Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds

Matthias Stemmler

School of Mathematics Tata Institute of Fundamental Research, Mumbai

Colloquium at the Institute of Mathematical Sciences Chennai, March 24, 2011

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Contents

Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

Outlook

Framed stability and Hermitian-Einstein metrics

${\sf Matthias}\ {\sf Stemmler}$

Introduction

Stability

Hermitian-Einstein metrics

H correspondence

Framed manifold

Definition
Poincaré-type metric

Adapting the notions

roblem ramed stability

Relationship

Contents

Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

Outlook

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

K-H correspondence

-H correspondence

D.C. iii

Poincaré-type metri

Adapting the notions

Problem

Framed stability
Framed H-E metrics

Let (X, g) be a compact Kähler manifold of complex dimension n and \mathcal{E} a torsion-free coherent sheaf on X.

▶ The q-degree of \mathcal{E} is defined as

$$\deg_g(\mathcal{E}) = (c_1(\mathcal{E}) \cup [\omega_g]^{n-1}) \cap [X]$$
$$= \int_X c_1(\mathcal{E}) \wedge \omega_g^{n-1}.$$

▶ If $rank(\mathcal{E}) > 0$, the *g*-slope of \mathcal{E} is defined as

$$\mu_g(\mathcal{E}) = \frac{\deg_g(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Stability

Let (X, g) be a compact Kähler manifold of complex dimension n and \mathcal{E} a torsion-free coherent sheaf on X.

Definition

▶ The q-degree of \mathcal{E} is defined as

$$\deg_g(\mathcal{E}) = (c_1(\mathcal{E}) \cup [\omega_g]^{n-1}) \cap [X]$$
$$= \int_X c_1(\mathcal{E}) \wedge \omega_g^{n-1}.$$

▶ If $rank(\mathcal{E}) > 0$, the *g*-slope of \mathcal{E} is defined as

$$\mu_g(\mathcal{E}) = \frac{\deg_g(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Stability

Let (X,g) be a compact Kähler manifold of complex dimension n and \mathcal{E} a torsion-free coherent sheaf on X.

Definition

▶ The g-degree of $\mathcal E$ is defined as

$$\deg_g(\mathcal{E}) = (c_1(\mathcal{E}) \cup [\omega_g]^{n-1}) \cap [X]$$
$$= \int_X c_1(\mathcal{E}) \wedge \omega_g^{n-1}.$$

▶ If $rank(\mathcal{E}) > 0$, the *g*-slope of \mathcal{E} is defined as

$$\mu_g(\mathcal{E}) = \frac{\deg_g(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

ntroduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Problem Framed stability

Framed H-E met Relationship

Stability

Definition

 \triangleright \mathcal{E} is called *g*-semistable if

$$\mu_g(\mathcal{F}) \leqslant \mu_g(\mathcal{E})$$

holds for every coherent subsheaf \mathcal{F} of \mathcal{E} with $0 < \operatorname{rank}(\mathcal{F})$.

If, moreover,

$$\mu_g(\mathcal{F}) < \mu_g(\mathcal{E})$$

holds for every coherent subsheaf \mathcal{F} of \mathcal{E} with $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$, then \mathcal{E} is called g-stable.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

-H correspondence

Framed m

Poincaré-type metric

Valanatinin alah mestirini

Problem
Framed stability
Framed H-E metrics

Definition

 $ightharpoonup \mathcal{E}$ is called g-semistable if

$$\mu_g(\mathcal{F}) \leqslant \mu_g(\mathcal{E})$$

holds for every coherent subsheaf \mathcal{F} of \mathcal{E} with $0 < \operatorname{rank}(\mathcal{F})$.

▶ If, moreover,

$$\mu_g(\mathcal{F}) < \mu_g(\mathcal{E})$$

holds for every coherent subsheaf \mathcal{F} of \mathcal{E} with $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$, then \mathcal{E} is called g-stable.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

-H correspondence

Framed manifolds

Definition

Poincaré-type metric

Problem

Framed stability
Framed H-E metrics
Relationship

K-H correspondence

Framed manifolds

Definition

Poincaré tuno motrio

Adapting the notions

Problem
Framed stability
Framed H-E metrics

Outlook

Definition

 ${\mathcal E}$ is called g-polystable if ${\mathcal E}$ is g-semistable and ${\mathcal E}$ decomposes as a direct sum

$$\mathcal{E} = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_m$$

of g-stable coherent subsheaves $\mathcal{E}_1,\ldots,\mathcal{E}_m$ of the same g-slope $\mu_g(\mathcal{E}_i)=\mu_g(\mathcal{E}).$

Remark

These notions are also defined for a holomorphic vector bundle E:

Consider $\mathcal{E} = \mathcal{O}_X(E)$.

Stability

Definition

 \mathcal{E} is called g-polystable if \mathcal{E} is g-semistable and \mathcal{E} decomposes as a direct sum

$$\mathcal{E} = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_m$$

of q-stable coherent subsheaves $\mathcal{E}_1, \ldots, \mathcal{E}_m$ of the same g-slope $\mu_q(\mathcal{E}_i) = \mu_q(\mathcal{E})$.

Remark

These notions are also defined for a holomorphic vector bundle E:

Consider $\mathcal{E} = \mathcal{O}_X(E)$.

Stability

Lemma

Every g-stable holomorphic vector bundle E is simple, i. e.

$$\operatorname{End}(E) = \mathbb{C} \cdot \operatorname{id}_E$$
.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Definition

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

Hermitian-Einstein metrics

Let E be a holomorphic vector bundle on X.

