1. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Do., 22.04.2010, bis 17 Uhr, Lahnberge, Briefkästen Ebene D6

(1) (a) Schreiben Sie die folgenden komplexen Zahlen in der Normalform a + ib und berechnen Sie ihre absoluten Beträge.

(i)
$$\frac{1}{3+7i}$$
, (ii) $\left(\frac{1+i}{1-i}\right)^2$, (iii) $\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$.

(b) Bestimmen Sie jeweils eine komplexe Zahl z mit

(i)
$$z^2 = i$$
, (ii) $z^2 = -i$.

(2) Beweisen Sie die Gleichung

$$|z + w|^2 + |z - w|^2 = 2|z|^2 + 2|w|^2$$

für alle komplexen Zahlen z und w. Welcher geometrische Satz ist damit bewiesen?

(3) Sei V ein reeller Vektorraum, und sei $W = V \times V$ die Menge aller geordneten Paare von Vektoren aus V. Für je zwei Paare $\underline{w} = (\underline{v_1}, \underline{v_2})$ und $\underline{w}' = (\underline{v_1}', \underline{v_2}')$ definiere man

$$\underline{\underline{w}} + \underline{\underline{w'}} = (\underline{v_1} + \underline{v_1}', \underline{v_2} + \underline{v_2}').$$

Ist $\lambda = a + ib$ eine komplexe Zahl, so definiere man

$$\lambda \cdot \underline{\underline{w}} = (a \cdot \underline{v_1} - b \cdot \underline{v_2}, a \cdot \underline{v_2} + b \cdot \underline{v_1}).$$

- (a) Zeigen Sie, dass W mit den so definierten linearen Operationen ein komplexer Vektorraum mit dem Paar $(\underline{0},\underline{0})$ als Nullvektor ist.
- (b) Zeigen Sie, dass durch

$$\varphi(\underline{v}) = (\underline{v}, \underline{0})$$

eine injektive Abbildung $\varphi: V \to W$ definiert wird.

(c) Zeigen Sie: Für alle $\underline{v},\underline{v}'\in V$ und $a\in\mathbb{R}$ gilt

$$\varphi(\underline{\underline{v}} + \underline{\underline{v}}') = \varphi(\underline{\underline{v}}) + \varphi(\underline{\underline{v}}') \quad \text{und} \quad \varphi(a \cdot \underline{\underline{v}}) = a \cdot \varphi(\underline{\underline{v}}),$$

wobei a ggf. als komplexe Zahl a + 0i aufzufassen ist.

(Bemerkung: Der komplexe Vektorraum W heißt die komplexe Erweiterung des reellen Vektorraums V. Die Abbildung φ bettet V isomorph in W ein, so dass im Folgenden der Vektor $\underline{v} \in V$ mit dem Paar $\varphi(\underline{v}) = (\underline{v}, \underline{0})$ identifiziert werden kann.)

(4) Es sei $\psi:V\to V'$ eine lineare Abbildung der reellen Vektorräume V und V'. Ferner seien W und W' die komplexen Erweiterungen von V und V' aus Aufgabe (3). Zeigen Sie, dass genau eine lineare Abbildung $\hat{\psi}:W\to W'$ existiert mit $\hat{\psi}(\underline{v})=\psi(\underline{v})$ für alle $\underline{v}\in V$.