Matthias Stemmler WS 2006/2007

stemmler@mathematik.uni-marburg.de

Natürliche Zahlen und vollständige Induktion

Definition der natürlichen Zahlen

Sei \mathbb{R} die Menge der reellen Zahlen.

Satz: Es existiert genau eine Teilmenge $\mathbb{N} \subset \mathbb{R}$, für die gilt:

- (i) $1 \in \mathbb{N}$.
- (ii) $\forall n \in \mathbb{N} : n+1 \in \mathbb{N}$.
- (iii) Ist $M \subset \mathbb{N}$ mit $1 \in M$ und $\forall n \in M : n+1 \in M$, so gilt $M = \mathbb{N}$.

Die Menge \mathbb{N} heißt Menge der natürlichen Zahlen.

Beweisprinzip der vollständigen Induktion

Für alle $n \in \mathbb{N}$ sei A(n) eine Aussage. Um zu zeigen, dass A(n) für alle $n \in \mathbb{N}$ gilt, kann man wie folgt vorgehen:

- 1. Der Induktionsanfang: Zeige A(1).
- 2. Der *Induktionsschritt*: Zeige für beliebiges $n \in \mathbb{N}$: Aus A(n) folgt A(n+1).

Warum reicht das bereits aus, um A(n) für alle $n \in \mathbb{N}$ zu beweisen? Antwort: Setzt man $M := \{n \in \mathbb{N} : A(n) \text{ gilt}\}$, so gilt $1 \in M$ nach dem Induktionsanfang und $\forall n \in M : n+1 \in M$ nach dem Induktionsschritt. Da außerdem $M \subset \mathbb{N}$ gilt, folgt mit obigem Satz, dass $M = \mathbb{N}$ ist. Das bedeutet: Die Menge aller $n \in \mathbb{N}$, für die A(n) gilt, ist die Menge aller natürlichen Zahlen, kurz: A(n) gilt für alle $n \in \mathbb{N}$.

Varianten:

- Zeige im Induktionsschritt für beliebiges $n \in \mathbb{N}$ mit $n \ge 2$: Aus A(n-1) folgt A(n).
- Zeige im Induktionsschritt für beliebiges $n \in \mathbb{N}$: Aus $A(1), A(2), \dots, A(n)$ folgt A(n+1) (sogenannte starke Induktion).
- Ist A(n) sogar für $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ oder nur für $n \ge m, m \in \mathbb{N}$, zu zeigen,
 - so zeige im Induktionsanfang A(0) bzw. A(m)
 - und im Induktionsschritt für beliebiges $n \in \mathbb{N}_0$ bzw. $n \in \mathbb{N}$ mit $n \ge m$: Aus A(n) folgt A(n+1).

Beispiel 1

Behauptung: Für alle $n \in \mathbb{N}$ gilt $\sum_{k=1}^{n} (2k-1) = n^2$.

Beweis durch Induktion nach n:

Induktionsanfang: n = 1:

$$\sum_{k=1}^{n} (2k-1) = \sum_{k=1}^{n} (2k-1) = 2 \cdot 1 - 1 = 1 = 1^{2} = n^{2}$$

Induktionsschritt: $n \longrightarrow n+1$: Für ein $n \in \mathbb{N}$ gelte die *Induktionsvoraussetzung (IV)* $\sum_{k=1}^{n} (2k-1) = n^2$. Es folgt:

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2(n+1)-1) \stackrel{\text{(IV)}}{==} n^2 + (2(n+1)-1) = n^2 + 2n + 1 = (n+1)^2$$

Nach dem Induktionsprinzip gilt die Behauptung für alle $n \in \mathbb{N}$.

Beispiel 2

Behauptung: Für alle $n \in \mathbb{N}_0$ gilt $\sum_{k=0}^n \binom{n}{k} = 2^n$.

Beweis durch Induktion nach n:

Induktionsanfang: n = 0:

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{0} \binom{0}{k} = \binom{0}{0} = 1 = 2^{0} = 2^{n}$$

Induktionsschritt: $n \longrightarrow n+1$: Für ein $n \in \mathbb{N}_0$ gelte die Induktionsvoraussetzung $\sum_{k=0}^{n} \binom{n}{k} = 2^n$. Es folgt:

$$\sum_{k=0}^{n+1} \binom{n+1}{k} = \binom{n+1}{0} + \sum_{k=1}^{n} \binom{n+1}{k} + \binom{n+1}{n+1} = 1 + \sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k} \right) + 1 = 1 + \sum_{k=1}^{n} \binom{n}{k-1} + \sum_{k=1}^{n} \binom{n}{k} + 1 = 1 + \sum_{k=1}^{n} \binom{n}{k-1} + \sum_{k=1}^{n} \binom{n}{k} + 1 = 1 + \sum_{k=1}^{n} \binom{n}{k-1} + \sum_{k=1}^{n} \binom{n}{k} + 1 = 1 + \sum_{k=1}^{n} \binom{n}{k-1} + \sum_{k=1}^{n} \binom{n}{k} + 1 = 1 + \sum_{k=1}^{n} \binom{n}{k-1} + \sum_{k=1}^{n} \binom{n}{k} + 1 = 1 + \sum_{k=1}^{n} \binom{n}{k-1} + \sum_{k=1}^{n} \binom{n}{k} + 1 = 1 + \sum_{k=1}^{n} \binom{n}{k-1} + \sum_{k=1}^{n} \binom{n}{k-1} + 1 = 1 +$$

Nach dem Induktionsprinzip gilt die Behauptung für alle $n \in \mathbb{N}_0$.