Definition

A Hermitian metric h in E is called a q-Hermitian-Einstein metric if

$$i\Lambda_g F_h = \lambda \operatorname{id}_E \quad \text{with } \lambda \in \mathbb{R},$$

where

- $i\Lambda_q = \text{contraction with } \omega_q$,
- $ightharpoonup F_h = \text{Chern curvature form of } (E, h).$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Hermitian-Finstein metrics

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

ntroduction Stability

Hermitian-Einstein metrics

K-H correspondence

Definition

Poincaré-type metri

Adapting the notions

Problem Framed stability Framed H-F metrics

Relationship

Outlook

Remark

From the Einstein equation

$$i\Lambda_q F_h = \lambda \operatorname{id}_E,$$

it follows by taking the trace and integrating, that we must have

$$\lambda = \frac{2\pi\mu_g(E)}{(n-1)!\operatorname{vol}_g(X)}.$$

Kobayashi-Hitchin correspondence

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi '82, Lübke '83)

If E admits a g-Hermitian-Einstein metric, then E is g-polystable.

In particular, if E is irreducible, then it is g-stable.

Theorem (Donaldson '83–'87, Uhlenbeck/Yau '86) If E is g-stable, then E admits a unique (up to a constant multiple) g-Hermitian-Einstein metric.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

K-H correspondence

N-H correspondence

Framed n

Definition

democratic conservations

Problem Framed stability Framed H-E metrics

Relationship

Kobayashi-Hitchin correspondence

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi '82, Lübke '83)

If E admits a g-Hermitian-Einstein metric, then E is g-polystable.

In particular, if E is irreducible, then it is g-stable.

Theorem (Donaldson '83–'87, Uhlenbeck/Yau '86)

If E is g-stable, then E admits a unique (up to a constant multiple) g-Hermitian-Einstein metric.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics K-H correspondence

ramed manifolds

Definition

Poincaré-type metric

Problem
Framed stability

Relationship

Kobayashi-Hitchin correspondence

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi '82, Lübke '83)

If E admits a g-Hermitian-Einstein metric, then E is g-polystable.

In particular, if E is irreducible, then it is g-stable.

Theorem (Donaldson '83–'87, Uhlenbeck/Yau '86) If E is g-stable, then E admits a unique (up to a constant multiple) g-Hermitian-Einstein metric.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

K-H correspondence

Definition

Poincaré-type metric

dapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

K-H correspondence

ramed manifolds

Definition

Poincaré-type metric

Problem
Framed stability

Framed H-E metric Relationship

Outlook

Proof.

- ▶ Start with a fixed "background metric" h_0 .
- ▶ Construct a family (h_t) of Hermitian metrics solving the evolution equation

$$h_t^{-1}\dot{h}_t = -(i\Lambda_g F_{h_t} - \lambda \operatorname{id}_E)$$

for all finite values of the time parameter t, where λ is as before.

▶ In case of convergence as $t \to \infty$: The limit is a Hermitian-Einstein metric.

Proof.

- Start with a fixed "background metric" h₀.
- \triangleright Construct a family (h_t) of Hermitian metrics solving the evolution equation

$$h_t^{-1}\dot{h}_t = -(i\Lambda_g F_{h_t} - \lambda \operatorname{id}_E)$$

for all finite values of the time parameter t, where λ is as before.

▶ In case of convergence as $t \to \infty$:

- Start with a fixed "background metric" h₀.
- \triangleright Construct a family (h_t) of Hermitian metrics solving the evolution equation

$$h_t^{-1}\dot{h}_t = -(i\Lambda_g F_{h_t} - \lambda \operatorname{id}_E)$$

for all finite values of the time parameter t, where λ is as before.

▶ In case of convergence as $t \to \infty$: The limit is a Hermitian-Finstein metric

K-H correspondence

- ▶ In case of divergence:
 - Construct a "destabilizing subsheaf" contradicting the stability hypothesis, i. e. a coherent subsheaf \mathcal{F} of $\mathcal{E} = \mathcal{O}_X(E)$ with $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$ and

$$\mu_g(\mathcal{F}) \geqslant \mu_g(\mathcal{E}).$$

This is done by first constructing a weakly holomorphic subbundle of E, i. e. a section $\pi \in L^2_1(\operatorname{End}(E))$ satisfying

$$\pi = \pi^* = \pi^2$$
 and $(\mathrm{id}_E - \pi) \circ \bar{\partial}\pi = 0$

and applying a regularity theorem of Uhlenbeck-Yau.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

C. 1.111

Hermitian-Einstein metrics

K-H correspondence

ramed m

Poincaré-type metric

dapting the notions

roblem

Framed H-E met

Justlande

- ▶ In case of divergence:
 - Construct a "destabilizing subsheaf" contradicting the stability hypothesis, i. e. a coherent subsheaf \mathcal{F} of $\mathcal{E} = \mathcal{O}_X(E)$ with $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$ and

$$\mu_g(\mathcal{F}) \geqslant \mu_g(\mathcal{E}).$$

► This is done by first constructing a weakly holomorphic subbundle of E, i. e. a section $\pi \in L^2_1(\operatorname{End}(E))$ satisfying

$$\pi = \pi^* = \pi^2$$
 and $(\mathrm{id}_E - \pi) \circ \bar{\partial} \pi = 0$,

and applying a regularity theorem of Uhlenbeck-Yau.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

K-H correspondence

ramed manifol

Definition

dapting the notions

Problem Framed stability Framed H-E metrics

Contents

Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

Outlook

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

Framed manifolds

Definition
Poincaré-type m

Poincare-type metric

Adapting the notions

Problem

ramed stability ramed H-E metrics

)utlook

Definition

- ► A framed manifold or logarithmic pair is a pair (X, D) consisting of
 - ightharpoonup a compact complex manifold X and
 - ightharpoonup a smooth divisor D in X.
- ▶ A framed manifold (X, D) is called canonically polarized if $K_X \otimes [D]$ is ample.

