(P™, V') is canonically polarized if V' C P™ is a smooth
hypersurface of degree > n + 2.
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Definition
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Classical result: Definition

Theorem (Yau '78)

If Kx is ample, there exists a unique (up to a constant
multiple) Kahler-Einstein metric on X with negative Ricci
curvature.
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In the framed situation:

Theorem (R. Kobayashi '84)

If (X, D) is canonically polarized, there exists a unique
(up to a constant multiple) complete Kahler-Einstein
metric on X' := X \ D with negative Ricci curvature.

Poincaré-type metric
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In the framed situation:

Theorem (R. Kobayashi '84)

If (X, D) is canonically polarized, there exists a unique
(up to a constant multiple) complete Kahler-Einstein
metric on X' := X \ D with negative Ricci curvature. Foincaré-type metric

Remark

» We call this metric the Poincaré-type metric on X'.
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In the framed situation:

Theorem (R. Kobayashi '84)

If (X, D) is canonically polarized, there exists a unique
(up to a constant multiple) complete Kahler-Einstein
metric on X' := X \ D with negative Ricci curvature. Foincaré-type metric

Remark

» We call this metric the Poincaré-type metric on X'.

» Choose local coordinates (o, 22, ..., 2") such that D
is given by 0 = 0.
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In the framed situation:

Theorem (R. Kobayashi '84)

If (X, D) is canonically polarized, there exists a unique
(up to a constant multiple) complete Kahler-Einstein
metric on X' := X \ D with negative Ricci curvature. Foincaré-type metric

Remark

» We call this metric the Poincaré-type metric on X'.

» Choose local coordinates (o, 22, ..., 2") such that D
is given by 0 = 0. Then in these coordinates, we
have

do N do
in ~ 21 + dzF A dzF .
Poin (ramog (1/]o]?) Z o )



Bounded geometry

(Cheng-Yau '80, R. Kobayashi '84, Tian-Yau '87, ...)
Definition
A local quasi-coordinate map is a holomorphic map

V— X', V cC"open

which is of maximal rank everywhere. In this case, V'
together with the Euclidean coordinates of C" is called a
local quasi-coordinate system.
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Poincaré-type metric
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Theorem

X' together with the Poincaré-type metric is of bounded
geometry, i. e. there is an (infinite) family

V= {(V;vl,...,o")} of local quasi-coordinate systems
such that:

Poincaré-type metric
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Theorem

X' together with the Poincaré-type metric is of bounded
geometry, i. e. there is an (infinite) family

V= {(V;vl,...,o")} of local quasi-coordinate systems
such that:

Poincaré-type metric

» X' is covered by the images of the V in V.
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Theorem

X' together with the Poincaré-type metric is of bounded
geometry, i. e. there is an (infinite) family

V= {(V;vl,...,o")} of local quasi-coordinate systems
such that:

Poincaré-type metric

» X' is covered by the images of the V in V.

» There is an open neighbourhood U of D such that
X \ U is covered by the images of finitely many V
which are coordinate systems in the ordinary sense.
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Theorem

X' together with the Poincaré-type metric is of bounded
geometry, i. e. there is an (infinite) family

V= {(V;vl,...,o")} of local quasi-coordinate systems
such that:

Poincaré-type metric

» X' is covered by the images of the V in V.

» There is an open neighbourhood U of D such that
X \ U is covered by the images of finitely many V
which are coordinate systems in the ordinary sense.

» Every V contains an open ball of radius %
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Theorem
X' together with the Poincaré-type metric is of bounded
geometry, i. e. there is an (infinite) family

V= {(V;vl,...,o")} of local quasi-coordinate systems
such that:

Poincaré-type metric

» X' is covered by the images of the V in V.

» There is an open neighbourhood U of D such that
X \ U is covered by the images of finitely many V
which are coordinate systems in the ordinary sense.

» Every V contains an open ball of radius %

» The coefficients of the Poincaré-type metric and

their derivatives in quasi-coordinates are uniformly
bounded.



Construction of quasi-coordinates

Choose local coordinates
(A™ 2. 2" onU C X

such that
DNU = {z' =0}.
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Choose local coordinates
(A" 2. .2 onU C X

such that

Poincaré-type metric

DNU = {z' =0}.

