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Stability

Let (X, g) be a compact Kähler manifold of complex
dimension n and E a torsion-free coherent sheaf on X.

Definition

I The g-degree of E is defined as

degg(E) =
∫
X
c1(E) ∧ ωn−1

g .

I If rank(E) > 0, the g-slope of E is defined as

µg(E) =
degg(E)
rank(E)

.
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Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed H-E metrics

Relationship

Outlook

Stability

Let (X, g) be a compact Kähler manifold of complex
dimension n and E a torsion-free coherent sheaf on X.

Definition

I The g-degree of E is defined as

degg(E) =
∫
X
c1(E) ∧ ωn−1

g .

I If rank(E) > 0, the g-slope of E is defined as

µg(E) =
degg(E)
rank(E)

.



Framed stability and
Hermitian-Einstein

metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

K-H correspondence

Framed manifolds

Definition
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Stability

Definition
E is called g-stable if

µg(F) < µg(E)

holds for every coherent subsheaf F of E with
0 < rank(F) < rank(E).

Remark
This is also defined for a holomorphic vector bundle E:
Consider E = OX(E).
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Hermitian-Einstein metrics

Let E be a holomorphic vector bundle on X.

Definition
A Hermitian metric h in E is called a
g-Hermitian-Einstein metric if

iΛgFh = λ idE with λ ∈ R,

where

I iΛg = contraction with ωg,

I Fh = Chern curvature form of (E, h).
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Kobayashi-Hitchin correspondence

Let E be a holomorphic vector bundle.

Theorem (S. Kobayashi ’82, Lübke ’83)

E is irreducible and admits a g-Hermitian-Einstein metric
=⇒ E is g-stable.

Theorem (Donaldson ’83–’87, Uhlenbeck/Yau ’86)

E is g-stable =⇒ E admits a unique (up to a constant
multiple) g-Hermitian-Einstein metric.



Framed stability and
Hermitian-Einstein

metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

K-H correspondence

Framed manifolds

Definition
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Kobayashi-Hitchin correspondence

Proof.

I Start with a fixed “background metric” h0.

I Solve an evolution equation for all finite values of a
time parameter t.

I In case of convergence as t→∞:
The limit is a Hermitian-Einstein metric.

I In case of divergence:
Construct a “destabilizing subsheaf” contradicting
the stability hypothesis.
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Framed manifolds

Definition

I A framed manifold or logarithmic pair is a pair
(X,D) consisting of

I a compact complex manifold X and
I a smooth divisor D in X.

I A framed manifold (X,D) is called canonically
polarized if KX ⊗ [D] is ample.

Example

(Pn, V ) is canonically polarized if V ⊂ Pn is a smooth
hypersurface of degree > n+ 2.
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Poincaré-type metric

Theorem (R. Kobayashi ’84)

If (X,D) is canonically polarized, there exists a unique
(up to a constant multiple) complete Kähler-Einstein
metric on X ′ := X \D with negative Ricci curvature.

Remark

I We call this metric the Poincaré-type metric on X ′.

I Choose local coordinates (σ, z2, . . . , zn) such that D
is given by σ = 0. Then in these coordinates, we
have

ωPoin ∼ 2i

(
dσ ∧ dσ̄

|σ|2 log2(1/|σ|2)
+

n∑
k=2

dzk ∧ dz̄k
)
.
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Bounded geometry

(Cheng-Yau ’80, R. Kobayashi ’84, Tian-Yau ’87, ...)

Definition
A local quasi-coordinate map is a holomorphic map

V −→ X ′, V ⊂ Cn open

which is of maximal rank everywhere. In this case, V
together with the Euclidean coordinates of Cn is called a
local quasi-coordinate system.
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Bounded geometry

Theorem
X ′ together with the Poincaré-type metric is of bounded
geometry, i. e. there is an (infinite) family
V = {(V ; v1, . . . , vn)} of local quasi-coordinate systems
such that:

I X ′ is covered by the images of the V in V.

I There is an open neighbourhood U of D such that
X \ U is covered by the images of finitely many V
which are coordinate systems in the ordinary sense.

I Every V contains an open ball of radius 1
2 .