Example

 (\mathbb{P}^n,V) is canonically polarized if $V\subset\mathbb{P}^n$ is a smooth hypersurface of degree $\geqslant n+2$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed m

Definition

Poincaré-type metric

Adapting the notions

roblem ramed stability

Framed H-E met Relationship

Definition

- A framed manifold or logarithmic pair is a pair (X, D) consisting of
 - ightharpoonup a compact complex manifold X and
 - a smooth divisor D in X.
- ▶ A framed manifold (X, D) is called canonically polarized if $K_X \otimes [D]$ is ample.

Example

 (\mathbb{P}^n,V) is canonically polarized if $V\subset\mathbb{P}^n$ is a smooth hypersurface of degree $\geqslant n+2$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein me

K-H correspondence

Framed m

Definition

Poincaré-type metric

Adapting the notions

Problem Framed stability

Relationship

Definition

- lacktriangle A framed manifold or logarithmic pair is a pair (X,D) consisting of
 - ightharpoonup a compact complex manifold X and
 - ▶ a smooth divisor *D* in *X*.
- ▶ A framed manifold (X, D) is called canonically polarized if $K_X \otimes [D]$ is ample.

Example

 (\mathbb{P}^n,V) is canonically polarized if $V\subset \mathbb{P}^n$ is a smooth hypersurface of degree $\geqslant n+2.$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Framed stability Framed H-E met

Classical result:

Theorem (Yau '78)

If K_X is ample, there exists a unique (up to a constant multiple) Kähler-Einstein metric on X with negative Ricci curvature.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Diability

K-H correspondence

Framed n

Definition

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-E metrics

Jutlook

If (X,D) is canonically polarized, there exists a unique (up to a constant multiple) complete Kähler-Einstein metric on $X':=X\setminus D$ with negative Ricci curvature.

Remark

- lacktriangle We call this metric the Poincaré-type metric on X'.
- ▶ Choose local coordinates $(\sigma, z^2, ..., z^n)$ such that D is given by $\sigma = 0$. Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left(\frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metric

Definition

Poincaré-type metric

Adapting the notion

Problem
Framed stability
Framed H-E metrics
Relationship

If (X,D) is canonically polarized, there exists a unique (up to a constant multiple) complete Kähler-Einstein metric on $X':=X\setminus D$ with negative Ricci curvature.

Remark

- ▶ We call this metric the Poincaré-type metric on X'.
- Choose local coordinates $(\sigma, z^2, \dots, z^n)$ such that D is given by $\sigma = 0$. Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left(\frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifolds

Definition

Poincaré-type metric

Problem
Framed stability
Framed H-E metrics

If (X,D) is canonically polarized, there exists a unique (up to a constant multiple) complete Kähler-Einstein metric on $X':=X\setminus D$ with negative Ricci curvature.

Remark

- We call this metric the Poincaré-type metric on X'.
- ▶ Choose local coordinates $(\sigma, z^2, ..., z^n)$ such that D is given by $\sigma = 0$. Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left(\frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifolds

Poincaré-type metric

A dentine the netion

Problem
Framed stability
Framed H-E metrics

If (X,D) is canonically polarized, there exists a unique (up to a constant multiple) complete Kähler-Einstein metric on $X':=X\setminus D$ with negative Ricci curvature.

Remark

- ▶ We call this metric the Poincaré-type metric on X'.
- ▶ Choose local coordinates $(\sigma, z^2, \dots, z^n)$ such that D is given by $\sigma = 0$. Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left(\frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction
Stability
Hermitian-Einstein metrics

Perinition

Poincaré-type metric

Adapting the notion
Problem
Framed stability
Framed H-E metrics

(Cheng-Yau '80, R. Kobayashi '84, Tian-Yau '87, ...)

Definition

A local quasi-coordinate map is a holomorphic map

$$V \longrightarrow X', \quad V \subset \mathbb{C}^n$$
 open

which is of maximal rank everywhere. In this case, V together with the Euclidean coordinates of \mathbb{C}^n is called a local quasi-coordinate system.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Fins

-H correspondence

Definition

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics

Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$ of local quasi-coordinate systems such that:

- ightharpoonup X' is covered by the images of the V in $\mathcal V$.
- ▶ There is an open neighbourhood U of D such that $X \setminus U$ is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius $\frac{1}{2}$.
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Definition

Poincaré-type metric

Problem
Framed stability

Framed Stability
Framed H-E metric
Relationship

Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$ of local quasi-coordinate systems such that:

- ightharpoonup X' is covered by the images of the V in \mathcal{V} .
- ▶ There is an open neighbourhood U of D such that $X \setminus U$ is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius $\frac{1}{2}$.
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Definition

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family $\mathcal{V} = \{(V; v^1, \ldots, v^n)\}$ of local quasi-coordinate systems such that:

- lacksquare X' is covered by the images of the V in $\mathcal V$.
- ▶ There is an open neighbourhood U of D such that $X \setminus U$ is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius $\frac{1}{2}$.
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Stability
Hermitian Finetoin metric

Hermitian-Einstein metrics K-H correspondence

Definition

Poincaré-type metric

Adapting the notions
Problem
Framed stability

Framed H-E met Relationship

Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$ of local quasi-coordinate systems such that:

- ightharpoonup X' is covered by the images of the V in $\mathcal V$.
- ▶ There is an open neighbourhood U of D such that $X \setminus U$ is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius $\frac{1}{2}$.
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics K-H correspondence

Definition

Poincaré-type metric

Adapting the notions

Framed stability Framed H-E metr Relationship

Outlook (

Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$ of local quasi-coordinate systems such that:

- ightharpoonup X' is covered by the images of the V in \mathcal{V} .
- ▶ There is an open neighbourhood U of D such that $X \setminus U$ is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius $\frac{1}{2}$.
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Stability
Hermitian-Einstein metrics

