# Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds

### Matthias Stemmler

Department of Mathematics and Computer Science Philipps University Marburg

Lie Theory and Complex Geometry Marburg, November 4, 2010

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Stability

K-H correspondence

Framed manifolds

Definition
Poincaré-type metric

Adapting the notions

Problem
Framed stability

Framed H-E metric Relationship



# Contents

# Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

### Framed manifolds

Definition

Poincaré-type metric

# Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

### Outlook

#### Framed stability and Hermitian-Einstein metrics

### ${\sf Matthias\ Stemmler}$

Introduction

Stability

Hermitian-Einstein metrics

H correspondence

Framed manifold

Definition
Poincaré-type metric

Adapting the notions

roblem ramed stability

Relationship

# **Contents**

# Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

### Framed manifolds

Definition

Poincaré-type metric

# Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

# Outlook

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

### Introduction

Stability

K-H correspondence

-H correspondence

### D.C. iii

Poincaré-type metri

Adapting the notions

#### Problem

Framed stability
Framed H-E metrics

Dutlook



# Stability

Let (X,g) be a compact Kähler manifold of complex dimension n and  $\mathcal{E}$  a torsion-free coherent sheaf on X.

# Definition

lacktriangle The g-degree of  ${\mathcal E}$  is defined as

$$\deg_g(\mathcal{E}) = \int_X c_1(\mathcal{E}) \wedge \omega_g^{n-1}$$

▶ If  $rank(\mathcal{E}) > 0$ , the *g*-slope of  $\mathcal{E}$  is defined as

$$\mu_g(\mathcal{E}) = \frac{\deg_g(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}$$

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

#### Introduction

### Stability

Hermitian-Einstein metrics

K-H correspondence

#### Framed m

Definition

Poincaré-type metric

dapting the notions

#### Problem

Framed stability Framed H-E metrics

Jutlook

Hermitian-Einstein metrics

K-H correspondence

Trained manne

Delinition

r officare-type metric

Problem

Framed stability
Framed H-E metrics

Section and a

Let (X,g) be a compact Kähler manifold of complex dimension n and  $\mathcal{E}$  a torsion-free coherent sheaf on X.

# Definition

▶ The g-degree of  $\mathcal{E}$  is defined as

$$\deg_g(\mathcal{E}) = \int_X c_1(\mathcal{E}) \wedge \omega_g^{n-1}.$$

▶ If  $rank(\mathcal{E}) > 0$ , the *g*-slope of  $\mathcal{E}$  is defined as

$$\mu_g(\mathcal{E}) = \frac{\deg_g(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}$$

K-H correspondence

Framed manifo

Definition

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics

Jutlook

Let (X,g) be a compact Kähler manifold of complex dimension n and  $\mathcal{E}$  a torsion-free coherent sheaf on X.

# Definition

▶ The g-degree of  $\mathcal{E}$  is defined as

$$\deg_g(\mathcal{E}) = \int_X c_1(\mathcal{E}) \wedge \omega_g^{n-1}.$$

▶ If  $rank(\mathcal{E}) > 0$ , the *g*-slope of  $\mathcal{E}$  is defined as

$$\mu_g(\mathcal{E}) = \frac{\deg_g(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

# Stability

# **Definition**

 ${\mathcal E}$  is called  $g ext{-stable}$  if

$$\mu_g(\mathcal{F}) < \mu_g(\mathcal{E})$$

holds for every coherent subsheaf  $\mathcal F$  of  $\mathcal E$  with  $0<\mathrm{rank}(\mathcal F)<\mathrm{rank}(\mathcal E).$ 

### Remark

This is also defined for a holomorphic vector bundle E: Consider  $\mathcal{E} = \mathcal{O}_X(E)$ . Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

#### Stability

Hermitian-Einstein metri

-H correspondence

Framed n

Poincaró tuno motrio

Adapting the notions

Problem

Framed H-E metri Relationship

# Stability

# Definition

 ${\mathcal E}$  is called g-stable if

$$\mu_g(\mathcal{F}) < \mu_g(\mathcal{E})$$

holds for every coherent subsheaf  $\mathcal F$  of  $\mathcal E$  with  $0<\mathrm{rank}(\mathcal F)<\mathrm{rank}(\mathcal E).$ 

# Remark

This is also defined for a holomorphic vector bundle E: Consider  $\mathcal{E} = \mathcal{O}_X(E)$ . Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

### Stability

Hermitian-Einstein metr

-H correspondence

Framed ma

Definition

Adapting the notions

Problem Framed stability Framed H-E metrics Relationship

Dutlook

# Hermitian-Einstein metrics

Let E be a holomorphic vector bundle on X.

# Definition

A Hermitian metric h in E is called a q-Hermitian-Einstein metric if

$$i\Lambda_g F_h = \lambda \operatorname{id}_E \quad \text{with } \lambda \in \mathbb{R},$$

### where

- $i\Lambda_q = \text{contraction with } \omega_q$ ,
- $ightharpoonup F_h = \text{Chern curvature form of } (E, h).$

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Hermitian-Finstein metrics

metrics

Matthias Stemmler

Framed stability and

Hermitian-Einstein

Introduction

Stability

K-H correspondence

it ii comespondence

Definition

Poincaré-type metric

Adapting the notions

Problem Framed stability Framed H-E metric

utlook

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi '82, Lübke '83)

E is irreducible and admits a g-Hermitian-Einstein metric  $\Longrightarrow E$  is g-stable.