Then the quasi-coordinates are
(Br(0) x A"~ Livl .. v™) with 1 < R < 1 such that

1 1
—a w 1
T exp < + ) ,

1 —aw?’ wl —1

and

v =w'=2" for2<i<mn,

where @ varies over real numbers in A close to 1.
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Theorem (Schumacher '98)

There exists 0 < a < 1 such that for all k € {0,1,...}
and 3 € (0,1), the volume form of the Poincaré-type
metric is of the form Poincaré-type metric

20 <1 N v >
o] |2 1og?(1/||o|[?) log®(1/[|o|[?) )

where
» ) is a smooth volume form on X,

» o is a canonical section of [D],

| is a norm in [D],
> v lies in the Hélder space of C*P functions in
quasi-coordinates.
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Observation:

Kp=(Kx®[D])|p isample,
Poincaré-type metric
so there is a unique (up to a constant multiple)
Kahler-Einstein metric on D.
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Observation:

Kp=(Kx®[D])|p isample,

so there is a unique (up to a constant multiple)
Kahler-Einstein metric on D.

Theorem (Schumacher '98)

Wpoin, When restricted to
Dy, = {0 =00},

converges to wp locally uniformly as oy — 0.
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Choose local coordinates (o, 22,...,2") near a point
of D. Let

> g, etc. be the coefficients of wpei, and

Poincaré-type metric

> g9 etc. be the entries of the inverse matrix.
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Choose local coordinates (o, 22,...,2") near a point
of D. Let
> g, etc. be the coefficients of wpei, and

Poincaré-type metric

> g9 etc. be the entries of the inverse matrix.
Theorem (Schumacher '02)

> 77 ~ o] log?(1/|o]?),

> 9°,9'7 = O(lo|log! ~*(1/|o]*)), k1 =2,...,n,

> g’;kw 1,k=2,...,n and

» ¢* -0asoc—0,k1=2,...,n k#L
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Let

» (X, D) be a canonically polarized framed manifold
and

» FE a holomorphic vector bundle on X.

Problem
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Let

» (X, D) be a canonically polarized framed manifold
and

» FE a holomorphic vector bundle on X.

Questions -

1. How can we define a notion of “framed stability”
of E7?
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Let
» (X, D) be a canonically polarized framed manifold
and
» FE a holomorphic vector bundle on X.

Questions Problem

1. How can we define a notion of “framed stability”
of E?

2. What should a “framed Hermitian-Einstein metric”
in £ be?
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Let
» (X, D) be a canonically polarized framed manifold

and
» FE a holomorphic vector bundle on X.

Questions Problem

1. How can we define a notion of “framed stability”
of E?

2. What should a “framed Hermitian-Einstein metric”
in £ be?

3. Do we obtain existence and uniqueness of framed
Hermitian-Einstein metrics in the case of framed
stability?
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Let
» (X, D) be a canonically polarized framed manifold

and
» FE a holomorphic vector bundle on X.

Questions -

1. How can we define a notion of “framed stability”
of E?

2. What should a “framed Hermitian-Einstein metric”
in £ be?

3. Do we obtain existence and uniqueness of framed
Hermitian-Einstein metrics in the case of framed
stability?



HE Framed stability and

Fra med Sta bl | Ity Hermitian-Einstein
metrics

Two notions of degree for a torsion-free coherent sheaf &: Mitifes Sl

» On X: The degree with respect to the polarization
KX X [D]

degey(p)(€) = (c1(€) Uer(Kx @ [D)" ) N [X]

= / (&) N wn_l,
X Framed stability
T

where w = 5--curvature form of a positive Hermitian
metric in Kx ® [D].
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Two notions of degree for a torsion-free coherent sheaf &: MBS SIS
» On X: The degree with respect to the polarization
KX X [D]

degey(p)(€) = (c1(€) Uer(Kx @ [D)" ) N [X]

= / (&) N wn_l,
X Framed stability
L

where w = 5--curvature form of a positive Hermitian
metric in Kx ® [D].

» On X’: The degree with respect to the
Poincaré-type metric:

degX/(é’)—/ (&) Awpsd

!/
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Theorem (S. '09)

For every torsion-free coherent sheaf £ on X, the number
deg /(&) is well-defined and satisfies Framed stabilty

degg o] (€) = degx/(£).
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Use the results on the asymptotics of the Poincaré-type
metric. More precisely:

Framed stability
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Use the results on the asymptotics of the Poincaré-type
metric. More precisely:

» For convenience only n = 2.