Definition

Poincaré-type metric

Adapting the notions
Problem
Framed stability

$$(\Delta^n; z^1, \dots, z^n)$$
 on $U \subset X$

such that

$$D \cap U = \{ z^1 = 0 \}.$$

Then the quasi-coordinates are $(R_{\rm p}(0) \times \Lambda^{n-1}, n^1, n^1)$ with $\frac{1}{2} < \frac{1}{2}$

$$(B_R(0) \times \Delta^{n-1}; v^1, \dots, v^n)$$
 with $\frac{1}{2} < R < 1$ such that

$$v^{1} = \frac{w^{1} - a}{1 - aw^{1}}, \text{ where } z^{1} = \exp\left(\frac{w^{1} + 1}{w^{1} - 1}\right)$$

and

$$v^i = w^i = z^i$$
 for $2 \leqslant i \leqslant n$,

where a varies over real numbers in Δ close to 1.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Pofinition

Poincaré-type metric

Adapting the notions

Problem Framed stability Framed H-E metrics

)utlook

$$(\Delta^n;z^1,\ldots,z^n)$$
 on $U\subset X$

such that

$$D \cap U = \{ z^1 = 0 \}.$$

Then the quasi-coordinates are $(R_{-}(0) \times \Lambda^{n-1}, n^1)$ with

$$(B_R(0) imes \Delta^{n-1}; v^1, \dots, v^n)$$
 with $\frac{1}{2} < R < 1$ such that

$$v^{1} = \frac{w^{1} - a}{1 - aw^{1}}, \text{ where } z^{1} = \exp\left(\frac{w^{1} + 1}{w^{1} - 1}\right),$$

and

$$v^i = w^i = z^i$$
 for $2 \leqslant i \leqslant n$,

where a varies over real numbers in Δ close to 1.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

ramed manifolds

Poincaré-type metric

Problem
Framed stability
Framed H-E metrics

Definition Definition

Poincaré-type metric

Adapting the notions
Problem

Framed stability Framed H-E metric Relationship

Outlook

Theorem (Schumacher '98)

There exists $0 < \alpha \leqslant 1$ such that for all $k \in \{0, 1, \ldots\}$ and $\beta \in (0, 1)$, the volume form of the Poincaré-type metric is of the form

$$\frac{2\Omega}{||\sigma||^2\log^2(1/||\sigma||^2)}\left(1+\frac{\nu}{\log^\alpha(1/||\sigma||^2)}\right),$$

where

- $ightharpoonup \Omega$ is a smooth volume form on X,
- $ightharpoonup \sigma$ is a canonical section of [D], $||\cdot||$ is a norm in [D],
- $\blacktriangleright \nu$ lies in the Hölder space of $\mathcal{C}^{k,\beta}$ functions in quasi-coordinates.

Asymptotics

Observation:

$$K_D = (K_X \otimes [D])|_D$$
 is ample,

so there is a unique (up to a constant multiple) Kähler-Einstein metric on D.

Theorem (Schumacher '98) ω_{Poin} , when restricted to

$$D_{\sigma_0} := \{ \sigma = \sigma_0 \},\,$$

converges to ω_D locally uniformly as $\sigma_0 \to 0$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

-H correspondence

D-f-:-:--

Poincaré-type metric

Poincare-type metric

Problem

Framed H-E met

Dutlook

Asymptotics

Observation:

$$K_D = (K_X \otimes [D])|_D$$
 is ample,

so there is a unique (up to a constant multiple) Kähler-Einstein metric on D.

Theorem (Schumacher '98)

 ω_{Poin} , when restricted to

$$D_{\sigma_0} := \{ \sigma = \sigma_0 \},$$

converges to ω_D locally uniformly as $\sigma_0 \to 0$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability Hermitian-Fins

Hermitian-Einstein metric

ramed manifolds

Poincaré-type metric

Poincare-type metric

Problem
Framed stability

Framed H-E met Relationship

Dutlook

Poincaré-type metric

Choose local coordinates $(\sigma, z^2, \dots, z^n)$ near a point of D. Let

- $g_{\sigma\bar{\sigma}}$ etc. be the coefficients of ω_{Poin} and
- $ightharpoonup q^{\bar{\sigma}\sigma}$ etc. be the entries of the inverse matrix.

- $\triangleright a^{\bar{\sigma}\sigma} \sim |\sigma|^2 \log^2(1/|\sigma|^2).$
- $p = q^{\bar{\sigma}k}, q^{\bar{l}\sigma} = O(|\sigma| \log^{1-\alpha}(1/|\sigma|^2)), k, l = 2, \dots, n,$
- $ightharpoonup a^{\bar{k}k} \sim 1, \ k=2,\ldots,n$ and
- $ightharpoonup a^{\overline{l}k} \to 0$ as $\sigma \to 0$, $k, l = 2, \ldots, n, k \neq l$.

ramed manifolds

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics

Jutlook

Choose local coordinates $(\sigma, z^2, \dots, z^n)$ near a point of D. Let

- $g_{\sigma \bar{\sigma}}$ etc. be the coefficients of ω_{Poin} and
- $g^{ar{\sigma}\sigma}$ etc. be the entries of the inverse matrix.

Theorem (Schumacher '02)

- $ightharpoonup g^{ar{k}k} \sim 1$, $k=2,\ldots,n$ and
- $lacksquare g^{ar{l}k}
 ightarrow 0$ as $\sigma
 ightarrow 0$, $k,l=2,\ldots,n$, k
 eq l.

