Matrixdarstellung linearer Abbildungen

Sei \mathbb{K} ein Körper, U, V und W \mathbb{K} -Vektorräume mit $\dim_{\mathbb{K}} U = l$, $\dim_{\mathbb{K}} V = m$ und $\dim_{\mathbb{K}} W = n$ und $\mathcal{B}_U = \{u_1, \dots, u_l\}$, $\mathcal{B}_V = \{v_1, \dots, v_m\}$, $\mathcal{B}_V' = \{v_1', \dots, v_m'\}$, $\mathcal{B}_W = \{w_1, \dots, w_n\}$ und $\mathcal{B}_W' = \{w_1', \dots, w_n'\}$ Basen der jeweiligen Vektorräume.

Definitionen

• Matrix einer linearen Abbildung: Die Matrix der linearen Abbildung $f: V \longrightarrow W$ bzgl. \mathcal{B}_V und \mathcal{B}_W ist die Matrix

$$\Phi_{\mathcal{B}_V \mathcal{B}_W}(f) = (a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}}^{i=1,\dots,n} \quad \text{mit} \quad f(v_j) = \sum_{i=1}^n a_{ij} w_i, \quad j = 1,\dots,m$$

• Matrix eines Basiswechsels: Die Matrix des Basiswechsels von \mathcal{B}_V nach \mathcal{B}'_V ist die Matrix $T_{\mathcal{B}_V\mathcal{B}'_V} := \Phi_{\mathcal{B}_V\mathcal{B}'_V}(\mathrm{id}_V)$.

Darstellung in Diagrammen

Allgemein sei die Abbildung $\psi_{\mathcal{B}_V}$ wie folgt definiert:

$$\psi_{\mathcal{B}_V} : \left\{ \begin{array}{ccc} V & \longrightarrow & \mathbb{K}^m \\ \sum_{j=1}^m x_j v_j & \longmapsto & \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \right.$$

Damit lässt sich der Zusammenhang zwischen linearen Abbildungen und Matrizen übersichtlich darstellen:

• lineare Abbildung: Sei $f: V \longrightarrow W$ linear.

$$V \xrightarrow{f} W$$

$$\psi_{\mathcal{B}_{V}} \downarrow \qquad \qquad \psi_{\mathcal{B}_{W}} (f(v)) = \Phi_{\mathcal{B}_{V}\mathcal{B}_{W}}(f) \cdot \psi_{\mathcal{B}_{V}}(v), \quad v \in V$$

$$\mathbb{K}^{m} \xrightarrow{x \mapsto \Phi_{\mathcal{B}_{V}\mathcal{B}_{W}}(f) \cdot x} \mathbb{K}^{n}$$

• Komposition linearer Abbildungen: Seien $f:U\longrightarrow V$ und $g:V\longrightarrow W$ linear.

$$U \xrightarrow{f} V \xrightarrow{g} W$$

$$\psi_{\mathcal{B}_{U}} \downarrow \qquad \qquad \psi_{\mathcal{B}_{V}} \downarrow \qquad \qquad \psi_{\mathcal{B}_{W}} \downarrow \qquad \qquad \Phi_{\mathcal{B}_{U}\mathcal{B}_{W}}(g \circ f) = \Phi_{\mathcal{B}_{V}\mathcal{B}_{W}}(g) \cdot \Phi_{\mathcal{B}_{U}\mathcal{B}_{V}}(f)$$

$$\mathbb{K}^{l} \xrightarrow{x \mapsto \Phi_{\mathcal{B}_{U}\mathcal{B}_{V}}(f) \cdot x} \mathbb{K}^{m} \xrightarrow{x \mapsto \Phi_{\mathcal{B}_{V}\mathcal{B}_{W}}(g) \cdot x} \mathbb{K}^{m}$$

• Basiswechsel: Sei $f: V \longrightarrow W$ linear.

$$V \xrightarrow{\operatorname{id}_{V}} V \xrightarrow{f} W \xrightarrow{\operatorname{id}_{W}} W$$

$$\psi_{\mathcal{B}'_{V}} \downarrow \psi_{\mathcal{B}_{W}} \downarrow \psi_{\mathcal{B}_{W}} \downarrow \psi_{\mathcal{B}'_{W}} \downarrow \psi_{\mathcal{$$

$$\Phi_{\mathcal{B}_V'\mathcal{B}_W'}(f) = \Phi_{\mathcal{B}_V'\mathcal{B}_W'}(\mathrm{id}_W \circ f \circ \mathrm{id}_V) = \Phi_{\mathcal{B}_W\mathcal{B}_W'}(\mathrm{id}_W) \cdot \Phi_{\mathcal{B}_V\mathcal{B}_W}(f) \cdot \Phi_{\mathcal{B}_V'\mathcal{B}_V}(\mathrm{id}_V) = T_{\mathcal{B}_W\mathcal{B}_W'} \cdot \Phi_{\mathcal{B}_V\mathcal{B}_W}(f) \cdot T_{\mathcal{B}_V'\mathcal{B}_V}(f) \cdot T_{\mathcal{B}_V'\mathcal{B}$$

