Potenzreihen

Definitionen

(i) Sei $(a_n)_{n\in\mathbb{N}_0}\subset\mathbb{R}$ eine Folge reeller Zahlen¹ und $x_0\in\mathbb{R}$ eine reelle Zahl. Dann heißt die Reihe

$$A(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 eine (formale) Potenzreihe um x_0 und die Reihe $A'_{\text{formal}}(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$ die formale Ableitung von A .

(ii) Es heißen

$$R_A = \sup \{|x - x_0| : x \in \mathbb{R}, A(x) \text{ konvergiert}\} \in [0, \infty]$$
 der Konvergenzradius von A und $K_A = \{x \in \mathbb{R} : |x - x_0| < R_A\}$ der Konvergenzbereich von A.

Bemerkung: Wegen $A(x_0) = a_0 + 0 + 0 + \cdots = a_0$ ist $A(x_0)$ konvergent, d. h. die Menge in der Definition von R_A enthält die 0 und ist damit nicht leer, so dass R_A wohldefiniert ist. Ist die Menge nach oben unbeschränkt, so setzen wir wie üblich $R_A := \infty$. Man beachte, dass $K_A = \emptyset$, falls $R_A = 0$, sowie $K_A = \mathbb{R}$, falls $R_A = \infty$.

Grundlegende Aussagen

1. Sei $x \in \mathbb{R}$. Dann gilt:

 $\begin{array}{ll} \text{falls } |x-x_0| < R_A, \text{ also } x \in K_A \text{:} & \text{Die Reihe } A(x) \text{ konvergiert absolut.} \\ \text{falls } |x-x_0| > R_A \text{:} & \text{Die Reihe } A(x) \text{ divergiert.} \end{array}$

falls $|x - x_0| = R_A$: Es ist keine allgemeine Aussage möglich.

Insbesondere beschreibt A im Fall $R_A > 0$ eine Funktion $f_A : K_A \longrightarrow \mathbb{R}, x \longmapsto A(x)$. Oft bezeichnet man f_A ebenfalls

2. Die formale Ableitung von A hat denselben Konvergenzradius wie A, d. h. es gilt $R_A = R_{A'_{\text{formal}}}$. Ferner ist f_A differenzierbar auf K_A und es gilt

$$\forall x \in K_A: \quad f'_A(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}, \quad \text{also} \quad f'_A = f_{A'_{\text{formal}}}$$

MERKE: Potenzreihen dürfen im Inneren ihres Konvergenzbereichs gliedweise differenziert werden.

Bestimmung des Konvergenzradius

Es gelten die folgenden nützlichen Aussagen über den Konvergenzradius R_A :

Satz: Existiert ein $n_0 \in \mathbb{N}$ mit $a_n \neq 0$ für alle $n \geq n_0$, so gilt:

$$\liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \leqslant R_A \leqslant \limsup_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Insbesondere gilt: Existiert der Grenzwert $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$, so ist er gleich R_A .

Satz (Cauchy-Hadamard):

$$R_A = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}, \quad \text{wobei} \quad \frac{1}{0} := \infty \quad \text{und} \quad \frac{1}{\infty} := 0$$

 $^{^{1}\}mathrm{Die}$ meisten Betrachtungen können auch im Komplexen durchgeführt werden.

Beispiele

• Die geometrische Reihe

$$A(x) = \sum_{n=0}^{\infty} x^n$$
 (also $x_0 = 0$ und $a_n = 1$ für alle $n \in \mathbb{N}_0$)

ist eine Potenzreihe um 0. Wir wissen bereits, dass A(x) genau dann (sogar absolut) konvergiert, wenn |x| < 1 ist. Es gilt also $R_A = 1$ und $K_A = (-1, 1)$. In diesem Fall liegt in den beiden Randpunkten -1 und 1 jeweils keine Konvergenz vor. Man erhält eine differenzierbare Funktion

$$f_A: (-1,1) \longrightarrow \mathbb{R}, \quad x \longmapsto \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad \text{mit} \quad f'_A(x) = \sum_{n=1}^{\infty} nx^{n-1}$$