Contents

Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

Outlook

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

Eramod manifolds

Definition

Poincaré-type metric

Adapting the notions

Problem Framed stability

Framed H-E metr Relationship

)utlook

Let

- ► (X, D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

Questions

- How can we define a notion of "framed stability" of E?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

K-H correspondence

Framed manifoli

Poincaré-type metric

Adapting the notions

Problem

Framed stability
Framed H-E metrics
Relationship

Let

- ► (X, D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

Questions

- 1. How can we define a notion of "framed stability" of *E*?
- 2. What should a "framed Hermitian-Einstein metric" in *E* be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

K-H correspondence

Framed m

Definition

Adapting the notions

Problem

Framed stability Framed H-E metrics Relationship

Let

- lackbox(X,D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

Questions

- 1. How can we define a notion of "framed stability" of *E*?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

K-H correspondence

ramed manif

Definition

dapting the notions

Problem

Framed stability Framed H-E metric Relationship

Let

- lackbox(X,D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

Questions

- How can we define a notion of "framed stability" of E?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Diability

C-H correspondence

ramed manifolds

Definition

dapting the notions

Problem

Framed stability Framed H-E metric Relationship

Let

- lackbox(X,D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

Questions

- How can we define a notion of "framed stability" of E?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

K-H correspondence

ramed manifolds

Definition

Idanting the notions

Problem

Framed stability Framed H-E metric Relationship

▶ On X: The degree with respect to the polarization $K_X \otimes [D]$:

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = (c_1(\mathcal{E}) \cup c_1(K_X \otimes [D])^{n-1}) \cap [X]$$
$$= \int_X c_1(\mathcal{E}) \wedge \omega^{n-1},$$

where $\omega=\frac{i}{2\pi}\cdot \text{curvature}$ form of a positive Hermitian metric in $K_X\otimes [D].$

On X': The degree with respect to the Poincaré-type metric:

$$\deg_{X'}(\mathcal{E}) = \int_{X'} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}^{n-1}$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics K-H correspondence

ramed m

Definition
Poincaré-type metric

dapting the notions

Problem Framed stability

Framed H-E metric Relationship

Dutlook

▶ On X: The degree with respect to the polarization $K_X \otimes [D]$:

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = (c_1(\mathcal{E}) \cup c_1(K_X \otimes [D])^{n-1}) \cap [X]$$
$$= \int_X c_1(\mathcal{E}) \wedge \omega^{n-1},$$

where $\omega=\frac{i}{2\pi}\cdot \text{curvature}$ form of a positive Hermitian metric in $K_X\otimes [D].$

➤ On X': The degree with respect to the Poincaré-type metric:

$$\deg_{X'}(\mathcal{E}) = \int_{X'} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}^{n-1}.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction
Stability
Hermitian-Einstein metrics

ramed manifolds Definition

dapting the notions

Problem
Framed stability

Framed H-E metric Relationship

Theorem (S. '09)

For every torsion-free coherent sheaf $\mathcal E$ on X, the number $\deg_{X'}(\mathcal E)$ is well-defined and satisfies

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \deg_{X'}(\mathcal{E}).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed m

Definition

Poincaré-type metric

dapting the notions

roblem

Framed stability Framed H-E metrics

Relationship

- For convenience only n=2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_{\varepsilon} \quad \text{with } X_{\varepsilon} = \{x \in X : ||\sigma(x)|| > \varepsilon\}$$

We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed n

Definition

Poincaré-type metric

lapting the notions

roblem

Framed stability Framed H-E metrics

Use the results on the asymptotics of the Poincaré-type metric. More precisely:

- ▶ For convenience only n = 2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_{\varepsilon} \quad \text{with } X_{\varepsilon} = \{ x \in X : ||\sigma(x)|| > \varepsilon \}.$$

▶ We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein

H correspondence

Framed n

Definition

Poincaré-type metric

apting the notions

roblem

Framed stability
Framed H-E metrics

Relationship

Use the results on the asymptotics of the Poincaré-type metric. More precisely:

- ▶ For convenience only n = 2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_{\varepsilon} \quad \text{with } X_{\varepsilon} = \{x \in X : ||\sigma(x)|| > \varepsilon\}.$$

▶ We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

N-H correspondence

Framed m

Definition

Poincaré-type metric

lapting the notions

roblem

Framed stability Framed H-E metrics

Relationship

Use the results on the asymptotics of the Poincaré-type metric. More precisely:

- For convenience only n=2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_\varepsilon \quad \text{with } X_\varepsilon = \{x \in X : ||\sigma(x)|| > \varepsilon\}.$$

We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Framed stability

- ▶ Use asymptotic results to compare ω and ω_{Poin} .
- We obtain

$$\begin{split} \deg_{X'}(\mathcal{E}) &= \deg_{K_X \otimes [D]}(\mathcal{E}) \\ &- 2i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \log (1/||\sigma||^2) \\ &+ i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \left(1 + \frac{\nu}{\log^{\alpha} (1/||\sigma||^2)} \right) \end{split}$$

- \triangleright Show the vanishing of the integrals for $\varepsilon \to 0$ using

 - ▶ that ν is $\mathcal{C}^{k,\beta}$ with $k \ge 2$ in quasi-coordinates.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Framed stability

- Use asymptotic results to compare ω and ω_{Poin} .
- ▶ We obtain

$$\begin{split} \deg_{X'}(\mathcal{E}) &= \deg_{K_X \otimes [D]}(\mathcal{E}) \\ &- 2i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \log (1/||\sigma||^2) \\ &+ i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \left(1 + \frac{\nu}{\log^{\alpha} (1/||\sigma||^2)}\right) \end{split}$$

- lacktriangle Show the vanishing of the integrals for arepsilon o 0 using
 - ► Stokes' theorem and
 - ▶ that ν is $\mathcal{C}^{k,\beta}$ with $k \geqslant 2$ in quasi-coordinates.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Framed ma

Poincaré-type metric

dapting the notions

roblem

Framed stability
Framed H-E metrics

Dutlook

Dutlook

- Use asymptotic results to compare ω and ω_{Poin} .
- We obtain

$$\begin{split} \deg_{X'}(\mathcal{E}) &= \deg_{K_X \otimes [D]}(\mathcal{E}) \\ &- 2i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \log (1/||\sigma||^2) \\ &+ i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \left(1 + \frac{\nu}{\log^{\alpha} (1/||\sigma||^2)}\right) \end{split}$$

- ▶ Show the vanishing of the integrals for $\varepsilon \to 0$ using
 - Stokes' theorem and
 - that ν is $\mathcal{C}^{k,\beta}$ with $k \geqslant 2$ in quasi-coordinates.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Framed stability

Let \mathcal{E} be a torsion-free coherent sheaf on X.