Algorithmen

BESTIMMUNG DER MATRIX EINER LINEAREN ABBILDUNG:

gegeben: K-Vektorräume V und W mit Basen $\mathcal{B}_V = \{v_1, \dots, v_m\}$ bzw. $\mathcal{B}_W = \{w_1, \dots, w_n\}$ und $f: V \longrightarrow W$ linear.

gesucht: Matrix $\Phi_{\mathcal{B}_V\mathcal{B}_W}(f)$ von f bzgl. \mathcal{B}_V und \mathcal{B}_W .

Schreibe $\Phi_{\mathcal{B}_V\mathcal{B}_W}(f) = (a_{ij})_{\substack{i=1,\dots,n\\j=1}}$. Für alle $j=1,\dots,m$ berechne die j-te Spalte von $\Phi_{\mathcal{B}_V\mathcal{B}_W}(f)$ wie folgt:

- 1) berechne $f(v_i)$,
- 2) stelle $f(v_j)$ in \mathcal{B}_W dar: $f(v_j) = \sum_{i=1}^n a_{ij} w_i$ \longrightarrow Die so ermittelten Körperelemente a_{1j}, \ldots, a_{nj} bilden die j-te Spalte von $\Phi_{\mathcal{B}_V \mathcal{B}_W}(f)$.

BESTIMMUNG DER MATRIX EINES BASISWECHSELS:

gegeben: K-Vektorraum V mit Basen $\mathcal{B}_V = \{v_1, \dots, v_m\}$ und $\mathcal{B}_V' = \{v_1', \dots, v_m'\}$.

gesucht: Matrix $T_{\mathcal{B}_V \mathcal{B}_V'}$ des Basiswechsels von \mathcal{B}_V nach \mathcal{B}_V' .

Schreibe $T_{\mathcal{B}_V\mathcal{B}_V'} = \Phi_{\mathcal{B}_V\mathcal{B}_V'}(\mathrm{id}_V) = (a_{ij})_{i,j=1,\dots,m}$. Für alle $j=1,\dots,m$ berechne die j-te Spalte von $T_{\mathcal{B}_V\mathcal{B}_V'}$ wie folgt: Stelle v_j in \mathcal{B}_V' dar: $v_j = \sum_{i=1}^m a_{ij}v_i'$ \longrightarrow Die so ermittelten Körperelemente a_{1j},\dots,a_{mj} bilden die j-te Spalte von $T_{\mathcal{B}_V\mathcal{B}_V'}$.

Auswertung einer linearen Abbildung mittels einer zugehörigen Matrix:

gegeben: K-Vektorräume V und W mit Basen $\mathcal{B}_V = \{v_1, \dots, v_m\}$ bzw. $\mathcal{B}_W = \{w_1, \dots, w_n\}, \Phi_{\mathcal{B}_V \mathcal{B}_W}(f)$ zu einer linearen Abbildung $f: V \longrightarrow W$ und $v \in V$.

gesucht: f(v).

Schreibe $\Phi_{\mathcal{B}_V\mathcal{B}_W}(f) = (a_{ij})_{i=1,\dots,n\atop i=1,\dots,n}$.

- 1) stelle v in \mathcal{B}_V dar: $v=\sum_{j=1}^m x_jv_j$, 2) schreibe die so ermittelten Körperelemente x_1,\ldots,x_m in eine Spalte $x\in\mathbb{K}^m$,
- 3) berechne das Matrix-Vektor-Produkt

$$A \cdot x = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m a_{1j} x_j \\ \vdots \\ \sum_{j=1}^m a_{nj} x_j \end{pmatrix} =: \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{K}^n,$$

4) berechne f(v) als Linearkombination der Vektoren in \mathcal{B}_W mit den in 3) ermittelten Körperelementen y_1, \ldots, y_n als Koeffizienten: $f(v) = \sum_{i=1}^{n} y_i w_i$.