Den Konvergenzradius $R_A = 1$ kann man alternativ so berechnen²:

$$\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\left|\frac{1}{1}\right|=\lim_{n\to\infty}1=1\Longrightarrow K_A=1\qquad\text{oder auch}\qquad K_A=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{|a_n|}}=\frac{1}{\limsup_{n\to\infty}1=1}=1$$

• Die Exponentialreihe

$$B(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
 (also $x_0 = 0$ und $a_n = 1/n!$ für alle $n \in \mathbb{N}_0$)

ist eine Potenzreihe um 0. Wir wissen bereits, dass B(x) für alle $x \in \mathbb{R}$ (sogar absolut) konvergiert. Es gilt also $R_A = \infty$ und $K_A = \mathbb{R}$. Man erhält die differenzierbare Funktion

$$\exp: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \sum_{n=0}^{\infty} \frac{1}{n!} \ x^n \qquad \text{mit} \quad \exp'(x) = \sum_{n=1}^{\infty} n \ \frac{1}{n!} \ x^{n-1} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \ x^{n-1} = \sum_{n=0}^{\infty} \frac{1}{n!} \ x^n = \exp(x)$$

• Die Reihe

$$C(x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n \qquad \text{(also } x_0 = 0, \ a_0 = 0 \text{ und } a_n = 1/n \text{ für alle } n \in \mathbb{N})$$

ist eine Potenzreihe um 0. Wir wissen bereits, dass C(x) genau dann konvergiert, wenn $x \in [-1,1)$ ist. Es gilt also $R_A = 1$ und $K_A = (-1,1)$. Hier liegt im Randpunkt -1 Konvergenz vor (aber keine absolute Konvergenz!), während die Reihe im Randpunkt 1 divergiert. Man erhält die differenzierbare Funktion

$$f_C: (-1,1) \longrightarrow \mathbb{R}, \quad x \longmapsto \sum_{n=1}^{\infty} \frac{1}{n} x^n \qquad \text{mit} \quad f'_C(x) = \sum_{n=1}^{\infty} n \frac{1}{n} x^{n-1} = \sum_{n=1}^{\infty} x^{n-1} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Taylor-Entwicklung

Definition (Taylor-Polynom, Restglied)

Seien $n \in \mathbb{N}$, $a, b \in \mathbb{R}$ mit $a < b, f : (a, b) \longrightarrow \mathbb{R}$ n-mal differenzierbar und $x_0 \in (a, b)$. Dann heißt das Polynom

$$T_{n,f,x_0}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

das n-te Taylor-Polynom von f in x_0 und

$$R_{n,f,r_0}(x) = f(x) - T_{n,f,r_0}(x)$$

das zugehörige Restglied. Es gilt also $f = T_{n,f,x_0} + R_{n,f,x_0}$.

Satz (Darstellung des Restglieds)

Ist f(n+1)-mal stetig differenzierbar, so gilt:

$$R_{n,f,x_0}(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt \qquad (Integral-Darstellung)$$

$$= \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1} \quad \text{für ein } \xi \text{ zwischen } x_0 \text{ und } x \qquad (Lagrange-Darstellung)$$

²Man beachte, dass dies jeweils ein Zirkelschluss ist, da das Resultat im Beweis der verwendeten Kriterien bereits benötigt wird.

Definition (Taylor-Reihe)

Sei f jetzt beliebig oft differenzierbar. Dann heißt die Potenzreihe

$$T_{\infty,f,x_0}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

die Taylor-Reihe von f in x_0 .