Definition

We call

$$\deg_{(X,D)}(\mathcal{E}) := \deg_{K_X \otimes [D]}(\mathcal{E})$$

$$\stackrel{\mathsf{Th.}}{=} \deg_{X'}(\mathcal{E})$$

the framed degree of \mathcal{E} .

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Framed stability

Definition

▶ If $rank(\mathcal{E}) > 0$, we define the framed slope of \mathcal{E} as

$$\mu_{(X,D)}(\mathcal{E}) = \frac{\deg_{(X,D)}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

 $lackbox{ We say that \mathcal{E} is stable in the framed sense if}$

$$\mu_{(X,D)}(\mathcal{F}) < \mu_{(X,D)}(\mathcal{E})$$

holds for every coherent subsheaf \mathcal{F} of \mathcal{E} with $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$.

Remark

Note that we only consider subsheaves \mathcal{F} over X rather than X'.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Definition

Poincaré-type metric

dapting the notions

roblem

Framed stability
Framed H-E metrics

Dutlook

Definition

▶ If $rank(\mathcal{E}) > 0$, we define the framed slope of \mathcal{E} as

$$\mu_{(X,D)}(\mathcal{E}) = \frac{\deg_{(X,D)}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

lacktriangle We say that ${\mathcal E}$ is stable in the framed sense if

$$\mu_{(X,D)}(\mathcal{F}) < \mu_{(X,D)}(\mathcal{E})$$

holds for every coherent subsheaf $\mathcal F$ of $\mathcal E$ with $0<\mathrm{rank}(\mathcal F)<\mathrm{rank}(\mathcal E).$

Remark

Note that we only consider subsheaves \mathcal{F} over X rather than X'.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Finete

-H correspondence

Framed m

Definition

dapting the notions

roblem

Framed stability
Framed H-E metrics

delationship

Definition

▶ If $rank(\mathcal{E}) > 0$, we define the framed slope of \mathcal{E} as

$$\mu_{(X,D)}(\mathcal{E}) = \frac{\deg_{(X,D)}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

lacktriangle We say that ${\mathcal E}$ is stable in the framed sense if

$$\mu_{(X,D)}(\mathcal{F}) < \mu_{(X,D)}(\mathcal{E})$$

holds for every coherent subsheaf \mathcal{F} of \mathcal{E} with $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$.

Remark

Note that we only consider subsheaves $\mathcal F$ over X rather than X'.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein n

-H correspondence

ramed manifold

Poincaré-type metric

dapting the notions

roblem

Framed stability
Framed H-E metrics
Relationship

Dutlook

Corollary

Every holomorphic vector bundle E which is stable in the framed sense is simple, i. e.

$$\operatorname{End}(E) = \mathbb{C} \cdot \operatorname{id}_E$$
.

Remark

The simplicity seems to hold only over X and not over X'.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed n

Definition

danting the notions

Problem

Framed stability
Framed H-E metrics

Relationship

Corollary

Every holomorphic vector bundle E which is stable in the framed sense is simple, i. e.

$$\operatorname{End}(E) = \mathbb{C} \cdot \operatorname{id}_E$$
.

Remark

The simplicity seems to hold only over X and not over X'.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

ramed mani

Poincaré-type metric

dapting the notions

Problem Framed stability

Framed H-E metri Relationship

Dutlook

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifo

Definition

Adapting the notions

Problem

Framed H-E metrics

Jutlook

Consider Hermitian-Einstein metrics in E over X' with respect to the Poincaré-type metric.

Difficulty

For a uniqueness statement we need the simplicity of E over X^\prime , which is not given in the case of framed stability

Solution

We impose additional conditions.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics
K-H correspondence

Framed man

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-F metrics

Relationship

Dutlook

Consider Hermitian-Einstein metrics in E over X' with respect to the Poincaré-type metric.

Difficulty

For a uniqueness statement we need the simplicity of E over X^\prime , which is not given in the case of framed stability.

Solution

We impose additional conditions.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifolds

Definition
Poincaré-type metric

A double a bloom of con-

Problem Framed stability

Framed H-E metrics Relationship

utlook

Consider Hermitian-Einstein metrics in E over X^\prime with respect to the Poincaré-type metric.

Difficulty

For a uniqueness statement we need the simplicity of E over X^\prime , which is not given in the case of framed stability.