Framed stability



HE Framed stability and

Fra med Sta bl | Ity Hermitian-Einstein
metrics

Proof‘- Matthias Stemmler

Use the results on the asymptotics of the Poincaré-type
metric. More precisely:

» For convenience only n = 2.

» Exhaustion

X'=JX. with X. = {z € X :||o(x)|| > &}.
e>0



Framed stability

Proof.
Use the results on the asymptotics of the Poincaré-type
metric. More precisely:

» For convenience only n = 2.

» Exhaustion

X'=JX. with X. = {z € X :||o(x)|| > &}.

e>0

» We have

degk  g[p)(€) = lim . c1(é) Nw,

deg . (£) = lim /X c1(E) A wpan.

Framed stability and
Hermitian-Einstein
metrics

Matthias Stemmler

Framed stability
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» Use asymptotic results to compare w and wpgin-
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Proof.
» Use asymptotic results to compare w and wpgin-
» We obtain
degx/(£) = deg op)(€)

-2 lif%/ c1(€) A 90 log log(l/HaHZ) Framed stabiity
e—0 Jx,

+ ¢ lim
E—

c1(&) A 90 log (1 +
0 X,

bg‘“(l/llo\l?))
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Proof.
» Use asymptotic results to compare w and wpgin-
» We obtain

deg /(&) = degr gp)(€)
-2 lif%/ c1(€) A 90 log log(l/HaHQ) Framed stabiity
e—0 Jx,

+ ¢ lim
E—

c1(&) A 90 log (1 +
0Jx.

10g“(1/!|0\|2))

» Show the vanishing of the integrals for £ — 0 using

» Stokes' theorem and
» that v is C*# with k > 2 in quasi-coordinates.
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Let £ be a torsion-free coherent sheaf on X.

Definition
We call

Framed stability
deg(x p) (&) = degr o] (€)
Th.
= degX/ (8)

the framed degree of £.
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Stability

» If rank(€) > 0, we define the framed slope of £ as EEL

K-H correspondence

deg(x,p)(€) S
IU’(X,D) (8) = W Poincaré-type metric

Problem
Framed stability
Framed H-E metrics

Relationship
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Definition

» If rank(€) > 0, we define the framed slope of £ as

deg(x,p)(€)
,U(X,D)(g) = W'

» We say that £ is stable in the framed sense if Framed stabilty

x,0)(F) < px,p)(€)

holds for every coherent subsheaf F of £ with
0 < rank(F) < rank(&).
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Definition

» If rank(€) > 0, we define the framed slope of £ as

deg(x p)(€)
M(X,D)(g) = W'

» We say that £ is stable in the framed sense if Framed stability

x,0)(F) < px,p)(€)

holds for every coherent subsheaf F of £ with
0 < rank(F) < rank(&).

Remark
Note that we only consider subsheaves F over X rather
than X'
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Corollary

Every holomorphic vector bundle E which is stable in the
framed sense is simple, i. e.

Framed stability

End(E) = C-idg.
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Corollary
Every holomorphic vector bundle E which is stable in the
framed sense is simple, i. e.

Framed stability

End(E) = C-idg.

Remark
The simplicity seems to hold only over X and not
over X'.
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Consider Hermitian-Einstein metrics in E over X’ with
respect to the Poincaré-type metric.

Framed H-E metrics



Framed Hermitian-Einstein metrics FiA

metrics

Matthias Stemmler

Consider Hermitian-Einstein metrics in E over X’ with
respect to the Poincaré-type metric.
Difficulty

For a uniqueness statement we need the simplicity of F ] FHE (vt
over X'/, which is not given in the case of framed stability.
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Consider Hermitian-Einstein metrics in E over X’ with
respect to the Poincaré-type metric.
Difficulty

For a uniqueness statement we need the simplicity of F ] FHE (vt
over X'/, which is not given in the case of framed stability.

Solution
We impose additional conditions.
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P = {h Hermitian metric in F over X’

with / |APoith’h dVpoin < OO} .
X/

Framed H-E metrics
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Framed Hermitian-Einstein metrics Hermitian-Einscin
metrics

Set Matthias Stemmler

P = {h Hermitian metric in F over X’

with / | ApoinFhu|n dVeoin < OO}-
X/

We know (Simpson '88): P decomposes into components
which are covered by charts

Framed H-E metrics

s — he®,

where s is a positive definite self-adjoint section of
End(F) over X’ with respect to h satisfying

sup [s|n + [[V"s][ 2 + || As[| 1 < 0.
X
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One of these components contains all the metrics which
extend to X. We denote this component by Py.
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One of these components contains all the metrics which
extend to X. We denote this component by Py.