Theorem (Donaldson '83–'87, Uhlenbeck/Yau '86) E is g-stable  $\Longrightarrow E$  admits a unique (up to a constant multiple) g-Hermitian-Einstein metric.

metrics Matthias Stemmler

Framed stability and

Hermitian-Einstein

Introduction

Hermitian-Einstein metrics

K-H correspondence

ramed manifold:

Definition

dapting the notions

Framed stability
Framed H-E metr

Outlook

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi '82, Lübke '83)

E is irreducible and admits a g-Hermitian-Einstein metric  $\Longrightarrow E$  is g-stable.

Theorem (Donaldson '83-'87, Uhlenbeck/Yau '86)

E is g-stable  $\Longrightarrow E$  admits a unique (up to a constant multiple) g-Hermitian-Einstein metric.

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi '82, Lübke '83)

E is irreducible and admits a g-Hermitian-Einstein metric  $\Longrightarrow E$  is q-stable.

Theorem (Donaldson '83-'87, Uhlenbeck/Yau '86)

E is g-stable  $\Longrightarrow E$  admits a unique (up to a constant multiple) g-Hermitian-Einstein metric.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

K-H correspondence

# Proof.

- ▶ Start with a fixed "background metric"  $h_0$ .
- ▶ Solve an evolution equation for all finite values of a time parameter t.
- ▶ In case of convergence as  $t \to \infty$ : The limit is a Hermitian-Einstein metric.
- ► In case of divergence: Construct a "destabilizing subsheaf" contradicting the stability hypothesis.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

K-H correspondence

ramed manı

Poincaré-type metric

dapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship

# Proof.

- ▶ Start with a fixed "background metric"  $h_0$ .
- ▶ Solve an evolution equation for all finite values of a time parameter *t*.
- In case of convergence as  $t \to \infty$ : The limit is a Hermitian-Einstein metric.
- ► In case of divergence: Construct a "destabilizing subsheaf" contradicting the stability hypothesis.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

K-H correspondence

Framed ma

Definition Poincaré type metric

dapting the notions

Framed stability
Framed H-E metrics
Relationship

# Proof.

- ▶ Start with a fixed "background metric"  $h_0$ .
- ▶ Solve an evolution equation for all finite values of a time parameter *t*.
- ▶ In case of convergence as  $t \to \infty$ : The limit is a Hermitian-Einstein metric.
- ► In case of divergence: Construct a "destabilizing subsheaf" contradicting the stability hypothesis.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

U---iti-- Ci--t-i- --

K-H correspondence

ramed manifolds

Definition

Adapting the notions

Problem
Framed stability
Framed H-E metrics

### Proof.

- ▶ Start with a fixed "background metric"  $h_0$ .
- ▶ Solve an evolution equation for all finite values of a time parameter t.
- ▶ In case of convergence as  $t \to \infty$ : The limit is a Hermitian-Einstein metric.
- In case of divergence: Construct a "destabilizing subsheaf" contradicting the stability hypothesis.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metric

K-H correspondence

ramed manifolds

Poincaré-type metric

Poincaré-type metric

Problem
Framed stability
Framed H-E metrics
Relationship

# **Contents**

### Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

### Framed manifolds

Definition

Poincaré-type metric

# Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

### Outlook

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

#### Introduction

Stability

Hermitian-Einstein metric

# Framed manifolds

Definition

Poincare-type metric

#### Adapting the notions

Problem

ramed stability ramed H-E metrics Relationship

# Framed manifolds

# Definition

- A framed manifold or logarithmic pair is a pair (X, D) consisting of
  - ightharpoonup a compact complex manifold X and
  - ightharpoonup a smooth divisor D in X.
- ▶ A framed manifold (X, D) is called canonically polarized if  $K_X \otimes [D]$  is ample.

# Example

 $(\mathbb{P}^n,V)$  is canonically polarized if  $V\subset\mathbb{P}^n$  is a smooth hypersurface of degree  $\geqslant n+2$ .

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

C-H correspondence

Framed m

Definition

Poincaré-type metric

dapting the notions

roblem

Framed H-E met Relationship

Dutlook



# Framed manifolds

# Definition

- A framed manifold or logarithmic pair is a pair (X, D) consisting of
  - ightharpoonup a compact complex manifold X and
  - ightharpoonup a smooth divisor D in X.
- ▶ A framed manifold (X, D) is called canonically polarized if  $K_X \otimes [D]$  is ample.

# Example

 $(\mathbb{P}^n,V)$  is canonically polarized if  $V\subset\mathbb{P}^n$  is a smooth hypersurface of degree  $\geqslant n+2$ .

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Framed ma

Definition

Poincaré-type metric

dapting the notions

roblem

Framed H-E metr



# Framed manifolds

# Definition

- lacktriangle A framed manifold or logarithmic pair is a pair (X,D) consisting of
  - ightharpoonup a compact complex manifold X and
  - ▶ a smooth divisor *D* in *X*.
- ▶ A framed manifold (X, D) is called canonically polarized if  $K_X \otimes [D]$  is ample.