Solution

We impose additional conditions.

$$\mathcal{P} = \left\{ h \text{ Hermitian metric in } E \text{ over } X' \right.$$
 with
$$\int_{X'} |\Lambda_{\mathsf{Poin}} F_h|_h \, dV_{\mathsf{Poin}} < \infty \right\}.$$

We know (Simpson '88): ${\mathcal P}$ decomposes into components which are covered by charts

$$s \longmapsto he^s,$$

where s is a positive definite self-adjoint section of $\operatorname{End}(E)$ over X' with respect to h satisfying

$$\sup_{X'} |s|_h + ||\nabla'' s||_{L^2} + ||\Delta' s||_{L^1} < \infty.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

C+ability

Hermitian-Einstein metric

-H correspondence

ramed manifol

Poincaré-type metric

dapting the notions

Problem

Framed Stability
Framed H-F metrics

elationship

$$\mathcal{P} = \left\{ h \text{ Hermitian metric in } E \text{ over } X' \right.$$
 with
$$\int_{X'} |\Lambda_{\mathsf{Poin}} F_h|_h \, dV_{\mathsf{Poin}} < \infty \right\}.$$

We know (Simpson '88): ${\cal P}$ decomposes into components which are covered by charts

$$s \longmapsto he^s$$
,

where s is a positive definite self-adjoint section of $\mathrm{End}(E)$ over X' with respect to h satisfying

$$\sup_{\mathbf{Y}'} |s|_h + ||\nabla'' s||_{L^2} + ||\Delta' s||_{L^1} < \infty.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

nermitian-Einstein metri

ramed man

Definition

Poincaré-type metric

dapting the notions

Framed stability

Framed H-E metrics

Relationship

Jutlook

One of these components contains all the metrics which extend to X. We denote this component by \mathcal{P}_0 .

Definition

By a framed Hermitian-Einstein metric in E we mean a Hermitian metric h in E over X' which satisfies

- ▶ $h \in \mathcal{P}_0$ and
- $i \Lambda_{\mathsf{Poin}} F_h = \lambda \operatorname{id}_E \text{ over } X' \text{ with } \lambda \in \mathbb{R}.$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Finstein

-H correspondence

Framed

Definition

Problem

Framed H-F metrics

elationship

One of these components contains all the metrics which extend to X. We denote this component by \mathcal{P}_0 .

Definition

By a framed Hermitian-Einstein metric in E we mean a Hermitian metric h in E over X' which satisfies

- ▶ $h \in \mathcal{P}_0$ and
- \bullet $i\Lambda_{\mathsf{Poin}}F_h = \lambda \operatorname{id}_E$ over X' with $\lambda \in \mathbb{R}$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metric

Framed manifold

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-F metrics

Relationship

Jutlook

Uniqueness

Hermitian-Einstein metrics Matthias Stemmler

Framed stability and

Theorem (S. '09)

If E is simple and h and \ddot{h} are framed Hermitian-Einstein metrics in E, we have

$$\tilde{h} = c \cdot h$$

with a positive constant c.

Framed H-F metrics

Uniqueness

Proof.

- ▶ h, $\tilde{h} \in \mathcal{P}_0$ guarantees that the framed degree of E can be computed using h or \tilde{h} .
- ► Therefore, we have

$$i\Lambda_{\mathsf{Poin}}F_h = \lambda\operatorname{id}_E = i\Lambda_{\mathsf{Poin}}F_{\tilde{h}}$$

with
$$\lambda = \frac{2\pi\mu_{(X,D)}(E)}{(n-1)!\operatorname{vol}_{\mathsf{Poin}}(X')}$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed r

Poincaré-type metric

Adapting the notions

Problem

Framed stab

Framed H-E metrics

Relationsiii

Uniqueness

Proof.

- ▶ h, $\tilde{h} \in \mathcal{P}_0$ guarantees that the framed degree of Ecan be computed using h or h.
- ► Therefore, we have

$$i\Lambda_{\mathsf{Poin}}F_h = \lambda \operatorname{id}_E = i\Lambda_{\mathsf{Poin}}F_{\tilde{h}}$$

with
$$\lambda = \frac{2\pi\mu_{(X,D)}(E)}{(n-1)!\operatorname{vol}_{\mathsf{Poin}}(X')}.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Framed H-F metrics

▶ Write $\tilde{h} = he^s$, join h and \tilde{h} by the path $h_t = he^{ts}$ and use Donaldson's functional

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left(s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- ▶ $h, \tilde{h} \in \mathcal{P}_0$ guarantees
 - lacktriangle well-definedness of L(t),
 - $L''(t) = ||\bar{\partial}s||_{L^2}^2,$
 - ▶ simplicity of E over X is sufficient to conclude that s is a multiple of id_E.

Introduction

Stability

Hermitian-Einstein metrics

Framed manifo

Definition

Problem

Framed H-E metrics

▶ Write $\tilde{h} = he^s$, join h and \tilde{h} by the path $h_t = he^{ts}$ and use Donaldson's functional

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left(s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- ▶ h, $\tilde{h} \in \mathcal{P}_0$ guarantees
 - well-definedness of L(t),
 - $L''(t) = ||\bar{\partial}s||_{L^2}^2,$
 - ▶ simplicity of E over X is sufficient to conclude that s is a multiple of id_E.

Introduction

Stability

Hermitian-Einstein metrics

Framed ma

Definition

Adapting the notions

Problem

Framed H-E metrics

Relationship

Dutlook

▶ Write $\tilde{h} = he^s$, join h and \tilde{h} by the path $h_t = he^{ts}$ and use Donaldson's functional

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left(s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- ▶ h, $\tilde{h} \in \mathcal{P}_0$ guarantees
 - well-definedness of L(t),
 - $\qquad \qquad L^{\prime\prime}(t) = ||\bar{\partial}s||_{L^2}^2,$
 - ▶ simplicity of E over X is sufficient to conclude that s is a multiple of id_E.

Introduction

IIItroduction

Hermitian-Einstein metrics

ramed manifold

Definition

Adapting the notions

Problem

Framed H-E metrics

Hermitian-Einstein metrics K-H correspondence

Definition Definition

Poincaré-type metric

Problem

Framed H-E metrics

Outlant

Outlook

Proof.

▶ Write $\tilde{h} = he^s$, join h and \tilde{h} by the path $h_t = he^{ts}$ and use Donaldson's functional

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left(s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- lacksquare h, $ilde{h} \in \mathcal{P}_0$ guarantees
 - well-definedness of L(t),
 - $L''(t) = ||\bar{\partial}s||_{L^2}^2,$
 - ▶ simplicity of E over X is sufficient to conclude that s is a multiple of id_E.

Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

Proof

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of $\mathcal{E} = \mathcal{O}_X(E)$ over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an L_1^2 section of $\operatorname{End}(E)$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability Hermitian-Finstein

K-H correspondence

Framed n

Definition
Poincaré-type metric

dapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

0......

Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

Proof.

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of $\mathcal{E} = \mathcal{O}_X(E)$ over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an L_1^2 section of End(E).

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metr

Framed r

Definition
Poincaré-type metric

dapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

Proof.

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of $\mathcal{E} = \mathcal{O}_X(E)$ over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an L_1^2 section of $\operatorname{End}(E)$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Stability
Hermitian-Einstein metrics

Framed manifolds

Definition

Adapting the notion

Problem
Framed stability
Framed H-E metrics
Relationship

Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

Proof.

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of $\mathcal{E} = \mathcal{O}_X(E)$ over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an L_1^2 section of $\operatorname{End}(E)$.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction
Stability
Hermitian-Finstein metrics

Framed manifolds

Definition
Poincaré-type metric

Adapting the notions

Problem

Problem
Framed stability
Framed H-E metrics
Relationship

Matthias Stemmler

Framed stability and

Hermitian-Einstein

Introduction

Stability

Hermitian-Einstein metrics

Framed m

Definition

dapting the notions

roblem ramed stability ramed H-E metrics

Relationship

Outlook

Therefore, it suffices to prove the following lemma.

Lemma (S. '09)

We have

 $L_1^2(X,\operatorname{End}(E),\operatorname{\it Poincar\'e})\subset L_1^2(X,\operatorname{End}(E)).$

Proof

using the results on the asymptotics of the Poincaré-type metric

Therefore, it suffices to prove the following lemma.

Lemma (S. '09)

We have

$$L_1^2(X,\operatorname{End}(E),\operatorname{\textit{Poincar\'e}})\subset L_1^2(X,\operatorname{End}(E)).$$

Proof.

using the results on the asymptotics of the Poincaré-type metric

Framed stability and Hermitian-Einstein metrics

 ${\sf Matthias\ Stemmler}$

Introduction

Hermitian-Einstein metrics

Framed m

Poincaré-type metric

dapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

Relationshi

Contents

Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

Outlook

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

<-H correspondence</p>

Definition

Poincaré-type metri

Adapting the notions

Problem Framed stabil

Framed H-E metrics Relationship

Poincaré-type metric

Roblem

Problem
Framed stability
Framed H-E metrics

Outlook

Let (X, \mathcal{D}) be a canonically polarized framed manifold.

Observation

▶ For large m, (X, D) is m-framed in the sense that the \mathbb{Q} -divisor

$$K_X + \frac{m-1}{m}D$$

is ample.

Observation

▶ (Tian-Yau '87) For such m, there exist (incomplete) Kähler-Einstein metrics g_m on X' constructed from an initial metric of the form

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{m^2||\sigma||^{2(1-1/m)}(1-||\sigma||^{2/m})^2}\right),$$

▶ whereas the Poincaré-type Kähler-Einstein metric g_{Poin} on X' is constructed from

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{||\sigma||^2\log^2(1/||\sigma||^2)}\right)$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

-H correspondence

Framed

Definition

dapting the notions

Problem

Framed stability Framed H-E metr

▶ (Tian-Yau '87) For such m, there exist (incomplete) Kähler-Einstein metrics g_m on X' constructed from an initial metric of the form

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{m^2||\sigma||^{2(1-1/m)}(1-||\sigma||^{2/m})^2}\right),$$

▶ whereas the Poincaré-type Kähler-Einstein metric g_{Poin} on X' is constructed from

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{||\sigma||^2\log^2(1/||\sigma||^2)}\right).$$

ntroduction

Stability

Hermitian-Einstein m

Framed manifolds

Definition
Poincaré-type metric

dapting the notions

Problem

Framed H-E met Relationship

Question

Can the framed situation be seen as a "limit" of the m-framed situation as $m \to \infty$?

Problems

- ► Kobayashi-Hitchin correspondence in the *m*-framed case
- ightharpoonup Convergence of g_m to g_{Poir}
- ► Convergence of the corresponding Hermitian-Einstein metrics

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

TO TO COTTES PORTACITES

D.C. iii

Definition
Poincaré-type metric

Adapting the notions

Problem

Framed stability
Framed H-E metrics
Relationship

Question

Can the framed situation be seen as a "limit" of the m-framed situation as $m \to \infty$?

Problems

- ► Kobayashi-Hitchin correspondence in the *m*-framed case
- ightharpoonup Convergence of g_m to g_{Poin}
- ► Convergence of the corresponding Hermitian-Einstein metrics

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Eramod manife

Definition

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics

Question

Can the framed situation be seen as a "limit" of the m-framed situation as $m \to \infty$?

Problems

- ► Kobayashi-Hitchin correspondence in the *m*-framed case
- ▶ Convergence of g_m to g_{Poin}
- Convergence of the corresponding Hermitian-Einstein metrics

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Framed ma

Definition

Adapting the notions

Problem
Framed stability
Framed H-E metrics

Question

Can the framed situation be seen as a "limit" of the m-framed situation as $m \to \infty$?

Problems

- Kobayashi-Hitchin correspondence in the m-framed case
- ▶ Convergence of g_m to g_{Poin}
- Convergence of the corresponding Hermitian-Einstein metrics

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifolds

Definition

Adapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

Thank you.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

H correspondence

rramed mani

Poincaré-type metric

Adapting the notions

Problem

Framed stability Framed H-E metric

Jutlook