Definition
By a framed Hermitian-Einstein metric in £/ we mean a
Hermitian metric h in E over X’ which satisfies

» h € Py and
» iApoinF), = Aidg over X' with A € R.

Framed H-E metrics



Uniqueness

Theorem (S. ‘09)

If E is simple and h and h are framed Hermitian-Einstein
metrics in E, we have

h=c-h

with a positive constant c.

Framed stability and
Hermitian-Einstein
metrics
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Proof.

» h, h € Py guarantees that the framed degree of £
can be computed using h or h.
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- Framed stability and
U nlq UeneSS Hermitian-Einstein

metrics

Matthias Stemmler

Proof.

» h, h € Py guarantees that the framed degree of £
can be computed using h or h.
» Therefore, we have

Framed H-E metrics

iNpoin Py, = ANidg = iApoin Fj,

2TW(X,D) (E)

ith A= .
W (TL — 1)! VOlpoin (X/)
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Proof.

» Write h = he® , join h and h by the path h; = het
and use Donaldson’s functional

//tr (iApoinFh, — Aidg)) du P°'".
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» Write h = he®, join h and h by the path h; = het
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- Framed stability and
U nlq UeneSS Hermitian-Einstein
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Proof.
» Write h = he®, join h and h by the path h; = het
and use Donaldson’s functional

t n
L(t) = / / tr (s(iApoithu—AidE))du%.
/ O .

Framed H-E metrics

» h, h € Py guarantees
> well-definedness of L(t),

> L"(t) = |0s|I2..



- Framed stability and
U nlq UeneSS Hermitian-Einstein

metrics

Matthias Stemmler

Proof.

» Write h = he® , join h and h by the path h; = het
and use Donaldson’s functional

/ / tr (s(iApoinFh, — Mdp)) du P°'“

Framed H-E metrics
» h, h € Py guarantees
> well-definedness of L(t),
> L"(t) =022

» simplicity of E over X is sufficient to conclude that
s is a multiple of idg.
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Theorem (S. '09)

If E is stable in the framed sense, there exists a unique

(up to a constant multiple) framed Hermitian-Einstein
metric in E.

Relationship
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If E is stable in the framed sense, there exists a unique
(up to a constant multiple) framed Hermitian-Einstein
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» Critical point: In the case of framed stability, one
only considers subsheaves of £ = Ox(E) over X
and not over X’
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Theorem (S. '09)

If E is stable in the framed sense, there exists a unique
(up to a constant multiple) framed Hermitian-Einstein
metric in E.

Proof.

» Carry over the arguments from the classical case. Relationship

» Critical point: In the case of framed stability, one
only considers subsheaves of £ = Ox(E) over X
and not over X’

» However: In the classical proof, the destabilizing
subsheaf is produced from an L? section of End(E).
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Therefore, it suffices to prove the following lemma.

Lemma (S. '09)
We have

L3(X,End(E), Poincaré) C L(X,End(E)).

Relationship



Existence in the case of framed stability

Therefore, it suffices to prove the following lemma.

Lemma (S. '09)
We have

L3(X,End(E), Poincaré) C L(X,End(E)).

Proof.

using the results on the asymptotics of the Poincaré-type
metric

Framed stability and
Hermitian-Einstein
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Framed stability and
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Let (X, D) be a canonically polarized framed manifold.
Observation

» For large m, (X, D) is m-framed in the sense that
the Q-divisor

KX + L_l D Outlook
m

is ample.
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Kahler-Einstein metrics g,, on X’ constructed from
an initial metric of the form
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Observation

» (Tian-Yau '87) For such m, there exist (incomplete)
Kahler-Einstein metrics g,, on X’ constructed from
an initial metric of the form

. 2Q)
100 log <m2”0'”2(1_1/m)(1 — |o"|2/m)2> )

» whereas the Poincaré-type Kahler-Einstein metric
JpPoin On X' is constructed from

_ 20
100 1 .
' Og<ua|121og2<1/ua|12>>

Outlook
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Question

Can the framed situation be seen as a “limit” of the
m-framed situation as m — oo?

Problems

» Kobayashi-Hitchin correspondence in the m-framed

Outlook
case
» Convergence of ¢, tO gpoin

» Convergence of the corresponding Hermitian-Einstein
metrics



Thank you.

(o> Fr o«
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