# Example

 $(\mathbb{P}^n,V)$  is canonically polarized if  $V\subset \mathbb{P}^n$  is a smooth hypersurface of degree  $\geqslant n+2.$ 

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifolds

Definition

Poincaré-type metric

Adapting the notions

Framed stability Framed H-E met

# Remark

- lacktriangle We call this metric the Poincaré-type metric on X'.
- ▶ Choose local coordinates  $(\sigma, z^2, \dots, z^n)$  such that D is given by  $\sigma = 0$ . Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left( \frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Definition

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-E metrics

# Remark

- ightharpoonup We call this metric the Poincaré-type metric on X'.
- ▶ Choose local coordinates  $(\sigma, z^2, ..., z^n)$  such that D is given by  $\sigma = 0$ . Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left( \frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Definition

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-E metri

# Remark

- lacktriangle We call this metric the Poincaré-type metric on X'.
- ▶ Choose local coordinates  $(\sigma, z^2, ..., z^n)$  such that D is given by  $\sigma = 0$ . Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left( \frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Framed manifol

Poincaré-type metric

Adapting the notion

Framed stability
Framed H-E metric

# Remark

- lacktriangle We call this metric the Poincaré-type metric on X'.
- ▶ Choose local coordinates  $(\sigma, z^2, \dots, z^n)$  such that D is given by  $\sigma = 0$ . Then in these coordinates, we have

$$\omega_{\mathsf{Poin}} \sim 2i \left( \frac{d\sigma \wedge d\bar{\sigma}}{|\sigma|^2 \log^2(1/|\sigma|^2)} + \sum_{k=2}^n dz^k \wedge d\bar{z}^k \right).$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics K-H correspondence

Definition

Poincaré-type metric

Adapting the notions
Problem
Framed stability

(Cheng-Yau '80, R. Kobayashi '84, Tian-Yau '87, ...)

# **Definition**

A local quasi-coordinate map is a holomorphic map

$$V \longrightarrow X', \quad V \subset \mathbb{C}^n$$
 open

which is of maximal rank everywhere. In this case, V together with the Euclidean coordinates of  $\mathbb{C}^n$  is called a local quasi-coordinate system.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einste

-H correspondence

D.C. W.

Poincaré-type metric

Adapting the petions

Problem
Framed stability
Framed H-E metrics

Dutlook

# Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family  $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$  of local quasi-coordinate systems such that:

- ightharpoonup X' is covered by the images of the V in  $\mathcal V$ .
- ▶ There is an open neighbourhood U of D such that  $X \setminus U$  is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius  $\frac{1}{2}$ .
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Definition

Poincaré-type metric

Problem

Framed stability Framed H-E metric Relationship

Jutlook



# Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family  $\mathcal{V} = \{(V; v^1, \ldots, v^n)\}$  of local quasi-coordinate systems such that:

- ightharpoonup X' is covered by the images of the V in  $\mathcal V$ .
- ▶ There is an open neighbourhood U of D such that  $X \setminus U$  is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius  $\frac{1}{2}$ .
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Hermitian-Einstein metrics K-H correspondence

Definition Definition

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-E metrics
Relationship

Dutlook



# Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family  $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$  of local quasi-coordinate systems such that:

- lacksquare X' is covered by the images of the V in  $\mathcal V$ .
- ▶ There is an open neighbourhood U of D such that  $X \setminus U$  is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- ▶ Every V contains an open ball of radius  $\frac{1}{2}$ .
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Stability

K-H correspondence

Definition

Poincaré-type metric

Adapting the notions

Framed Stability
Framed H-E met
Relationship

# **Theorem**

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family  $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$  of local quasi-coordinate systems such that:

- lacksquare X' is covered by the images of the V in  $\mathcal V$ .
- ▶ There is an open neighbourhood U of D such that  $X \setminus U$  is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- Every V contains an open ball of radius  $\frac{1}{2}$ .
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics K-H correspondence

Definition

Poincaré-type metric

Adapting the notions

Framed stability Framed H-E metr Relationship

Outlook (



# Theorem

X' together with the Poincaré-type metric is of bounded geometry, i. e. there is an (infinite) family  $\mathcal{V} = \{(V; v^1, \dots, v^n)\}$  of local quasi-coordinate systems such that:

- ightharpoonup X' is covered by the images of the V in  $\mathcal{V}$ .
- ▶ There is an open neighbourhood U of D such that  $X \setminus U$  is covered by the images of finitely many V which are coordinate systems in the ordinary sense.
- Every V contains an open ball of radius  $\frac{1}{2}$ .
- ► The coefficients of the Poincaré-type metric and their derivatives in quasi-coordinates are uniformly bounded.

### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Stability
Hermitian-Einstein metrics

Definition

Poincaré-type metric

Adapting the notions
Problem
Framed stability



$$(\Delta^n;z^1,\dots,z^n)$$
 on  $U\subset X$ 

such that

$$D \cap U = \{ z^1 = 0 \}.$$

Then the quasi-coordinates are  $(P_n(0) \times A^{n-1}, \dots, 1 \times P_n)$  with

$$(B_R(0) \times \Delta^{n-1}; v^1, \dots, v^n)$$
 with  $\frac{1}{2} < R < 1$  such that

$$v^{1} = \frac{w^{1} - a}{1 - aw^{1}}, \text{ where } z^{1} = \exp\left(\frac{w^{1} + 1}{w^{1} - 1}\right).$$

and

$$v^i = w^i = z^i$$
 for  $2 \leqslant i \leqslant n$ ,

where a varies over real numbers in  $\Delta$  close to 1.

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Pofinition

Poincaré-type metric

Adapting the notions

Problem Framed stability Framed H-E metrics

Relationship

)utlook

$$(\Delta^n;z^1,\ldots,z^n)$$
 on  $U\subset X$ 

such that

$$D \cap U = \{ z^1 = 0 \}.$$

Then the quasi-coordinates are  $(R_n(0) \times \Lambda^{n-1}, n^1, n^n)$  with

$$(B_R(0) imes \Delta^{n-1}; v^1, \dots, v^n)$$
 with  $\frac{1}{2} < R < 1$  such that

$$v^{1} = \frac{w^{1} - a}{1 - aw^{1}}, \text{ where } z^{1} = \exp\left(\frac{w^{1} + 1}{w^{1} - 1}\right),$$

and

$$v^i = w^i = z^i$$
 for  $2 \leqslant i \leqslant n$ ,

where a varies over real numbers in  $\Delta$  close to 1.