Bemerkungen:

- (i) Ist $A(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ eine Potenzreihe um x_0 , so ist f_A auf K_A beliebig oft differenzierbar und für die Taylor-Reihe T_{∞, f_A, x_0} von f_A in x_0 gilt $T_{\infty, f_A, x_0} = A$, also $f_A^{(n)}(x_0)/n! = a_n$ für alle $n \in \mathbb{N}_0$.
- (ii) Im Allgemeinen muss die Taylor-Reihe nicht auf dem ganzen Definitionsbereich von f konvergieren oder die dadurch beschriebene Funktion mit f übereinstimmen. Man betrachte dazu die Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \qquad x \longmapsto \begin{cases} \exp(-1/x^2) & \text{, falls } x \neq 0 \\ 0 & \text{, falls } x = 0 \end{cases}$$

Man kann zeigen, dass f beliebig oft differenzierbar ist mit $f^{(n)}(0) = 0$ für alle $n \in \mathbb{N}_0$. Es ist also $T_{\infty,f,0} = 0$ die konstante Nullfunktion und stimmt damit in keiner Umgebung der 0 mit f überein.

(ii) Aus diesen Gründen führt man eine besondere Bezeichnung ein: f heißt analytisch in x_0 , wenn f in einer Umgebung von x_0 mit ihrer Taylor-Reihe in x_0 übereinstimmt, oder äquivalent wenn sich f in einer Umgebung von x_0 als Potenzreihe darstellen lässt. Obige Funktion f ist also nicht analytisch in 0.

f ist genau dann analytisch in x_0 , wenn für die Restglieder R_{n,f,x_0} gilt: $R_{n,f,x_0}(x) \longrightarrow 0$ für $n \longrightarrow \infty$ und x nahe x_0 .

Beispiel

Sei

$$f: (-1,1) \longrightarrow \mathbb{R}, \qquad x \longmapsto \ln(1+x)$$

Es gilt:

$$f'(x) = \frac{1}{1+x}, \qquad f''(x) = -\frac{1}{(1+x)^2}, \qquad f'''(x) = \frac{2}{(1+x)^3}, \qquad f^{(4)}(x) = -\frac{6}{(1+x)^4}, \qquad f^{(5)}(x) = \frac{24}{(1+x)^5}$$

Damit bestimmen wir die ersten 6 Taylor-Polynome von f in 0:

$$T_{0,f,0}(x) = \frac{f(0)}{0!} x^{0} = 0$$

$$T_{1,f,0}(x) = \frac{f(0)}{0!} x^{0} + \frac{f'(0)}{1!} x^{1} = x$$

$$T_{2,f,0}(x) = \frac{f(0)}{0!} x^{0} + \frac{f'(0)}{1!} x^{1} + \frac{f''(0)}{2!} x^{2} = x - \frac{1}{2} x^{2}$$

$$T_{3,f,0}(x) = \frac{f(0)}{0!} x^{0} + \frac{f'(0)}{1!} x^{1} + \frac{f''(0)}{2!} x^{2} + \frac{f'''(0)}{3!} x^{3} = x - \frac{1}{2} x^{2} + \frac{1}{3} x^{3}$$

$$T_{4,f,0}(x) = \frac{f(0)}{0!} x^{0} + \frac{f'(0)}{1!} x^{1} + \frac{f''(0)}{2!} x^{2} + \frac{f'''(0)}{3!} x^{3} + \frac{f^{(4)}(0)}{4!} x^{4} = x - \frac{1}{2} x^{2} + \frac{1}{3} x^{3} - \frac{1}{4} x^{4}$$

$$T_{5,f,0}(x) = \frac{f(0)}{0!} x^{0} + \frac{f'(0)}{1!} x^{1} + \frac{f''(0)}{2!} x^{2} + \frac{f'''(0)}{3!} x^{3} + \frac{f^{(4)}(0)}{4!} x^{4} + \frac{f^{(5)}(0)}{5!} x^{5} = x - \frac{1}{2} x^{2} + \frac{1}{3} x^{3} - \frac{1}{4} x^{4} + \frac{1}{5} x^{5}$$