I The coefficients of the Poincaré-type metric and
their derivatives in quasi-coordinates are uniformly
bounded.
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Construction of quasi-coordinates

Choose local coordinates

(∆n; z1, . . . , zn) on U ⊂ X

such that
D ∩ U = {z1 = 0}.

Then the quasi-coordinates are
(BR(0)×∆n−1; v1, . . . , vn) with 1

2 < R < 1 such that

v1 =
w1 − a
1− aw1

, where z1 = exp
(
w1 + 1
w1 − 1

)
,

and
vi = wi = zi for 2 6 i 6 n,

where a varies over real numbers in ∆ close to 1.
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Asymptotics

Theorem (Schumacher ’98)

There exists 0 < α 6 1 such that for all k ∈ {0, 1, . . .}
and β ∈ (0, 1), the volume form of the Poincaré-type
metric is of the form

2Ω
||σ||2 log2(1/||σ||2)

(
1 +

ν

logα(1/||σ||2)

)
,

where

I Ω is a smooth volume form on X,

I σ is a canonical section of [D], ||·|| is a norm in [D],
I ν lies in the Hölder space of Ck,β functions in

quasi-coordinates.
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Problem

Let

I (X,D) be a canonically polarized framed manifold
and

I E a holomorphic vector bundle on X.

Questions

1. How can we define a notion of “framed stability”
of E?

2. What should a “framed Hermitian-Einstein metric”
in E be?

3. Do we obtain existence and uniqueness of framed
Hermitian-Einstein metrics in the case of framed
stability?
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Framed stability

Two notions of degree for a torsion-free coherent sheaf E :

I On X: The degree with respect to the polarization
KX ⊗ [D]:

degKX⊗[D](E) = (c1(E) ∪ c1(KX ⊗ [D])n−1) ∩ [X]

=
∫
X
c1(E) ∧ ωn−1,

where ω = i
2π ·curvature form of a positive Hermitian

metric in KX ⊗ [D].
I On X ′: The degree with respect to the

Poincaré-type metric:

degX′(E) =
∫
X′
c1(E) ∧ ωn−1

Poin .
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Theorem (S. ’09)

For every torsion-free coherent sheaf E on X, the number
degX′(E) is well-defined and satisfies

degKX⊗[D](E) = degX′(E).
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Framed stability

Proof.
Use the results on the asymptotics of the Poincaré-type
metric. More precisely:

I For convenience only n = 2.

I Exhaustion

X ′ =
⋃
ε>0

Xε with Xε = {x ∈ X : ||σ(x)|| > ε}.

I We have

degKX⊗[D](E) = lim
ε→0

∫
Xε

c1(E) ∧ ω,

degX′(E) = lim
ε→0

∫
Xε

c1(E) ∧ ωPoin.
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Proof.

I Use asymptotic results to compare ω and ωPoin.

I We obtain

degX′(E) = degKX⊗[D](E)

− 2i lim
ε→0

∫
Xε

c1(E) ∧ ∂∂̄ log log(1/||σ||2)

+ i lim
ε→0

∫
Xε

c1(E) ∧ ∂∂̄ log
(

1 +
ν

logα(1/||σ||2)

)

I Show the vanishing of the integrals for ε→ 0 using
I Stokes’ theorem and
I that ν is Ck,β with k > 2 in quasi-coordinates.
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Let E be a torsion-free coherent sheaf on X.

Definition
We call

deg(X,D)(E) := degKX⊗[D](E)
Th.= degX′(E)

the framed degree of E .
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Definition

I If rank(E) > 0, we define the framed slope of E as

µ(X,D)(E) =
deg(X,D)(E)

rank(E)
.

I We say that E is stable in the framed sense if

µ(X,D)(F) < µ(X,D)(E)

holds for every coherent subsheaf F of E with
0 < rank(F) < rank(E).

Remark
Note that we only consider subsheaves F over X rather
than X ′.
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Framed stability

Corollary

Every holomorphic vector bundle E which is stable in the
framed sense is simple, i. e.

End(E) = C · idE .

Remark
The simplicity seems to hold only over X and not
over X ′.
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Framed Hermitian-Einstein metrics

Consider Hermitian-Einstein metrics in E over X ′ with
respect to the Poincaré-type metric.

Difficulty

For a uniqueness statement we need the simplicity of E
over X ′, which is not given in the case of framed stability.