Framed stability and Hermitian-Einstein metrics

 ${\sf Matthias\ Stemmler}$ 

Introduction

Hermitian-Einstein metrics

ramed manifolds

Poincaré-type metric

Problem
Framed stability
Framed H-E metrics

Definition Definition

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-E metr

Outlook

Theorem (Schumacher '98)

There exists  $0 < \alpha \le 1$  such that for all  $k \in \{0, 1, \ldots\}$  and  $\beta \in (0, 1)$ , the volume form of the Poincaré-type metric is of the form

$$\frac{2\Omega}{||\sigma||^2\log^2(1/||\sigma||^2)}\left(1+\frac{\nu}{\log^\alpha(1/||\sigma||^2)}\right),$$

### where

- $ightharpoonup \Omega$  is a smooth volume form on X,
- $ightharpoonup \sigma$  is a canonical section of [D],  $||\cdot||$  is a norm in [D],
- $\blacktriangleright \nu$  lies in the Hölder space of  $\mathcal{C}^{k,\beta}$  functions in quasi-coordinates.

# **Contents**

### Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

### Framed manifolds

Definition

Poincaré-type metric

# Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

### Outlook

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

#### Introduction

Stability

Hermitian-Einstein metric

### Definition

Poincaré-type metric

### Adapting the notions

Problem
Framed stability
Framed H-E metrics

# **Problem**

### Let

- ► (X, D) be a canonically polarized framed manifold and
- ightharpoonup E a holomorphic vector bundle on X.

# Questions

- How can we define a notion of "framed stability" of E?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

K-H correspondence

Definition

Poincaré-type metric

Adapting the notions

#### Problem

Framed stability Framed H-E metrics Relationship

# **Problem**

### Let

- ► (X, D) be a canonically polarized framed manifold and
- ightharpoonup E a holomorphic vector bundle on X.

# Questions

- 1. How can we define a notion of "framed stability" of *E*?
- 2. What should a "framed Hermitian-Einstein metric" in *E* be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

(-H correspondence

Framed m

Definition

Adapting the notions

#### Problem

Framed stability Framed H-E metrics Relationship

## **Problem**

### Let

- lackbox(X,D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

## Questions

- 1. How can we define a notion of "framed stability" of *E*?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

K-H correspondence

ramed manif

Definition

dapting the notions

#### Problem

Framed stability Framed H-E metric Relationship

## **Problem**

### Let

- lackbox(X,D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

## Questions

- How can we define a notion of "framed stability" of E?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Diability

C-H correspondence

ramed manifolds

Definition

dapting the notions

#### Problem

Framed stability Framed H-E metric Relationship

## **Problem**

### Let

- lackbox(X,D) be a canonically polarized framed manifold and
- E a holomorphic vector bundle on X.

## Questions

- How can we define a notion of "framed stability" of E?
- 2. What should a "framed Hermitian-Einstein metric" in E be?
- 3. Do we obtain existence and uniqueness of framed Hermitian-Einstein metrics in the case of framed stability?

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

C-H correspondence

ramed manifolds

Definition

Poincaré-type metric

Adapting the notions

#### Problem

Framed stability Framed H-E metric Relationship

▶ On X: The degree with respect to the polarization  $K_X \otimes [D]$ :

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = (c_1(\mathcal{E}) \cup c_1(K_X \otimes [D])^{n-1}) \cap [X]$$
$$= \int_X c_1(\mathcal{E}) \wedge \omega^{n-1},$$

where  $\omega=\frac{i}{2\pi}\cdot \text{curvature}$  form of a positive Hermitian metric in  $K_X\otimes [D].$ 

➤ On X': The degree with respect to the Poincaré-type metric:

$$\deg_{X'}(\mathcal{E}) = \int_{X'} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}^{n-1}$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

ntroduction Stability

Hermitian-Einstein metrics K-H correspondence

ramed ma

Poincaré-type metric

dapting the notions

Problem Framed stability

Framed H-E metrics Relationship

▶ On X: The degree with respect to the polarization  $K_X \otimes [D]$ :

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = (c_1(\mathcal{E}) \cup c_1(K_X \otimes [D])^{n-1}) \cap [X]$$
$$= \int_X c_1(\mathcal{E}) \wedge \omega^{n-1},$$

where  $\omega=\frac{i}{2\pi}\cdot \text{curvature}$  form of a positive Hermitian metric in  $K_X\otimes [D].$ 

➤ On X': The degree with respect to the Poincaré-type metric:

$$\deg_{X'}(\mathcal{E}) = \int_{X'} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}^{n-1}.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction
Stability
Hermitian-Einstein metrics

ramed manifolds Definition

dapting the notions

Problem
Framed stability

Framed H-E metric Relationship

# Theorem (S. '09)

For every torsion-free coherent sheaf  $\mathcal E$  on X, the number  $\deg_{X'}(\mathcal E)$  is well-defined and satisfies

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \deg_{X'}(\mathcal{E}).$$

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed m

Definition

Poincaré-type metric

dapting the notions

roblem

Framed stability Framed H-E metrics

Relationship

- For convenience only n=2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_{\varepsilon} \quad \text{with } X_{\varepsilon} = \{x \in X : ||\sigma(x)|| > \varepsilon\}$$

We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}$$

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed n

Definition

Poincaré-type metric

lapting the notions

roblem

Framed stability Framed H-E metrics

0 .. .

