4. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Fr., 14.05.2010, bis 14 Uhr, Lahnberge, Briefkästen Ebene D6

- (1) Sei (V, β) ein endlichdimensionaler unitärer Raum. Seien φ und ψ Endomorphismen von V. Zeigen Sie:
 - (a) $(\varphi \circ \psi)^* = \psi^* \circ \varphi^*$.
 - (b) Seien φ und ψ selbstadjungiert. Dann gilt: $\varphi \circ \psi$ ist selbstadjungiert genau dann, wenn φ und ψ miteinander vertauschbar sind.
- (2) Sei (V, β) ein endlichdimensionaler unitärer Raum. Sei φ ein Endomorphismus von V.

Zeigen Sie: φ ist selbstadjungiert genau dann, wenn für alle $\underline{\underline{v}} \in V$ gilt: $\beta(\varphi(\underline{v}),\underline{v}) \in \mathbb{R}$.

Anleitung: Untersuchen Sie für $\underline{v}, \underline{w} \in V$

$$\beta(\varphi(\underline{\underline{v}}+\underline{\underline{w}}),\underline{\underline{v}}+\underline{\underline{w}}) \quad \text{und} \quad \beta(\varphi(\underline{\underline{v}}+i\underline{\underline{w}}),\underline{\underline{v}}+i\underline{\underline{w}}),$$

um die Gleichung $\beta(\varphi(\underline{v}), \underline{w}) = \beta(\underline{v}, \varphi(\underline{w}))$ herzuleiten.

- (3) Sei (V, β) ein endlichdimensionaler unitärer Raum. Ein Endomorphismus φ von V heißt antiselbstadjungiert genau dann, wenn gilt: $\varphi^* = -\varphi$. Zeigen Sie:
 - (i) Ist φ antiselbstadjungiert, so gilt für alle $\underline{v} \in V$: $\text{Re}(\beta(\varphi(\underline{v}),\underline{v})) = 0$.
 - (ii) Sei φ antiselbstadjungiert, und sei λ ein Eigenwert von φ . Dann gilt Re $\lambda=0$.
 - (iii) Ist (V, β) euklidisch, so ist ein Endomorphismus φ von V genau dann antiselbstadjungiert, wenn für alle $\underline{\underline{v}} \in V$ gilt: $\beta(\varphi(\underline{\underline{v}}), \underline{\underline{v}}) = 0$.
- (4) Sei φ ein selbstadjungierter Endomorphismus des endlichdimensionalen unitären Vektorraums (V, β) . Sämtliche Eigenwerte von φ seien positiv.

Zeigen Sie: φ und φ^2 haben dieselben Eigenvektoren, und die Eigenwerte von φ^2 sind die Quadrate der Eigenwerte von φ .