Übungsaufgaben

Aufgabe 1

Sei

$$d: \left\{ \begin{array}{ccc} \mathbb{R} \times \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \ln \left(1 + |x-y|\right) \end{array} \right.$$

Zeige:

- a) d ist eine Metrik auf \mathbb{R} .
- b) Der metrische Raum (\mathbb{R}, d) ist vollständig.

Aufgabe 2

Sei (X,d) ein metrischer Raum, $f:X\longrightarrow\mathbb{R}$ stetig und $\alpha\in\mathbb{R}$. Zu $M\subset X$ bezeichne M° den offenen Kern und \overline{M} die abgeschlossene Hülle von M in (X,d). Beweise oder widerlege:

- a) (i) $\{x \in X : f(x) \leq \alpha\}^{\circ} \subset \{x \in X : f(x) < \alpha\}$
 - (ii) $\left\{x \in X : f(x) \leqslant \alpha\right\}^{\circ} \supset \left\{x \in X : f(x) < \alpha\right\}$
- b) (i) $\overline{\left\{x \in X : f(x) < \alpha\right\}} \subset \left\{x \in X : f(x) \leqslant \alpha\right\}$
 - (ii) $\overline{\{x \in X : f(x) < \alpha\}} \supset \{x \in X : f(x) \leqslant \alpha\}$

Aufgabe 3

Wir betrachten den \mathbb{R} -Vektorraum $C[0,1] := \{f : [0,1] \longrightarrow \mathbb{R} : f \text{ stetig}\}$ mit der Norm $||f||_{\infty} := \sup\{|f(x)| : x \in [0,1]\}$. Zeige:

a) $A := \big\{ f \in C[0,1] : f \text{ ist monoton wachsend} \big\}$ ist abgeschlossen.

HINWEIS: Betrachte konvergente Folgen in A.

b) $B := \{ f \in C[0,1] : f \text{ hat keine Nullstelle} \}$ ist offen.

HINWEIS: Finde zu jedem $f \in B$ ein $\varepsilon > 0$ mit $B_{\|\cdot\|_{\infty}}(f,\varepsilon) \subset B$.

- c) Ist $g:[0,1] \longrightarrow [0,1]$ stetig, so ist die Abbildung $G:C[0,1] \longrightarrow C[0,1], \ f \longmapsto f \circ g$, wohldefiniert und stetig.
- d) Ist $h: \mathbb{R} \longrightarrow \mathbb{R}$ gleichmäßig stetig, so ist die Abbildung $H: C[0,1] \longrightarrow C[0,1], f \longmapsto h \circ f$, wohldefiniert und stetig.

Aufgabe 4

- a) Welche der folgenden Mengen sind kompakt in $(\mathbb{R}^2, \|\cdot\|_2)$?
 - (i) $A_1 := \{(x_1, x_2)^T \in \mathbb{R}^2 : \sin(x_1) = \cos(x_2)\}$
 - (ii) $A_2 := \{(x_1, x_2)^T \in \mathbb{R}^2 : |x_2| \le 1 x_1^2\}$
 - (iii) $A_3 := \{xe^{-\|x\|_2^2} \in \mathbb{R}^2 : x \in \mathbb{R}^2, \|x\|_2 \geqslant 1\}$
- b) Sei $f:\mathbb{R}^n\longrightarrow\mathbb{R}^m.$ Zeige, dass die folgenden Aussagen äquivalent sind.
 - (i) f ist eigentlich, d. h. Urbilder kompakter Mengen unter f sind kompakt.
 - (ii) Jede Folge $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$, für die $(f(x_k))_{k\in\mathbb{N}}\subset\mathbb{R}^m$ beschränkt ist, hat eine konvergente Teilfolge.
- c) Seien (X, d_X) und (Y, d_Y) metrische Räume, X kompakt und $f: X \longrightarrow Y$ stetig und bijektiv. Zeige, dass auch $f^{-1}: Y \longrightarrow X$ stetig ist.

HINWEIS: Eine Abbildung ist genau dann stetig, wenn Urbilder abgeschlossener Mengen abgeschlossen sind.

Aufgabe 5

Sei

$$f: [1,16] \longrightarrow \mathbb{R}, \qquad t \longmapsto \frac{2}{3} (t-1) \sqrt{t-1}$$

Gib eine Parametrisierung des Graphen von f als Kurve in \mathbb{R}^2 an und berechne die Bogenlänge.

Aufgabe 6

Sei $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ homogen vom Grad $k \in \mathbb{N}$, d. h. für alle $\alpha \in \mathbb{R}$ und $x \in \mathbb{R}^n$ gelte $f(\alpha x) = \alpha^k f(x)$. Zeige, dass für alle $v \in \mathbb{R}^n$ gilt:

$$(\partial_v f)(v) = kf(v)$$

Dabei bezeichne $(\partial_v f)(v)$ die Richtungsableitung von f in v in der Richtung v.

Aufgabe 7

Sei

$$A := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : x_1 \sin(x_1) = x_2 + \sin(x_2) \right\}$$

Zeige: Es existiert ein $\varepsilon > 0$ und eine stetig differenzierbare Kurve $\varphi : (-\varepsilon, \varepsilon) \longrightarrow A$ mit $\varphi(0) = (0, 0)^T$. Berechne $\varphi'(0)$.

Aufgabe 8

Sei $n \geqslant 2$ und

$$M := \{(x_1, \dots, x_n)^T \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 = 1, \ x_1 + \dots + x_n = 0\}$$

Zeige: M ist eine Untermannigfaltigkeit des \mathbb{R}^n der Dimension n-2.

Aufgabe 9

Sei

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longmapsto x_1 x_2$$

Bestimme die absoluten Extrema von f auf der Menge

$$A := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : x_1^2 + x_2^2 \leqslant 2 \right\}$$

Aufgabe 10

Löse die folgenden Anfangswertprobleme.

- a) $y' = \ln(x)y + x^x$, y(1) = 1 auf $(0, \infty) \times \mathbb{R}$
- b) $y' = e^{e^x y} + e^x$, y(1) = e auf $(0, \infty) \times \mathbb{R}$

HINWEIS: Substituiere $z = e^y$.

c)
$$y' = \cos(x)y^2 + \cos(x)$$
, $y(0) = 0$ auf $\mathbb{R} \times \mathbb{R}$

Aufgabe 11

Bestimme alle reellen Lösungen der folgenden Differentialgleichung auf $\mathbb{R} \times \mathbb{R}$:

$$y''' + y'' - y' - y = e^{2x}$$

Aufgabe 12

Sei $G \subset \mathbb{R}$, $f: G \longrightarrow \mathbb{R}$ lokal Lipschitz-stetig, $I \subset \mathbb{R}$ ein Intervall und $\varphi: I \longrightarrow \mathbb{R}$ eine Lösung der Differentialgleichung y' = f(y). Zeige: φ ist konstant oder injektiv.

HINWEIS: Beachte den Satz von Rolle.