Use the results on the asymptotics of the Poincaré-type metric. More precisely:

- For convenience only n=2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_{\varepsilon} \quad \text{with } X_{\varepsilon} = \{ x \in X : ||\sigma(x)|| > \varepsilon \}.$$

We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}$$

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Framed stability

Use the results on the asymptotics of the Poincaré-type metric. More precisely:

- ▶ For convenience only n = 2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_\varepsilon \quad \text{with } X_\varepsilon = \{x \in X : ||\sigma(x)|| > \varepsilon\}.$$

▶ We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}$$

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metric

N-H correspondence

Framed m

Definition

Poincaré-type metric

lapting the notions

roblem

Framed stability Framed H-E metrics

Relationship

- ▶ For convenience only n = 2.
- Exhaustion

$$X' = \bigcup_{\varepsilon > 0} X_\varepsilon \quad \text{with } X_\varepsilon = \{x \in X : ||\sigma(x)|| > \varepsilon\}.$$

▶ We have

$$\deg_{K_X \otimes [D]}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega,$$
$$\deg_{X'}(\mathcal{E}) = \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \omega_{\mathsf{Poin}}.$$

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Hermitian-Einstein metric

Definition

Poincaré-type metric

apting the notions

Framed stability
Framed H-E metrics

Relationship

- ▶ Use asymptotic results to compare  $\omega$  and  $\omega_{Poin}$ .
- ► We obtain

$$\begin{split} \deg_{X'}(\mathcal{E}) &= \deg_{K_X \otimes [D]}(\mathcal{E}) \\ &- 2i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \log (1/||\sigma||^2) \\ &+ i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \left(1 + \frac{\nu}{\log^{\alpha} (1/||\sigma||^2)}\right) \end{split}$$

- ightharpoonup Show the vanishing of the integrals for arepsilon o 0 using
  - Stokes' theorem and
  - ▶ that  $\nu$  is  $\mathcal{C}^{k,\beta}$  with  $k \ge 2$  in quasi-coordinates.

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

#### Introduction

C+ability

Hermitian-Einstein metric

#### ramed manifolds

Definition

Poincaré-type metric

dapting the notions

Problem
Framed stability

Framed H-E metrics Relationship

- ▶ Use asymptotic results to compare  $\omega$  and  $\omega_{Poin}$ .
- ▶ We obtain

$$\begin{split} \deg_{X'}(\mathcal{E}) &= \deg_{K_X \otimes [D]}(\mathcal{E}) \\ &- 2i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \log (1/||\sigma||^2) \\ &+ i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \left( 1 + \frac{\nu}{\log^{\alpha} (1/||\sigma||^2)} \right) \end{split}$$

- ▶ Show the vanishing of the integrals for  $\varepsilon \to 0$  using
  - ► Stokes' theorem and
  - ▶ that  $\nu$  is  $\mathcal{C}^{k,\beta}$  with  $k \geqslant 2$  in quasi-coordinates.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

D.C. W.

Poincaré-type metric

dapting the notions

roblem

Framed stability Framed H-E metrics

Relationship

- Use asymptotic results to compare  $\omega$  and  $\omega_{Poin}$ .
- We obtain

$$\begin{split} \deg_{X'}(\mathcal{E}) &= \deg_{K_X \otimes [D]}(\mathcal{E}) \\ &- 2i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \log (1/||\sigma||^2) \\ &+ i \lim_{\varepsilon \to 0} \int_{X_{\varepsilon}} c_1(\mathcal{E}) \wedge \partial \bar{\partial} \log \left(1 + \frac{\nu}{\log^{\alpha} (1/||\sigma||^2)}\right) \end{split}$$

- ▶ Show the vanishing of the integrals for  $\varepsilon \to 0$  using
  - Stokes' theorem and
  - that  $\nu$  is  $\mathcal{C}^{k,\beta}$  with  $k \geqslant 2$  in quasi-coordinates.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Framed stability

Let  $\mathcal{E}$  be a torsion-free coherent sheaf on X.

## Definition

We call

$$\deg_{(X,D)}(\mathcal{E}) := \deg_{K_X \otimes [D]}(\mathcal{E})$$
 
$$\stackrel{\mathsf{Th.}}{=} \deg_{X'}(\mathcal{E})$$

the framed degree of  $\mathcal{E}$ .

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Framed stability

## Definition

▶ If  $rank(\mathcal{E}) > 0$ , we define the framed slope of  $\mathcal{E}$  as

$$\mu_{(X,D)}(\mathcal{E}) = \frac{\deg_{(X,D)}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

 $lackbox{ We say that $\mathcal{E}$ is stable in the framed sense if}$ 

$$\mu_{(X,D)}(\mathcal{F}) < \mu_{(X,D)}(\mathcal{E})$$

holds for every coherent subsheaf  $\mathcal{F}$  of  $\mathcal{E}$  with  $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$ .

## Remark

Note that we only consider subsheaves  $\mathcal{F}$  over X rather than X'.

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Definition

Poincaré-type metric

dapting the notions

roblem

Framed stability
Framed H-E metrics



## Definition

▶ If  $rank(\mathcal{E}) > 0$ , we define the framed slope of  $\mathcal{E}$  as

$$\mu_{(X,D)}(\mathcal{E}) = \frac{\deg_{(X,D)}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

lacktriangle We say that  ${\mathcal E}$  is stable in the framed sense if

$$\mu_{(X,D)}(\mathcal{F}) < \mu_{(X,D)}(\mathcal{E})$$

holds for every coherent subsheaf  $\mathcal F$  of  $\mathcal E$  with  $0<\mathrm{rank}(\mathcal F)<\mathrm{rank}(\mathcal E).$ 

## Remark

Note that we only consider subsheaves  $\mathcal{F}$  over X rather than X'.