Solution
We impose additional conditions.
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Framed Hermitian-Einstein metrics

Set

P =
{
h Hermitian metric in E over X ′

with

∫
X′
|ΛPoinFh|h dVPoin <∞

}
.

We know (Simpson ’88): P decomposes into components
which are covered by charts

s 7−→ hes,

where s is a positive definite self-adjoint section of
End(E) over X ′ with respect to h satisfying

sup
X′
|s|h + ||∇′′s||L2 + ||∆′s||L1 <∞.
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Framed Hermitian-Einstein metrics

One of these components contains all the metrics which
extend to X. We denote this component by P0.

Definition
By a framed Hermitian-Einstein metric in E we mean a
Hermitian metric h in E over X ′ which satisfies

I h ∈ P0 and

I iΛPoinFh = λ idE over X ′ with λ ∈ R.
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Uniqueness

Theorem (S. ‘09)

If E is simple and h and h̃ are framed Hermitian-Einstein
metrics in E, we have

h̃ = c · h

with a positive constant c.
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Uniqueness

Proof.

I h, h̃ ∈ P0 guarantees that the framed degree of E
can be computed using h or h̃.

I Therefore, we have

iΛPoinFh = λ idE = iΛPoinFh̃

with λ =
2πµ(X,D)(E)

(n− 1)! volPoin(X ′)
.
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Uniqueness

Proof.

I Write h̃ = hes, join h and h̃ by the path ht = hets

and use Donaldson’s functional

L(t) =
∫
X′

∫ t

0
tr
(
s(iΛPoinFhu − λ idE)

)
du

ωnPoin

n!
.

I h, h̃ ∈ P0 guarantees
I well-definedness of L(t),

I L′′(t) = ||∂̄s||2L2 ,

I simplicity of E over X is sufficient to conclude that
s is a multiple of idE .
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Existence in the case of framed stability

Theorem (S. ’09)

If E is stable in the framed sense, there exists a unique
(up to a constant multiple) framed Hermitian-Einstein
metric in E.

Proof.

I Carry over the arguments from the classical case.

I Critical point: In the case of framed stability, one
only considers subsheaves of E = OX(E) over X
and not over X ′.

I However: In the classical proof, the destabilizing
subsheaf is produced from an L2

1 section of End(E).
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Existence in the case of framed stability

Therefore, it suffices to prove the following lemma.

Lemma (S. ’09)

We have

L2
1(X,End(E),Poincaré) ⊂ L2

1(X,End(E)).

Proof.
using the results on the asymptotics of the Poincaré-type
metric
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Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed H-E metrics

Relationship

Outlook

Contents

Introduction
Stability
Hermitian-Einstein metrics
Kobayashi-Hitchin correspondence

Framed manifolds
Definition
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Let (X,D) be a canonically polarized framed manifold.

Observation

I For large m, (X,D) is m-framed in the sense that
the Q-divisor

KX +
m− 1
m

D

is ample.
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Observation

I (Tian-Yau ’87) For such m, there exist (incomplete)
Kähler-Einstein metrics gm on X ′ constructed from
an initial metric of the form

i∂∂̄ log
(

2Ω
m2||σ||2(1−1/m)(1− ||σ||2/m)2

)
,

I whereas the Poincaré-type Kähler-Einstein metric
gPoin on X ′ is constructed from

i∂∂̄ log
(

2Ω
||σ||2 log2(1/||σ||2)

)
.
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Question
Can the framed situation be seen as a “limit” of the
m-framed situation as m→∞?

Problems

I Kobayashi-Hitchin correspondence in the m-framed
case

I Convergence of gm to gPoin

I Convergence of the corresponding Hermitian-Einstein
metrics
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Poincaré-type metric

Adapting the notions

Problem

Framed stability

Framed H-E metrics

Relationship

Outlook

Outlook

Question
Can the framed situation be seen as a “limit” of the
m-framed situation as m→∞?

Problems

I Kobayashi-Hitchin correspondence in the m-framed
case

I Convergence of gm to gPoin

I Convergence of the corresponding Hermitian-Einstein
metrics



Framed stability and
Hermitian-Einstein

metrics

Matthias Stemmler

Introduction

Stability

Hermitian-Einstein metrics

K-H correspondence

Framed manifolds

Definition
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Thank you.
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