3. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Do., 06.05.2010, bis 17 Uhr, Lahnberge, Briefkästen Ebene D6

(1) Sei (V,β) ein n-dimensionaler unitärer Raum. Sei φ ein Endomorphismus von V, und sei

$$\chi_{\varphi}(X) = a_0 + a_1 X + \ldots + a_n X^n \in \mathbb{C}[X]$$

das charakteristische Polynom von φ .

Bestimmen Sie das charakteristische Polynom des adjungierten Endomorphismus φ^* .

- (2) Sei (V,β) ein endlichdimensionaler unitärer Raum. Sei φ ein normaler Endomorphismus von V. Zeigen Sie:
 - (a) Jeder Vektor $\underline{v} \in V$ besitzt eine eindeutige Darstellung $\underline{v} = \underline{u} + \underline{w}$ mit $\underline{u} \in \varphi(V)$ und $\underline{w} \in \operatorname{Kern} \varphi$. Dabei gilt $\underline{u} \perp \underline{w}$.
 - (b) Es gilt $\varphi(V) = \varphi^2(V)$.
- (3) Sei (V, β) ein unitärer Raum mit Dim V = n. Sei U ein Unterraum von V und sei π_U die orthogonale Projektion von V auf U.

Beweisen Sie: $\pi_U = \pi_U^*$.

- (4) Für $A, B \in \mathfrak{M}(n; \mathbb{C})$ setzen wir $\beta(A, B) = \operatorname{Spur}(A \cdot B^*)$. Zeigen Sie:
 - (a) $(\mathfrak{M}(n;\mathbb{C}),\beta)$ ist ein unitärer Raum.
 - (b) Sind $A, B \in \mathfrak{M}(n; \mathbb{C})$ normale Matrizen und gilt $A \cdot B = \mathbf{0}$, so folgt $B \cdot A = \mathbf{0}$.