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Hermitian-Finete

-H correspondence

Framed m

Definition

dapting the notions

roblem

Framed stability
Framed H-E metrics

delationship

## Definition

▶ If  $rank(\mathcal{E}) > 0$ , we define the framed slope of  $\mathcal{E}$  as

$$\mu_{(X,D)}(\mathcal{E}) = \frac{\deg_{(X,D)}(\mathcal{E})}{\operatorname{rank}(\mathcal{E})}.$$

lacktriangle We say that  ${\mathcal E}$  is stable in the framed sense if

$$\mu_{(X,D)}(\mathcal{F}) < \mu_{(X,D)}(\mathcal{E})$$

holds for every coherent subsheaf  $\mathcal{F}$  of  $\mathcal{E}$  with  $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(\mathcal{E})$ .

## Remark

Note that we only consider subsheaves  $\mathcal F$  over X rather than X'.

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Introduction

Hermitian-Einstein n

-H correspondence

ramed manifold

Poincaré-type metric

dapting the notions

roblem

Framed stability
Framed H-E metrics
Relationship

## Corollary

Every holomorphic vector bundle E which is stable in the framed sense is simple, i. e.

$$\operatorname{End}(E) = \mathbb{C} \cdot \operatorname{id}_E$$
.

### Remark

The simplicity seems to hold only over X and not over X'.

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

K-H correspondence

ramed mani

Taffied Illami

Poincaré-type metric

dapting the notions

roblem

Framed stability
Framed H-E metrics

Relationship

## Corollary

Every holomorphic vector bundle E which is stable in the framed sense is simple, i. e.

$$\operatorname{End}(E) = \mathbb{C} \cdot \operatorname{id}_E$$
.

### Remark

The simplicity seems to hold only over X and not over X'.

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

ramed mani

Poincaré-type metric

dapting the notions

Problem Framed stability

Framed H-E metri Relationship

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed mani

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-F metrics

Relationship

Dutlook

Consider Hermitian-Einstein metrics in E over X' with respect to the Poincaré-type metric.

Difficulty

For a uniqueness statement we need the simplicity of E over X', which is not given in the case of framed stability

Solution

We impose additional conditions.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed m

Definition

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-E metrics

Relationship

Dutlook

Consider Hermitian-Einstein metrics in E over X' with respect to the Poincaré-type metric.

# Difficulty

For a uniqueness statement we need the simplicity of E over  $X^\prime$ , which is not given in the case of framed stability.

Solution

We impose additional conditions.

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics
K-H correspondence

Framed manifolds

Definition
Poincaré-type metric

r omeare type metric

Problem

Framed H-E metrics

rtelationsinp

)utlook

Consider Hermitian-Einstein metrics in E over X' with respect to the Poincaré-type metric.

# Difficulty

For a uniqueness statement we need the simplicity of E over  $X^\prime$ , which is not given in the case of framed stability.

## Solution

We impose additional conditions.

$$\mathcal{P} = \left\{ h \text{ Hermitian metric in } E \text{ over } X' \right.$$
 with 
$$\int_{X'} |\Lambda_{\mathsf{Poin}} F_h|_h \, dV_{\mathsf{Poin}} < \infty \right\}.$$

We know (Simpson '88):  ${\cal P}$  decomposes into components which are covered by charts

$$s \longmapsto he^s,$$

where s is a positive definite self-adjoint section of  $\operatorname{End}(E)$  over X' with respect to h satisfying

$$\sup_{Y'} |s|_h + ||\nabla'' s||_{L^2} + ||\Delta' s||_{L^1} < \infty.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

amed manifolds

Poincaré-type metric

Adapting the notions

Problem

Framed Stability
Framed H-F metrics

lelationship

Jutlook

$$\mathcal{P} = \left\{ h \text{ Hermitian metric in } E \text{ over } X' \right.$$
 with 
$$\int_{X'} |\Lambda_{\mathsf{Poin}} F_h|_h \, dV_{\mathsf{Poin}} < \infty \right\}.$$

We know (Simpson '88):  ${\cal P}$  decomposes into components which are covered by charts

$$s \longmapsto he^s$$
,

where s is a positive definite self-adjoint section of  $\mathrm{End}(E)$  over X' with respect to h satisfying

$$\sup_{\mathbf{Y}'} |s|_h + ||\nabla'' s||_{L^2} + ||\Delta' s||_{L^1} < \infty.$$

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

nermitian-Einstein metri

ramed man

Definition

Poincaré-type metric

dapting the notions

Framed stability

Framed H-E metrics

Relationship

Jutlook

One of these components contains all the metrics which extend to X. We denote this component by  $\mathcal{P}_0$ .

## Definition

By a framed Hermitian-Einstein metric in E we mean a Hermitian metric h in E over X' which satisfies

- ▶  $h \in \mathcal{P}_0$  and
- $i \Lambda_{\mathsf{Poin}} F_h = \lambda \operatorname{id}_E \text{ over } X' \text{ with } \lambda \in \mathbb{R}.$

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Finstein

-H correspondence

Framed

Definition

Problem

Framed H-F metrics

elationship

One of these components contains all the metrics which extend to X. We denote this component by  $\mathcal{P}_0$ .

## Definition

By a framed Hermitian-Einstein metric in E we mean a Hermitian metric h in E over X' which satisfies

- ▶  $h \in \mathcal{P}_0$  and
- $\bullet$   $i\Lambda_{\mathsf{Poin}}F_h = \lambda \operatorname{id}_E$  over X' with  $\lambda \in \mathbb{R}$ .

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metric

Framed manifold

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-F metrics

Relationship

Jutlook

# Uniqueness

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Theorem (S. '09)

If E is simple and h and  $\tilde{h}$  are framed Hermitian-Einstein metrics in E, we have

$$\tilde{h} = c \cdot h$$

with a positive constant c.

Introduction

Stability

Hermitian-Einstein n

H correspondence

Framed n

Definition

Poincaré-type metric

Adapting the notions

Problem

Framed H-E metrics

relationsing

# Uniqueness

## Proof.

- ▶ h,  $\tilde{h} \in \mathcal{P}_0$  guarantees that the framed degree of E can be computed using h or  $\tilde{h}$ .
- ► Therefore, we have

$$i\Lambda_{\mathsf{Poin}}F_h = \lambda\operatorname{id}_E = i\Lambda_{\mathsf{Poin}}F_{\tilde{h}}$$

with 
$$\lambda = \frac{2\pi\mu_{(X,D)}(E)}{(n-1)!\operatorname{vol}_{\mathsf{Poin}}(X')}$$

#### Framed stability and Hermitian-Einstein metrics

#### Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

-H correspondence

Framed r

Definition

Calabatha a labar mastama

Problem

ramed stabil

Framed H-E metrics

# Uniqueness

## Proof.

- ▶ h,  $\tilde{h} \in \mathcal{P}_0$  guarantees that the framed degree of E can be computed using h or  $\tilde{h}$ .
- ► Therefore, we have

$$i\Lambda_{\mathsf{Poin}}F_h = \lambda \operatorname{id}_E = i\Lambda_{\mathsf{Poin}}F_{\tilde{h}}$$

with 
$$\lambda = \frac{2\pi\mu_{(X,D)}(E)}{(n-1)!\operatorname{vol}_{\mathsf{Poin}}(X')}.$$

#### Framed stability and Hermitian-Einstein metrics

#### Matthias Stemmler

Introduction

Stability

Hermitian-Einstein

-H correspondence

Framed r

Definition

danting the notions

Problem

Framed Stability
Framed H-F metrics

Relationshin

telacionsinj

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left( s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- ▶  $h, \tilde{h} \in \mathcal{P}_0$  guarantees
  - lacktriangle well-definedness of L(t),
  - $L''(t) = ||\bar{\partial}s||_{L^2}^2,$
  - ▶ simplicity of E over X is sufficient to conclude that s is a multiple of id<sub>E</sub>.

Introduction

Stability

Hermitian-Einstein metrics

Framed manifo

Definition

Problem

Framed H-E metrics

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left( s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- ▶ h,  $\tilde{h} \in \mathcal{P}_0$  guarantees
  - well-definedness of L(t),
  - $L''(t) = ||\bar{\partial}s||_{L^2}^2,$
  - ▶ simplicity of E over X is sufficient to conclude that s is a multiple of id<sub>E</sub>.

Introduction

Stability

Hermitian-Einstein metrics

Framed ma

Definition

Adapting the notions

Problem

Framed H-E metrics

Relationship

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left( s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- ▶ h,  $\tilde{h} \in \mathcal{P}_0$  guarantees
  - well-definedness of L(t),
  - $\qquad \qquad L^{\prime\prime}(t) = ||\bar{\partial}s||_{L^2}^2,$
  - ▶ simplicity of E over X is sufficient to conclude that s is a multiple of id<sub>E</sub>.

Introduction

IIItroduction

Hermitian-Einstein metrics

ramed manifold

Definition

Adapting the notions

Problem

Framed H-E metrics

$$L(t) = \int_{X'} \int_0^t \operatorname{tr} \left( s(i\Lambda_{\mathsf{Poin}} F_{h_u} - \lambda \operatorname{id}_E) \right) du \, \frac{\omega_{\mathsf{Poin}}^n}{n!}.$$

- ▶ h,  $\tilde{h} \in \mathcal{P}_0$  guarantees
  - well-definedness of L(t),
  - $L''(t) = ||\bar{\partial}s||_{L^2}^2$
  - simplicity of E over X is sufficient to conclude that s is a multiple of  $\mathrm{id}_E$ .

Introduction

Stability Hermitian-Einstein metrics

Framed manifolds

Poincaré-type metric

Adapting the notions

Framed stability
Framed H-E metrics

Relationship

Jutlook

# Existence in the case of framed stability

# Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

## Proof

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of  $\mathcal{E} = \mathcal{O}_X(E)$  over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an  $L_1^2$  section of  $\operatorname{End}(E)$ .

#### Framed stability and Hermitian-Einstein metrics

#### Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed m

Definition

dapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship



# Existence in the case of framed stability

# Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

## Proof.

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of  $\mathcal{E} = \mathcal{O}_X(E)$  over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an  $L_1^2$  section of  $\operatorname{End}(E)$ .

#### Framed stability and Hermitian-Einstein metrics

#### Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed n

Poincaré-type metric

dapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship



# Existence in the case of framed stability

# Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

## Proof.

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of  $\mathcal{E} = \mathcal{O}_X(E)$  over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an  $L_1^2$  section of End(E).

#### Framed stability and Hermitian-Einstein metrics

### Matthias Stemmler

Stability
Hermitian-Einstein metrics

Framed manifolds

Definition

romcare-type metric

Problem
Framed stability
Framed H-E metrics
Relationship



# Existence in the case of framed stability

# Theorem (S. '09)

If E is stable in the framed sense, there exists a unique (up to a constant multiple) framed Hermitian-Einstein metric in E.

## Proof.

- ► Carry over the arguments from the classical case.
- ▶ Critical point: In the case of framed stability, one only considers subsheaves of  $\mathcal{E} = \mathcal{O}_X(E)$  over X and not over X'.
- ▶ However: In the classical proof, the destabilizing subsheaf is produced from an  $L_1^2$  section of  $\operatorname{End}(E)$ .

Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction
Stability
Hermitian-Finstein metrics

Framed manifolds

Definition
Poincaré-type metric

Adapting the notions

Problem

Problem
Framed stability
Framed H-E metrics
Relationship

# Existence in the case of framed stability

Matthias Stemmler

Framed stability and

Hermitian-Einstein

Introduction

Stability

Hermitian-Einstein metrics

Framed m

Definition

dapting the notions

roblem ramed stability ramed H-E metrics

Relationship

Outlook

Therefore, it suffices to prove the following lemma.

Lemma (S. '09)

We have

 $L_1^2(X,\operatorname{End}(E),\operatorname{\it Poincar\'e})\subset L_1^2(X,\operatorname{End}(E)).$ 

Proof

using the results on the asymptotics of the Poincaré-type metric

# Existence in the case of framed stability

Therefore, it suffices to prove the following lemma.

Lemma (S. '09)

We have

$$L_1^2(X,\operatorname{End}(E),\operatorname{\textit{Poincar\'e}})\subset L_1^2(X,\operatorname{End}(E)).$$

## Proof.

using the results on the asymptotics of the Poincaré-type metric

Framed stability and Hermitian-Einstein metrics

 ${\sf Matthias\ Stemmler}$ 

Introduction

Hermitian-Einstein metrics

Framed m

Definition
Poincaré-type metric

dapting the notions

roblem ramed stability ramed H-E metrics

Relationship

## **Contents**

### Introduction

Stability

Hermitian-Einstein metrics

Kobayashi-Hitchin correspondence

### Framed manifolds

Definition

Poincaré-type metric

## Adapting the notions

Problem

Framed stability

Framed Hermitian-Einstein metrics

Relationship

## Outlook

#### Framed stability and Hermitian-Einstein metrics

#### Matthias Stemmler

#### Introduction

Stability

Hermitian-Einstein metrics

Tr Tr correspondence

#### Definition

Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed manifolds

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics

Outlook

Let  $(X,\mathcal{D})$  be a canonically polarized framed manifold.

## Observation

▶ For large m, (X, D) is m-framed in the sense that the  $\mathbb{Q}$ -divisor

$$K_X + \frac{m-1}{m}D$$

is ample.

## Observation

 $\blacktriangleright$  (Tian-Yau '87) For such m, there exist (incomplete) Kähler-Einstein metrics  $q_m$  on X' constructed from an initial metric of the form

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{m^2||\sigma||^{2(1-1/m)}(1-||\sigma||^{2/m})^2}\right),$$

whereas the Poincaré-type Kähler-Einstein metric

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{||\sigma||^2\log^2(1/||\sigma||^2)}\right)$$

Framed manifolds

Poincaré-type metric

Adapting the notions

Problem Framed stability

Framed H-E met Relationship

Outlook

Observation

► (Tian-Yau '87) For such m, there exist (incomplete) Kähler-Einstein metrics  $g_m$  on X' constructed from an initial metric of the form

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{m^2||\sigma||^{2(1-1/m)}(1-||\sigma||^{2/m})^2}\right),$$

▶ whereas the Poincaré-type Kähler-Einstein metric g<sub>Poin</sub> on X' is constructed from

$$i\partial\bar{\partial}\log\left(\frac{2\Omega}{||\sigma||^2\log^2(1/||\sigma||^2)}\right).$$

# Question

Can the framed situation be seen as a "limit" of the m-framed situation as  $m \to \infty$ ?

## Problems

- ► Kobayashi-Hitchin correspondence in the *m*-framed case
- ightharpoonup Convergence of  $g_m$  to  $g_{\mathsf{Poin}}$
- ► Convergence of the corresponding Hermitian-Einstein metrics

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

#### Introduction

Stability

Hermitian-Einstein metrics

rt-rr correspondence

#### Definition

Poincaré-type metric

Adapting the notions

Problem
Framed stability
Framed H-E metrics



# Question

Can the framed situation be seen as a "limit" of the m-framed situation as  $m \to \infty$ ?

## **Problems**

- ► Kobayashi-Hitchin correspondence in the *m*-framed case
- ightharpoonup Convergence of  $g_m$  to  $g_{Poin}$
- ► Convergence of the corresponding Hermitian-Einstein metrics

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Framed ma

Definition

Adapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship



# Question

Can the framed situation be seen as a "limit" of the m-framed situation as  $m \to \infty$ ?

## **Problems**

- ► Kobayashi-Hitchin correspondence in the *m*-framed case
- ▶ Convergence of  $g_m$  to  $g_{Poin}$
- Convergence of the corresponding Hermitian-Einstein metrics

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

Framed n

Definition

Adapting the notions

Problem
Framed stability
Framed H-E metrics
Relationship



# Question

Can the framed situation be seen as a "limit" of the m-framed situation as  $m \to \infty$ ?

## **Problems**

- ► Kobayashi-Hitchin correspondence in the *m*-framed case
- ightharpoonup Convergence of  $g_m$  to  $g_{Poin}$
- Convergence of the corresponding Hermitian-Einstein metrics

#### Framed stability and Hermitian-Einstein metrics

Matthias Stemmler

Introduction

Hermitian-Einstein metrics

Framed manifolds

Definition

Adapting the notions

Problem Framed stability Framed H-E metrics Relationship



## Thank you.

#### Framed stability and Hermitian-Einstein metrics

#### Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

H correspondence

Framed mar

Poincaré-type metric

Adapting the notions

Problem

Framed stability Framed H-E metric