5. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Do., 20.05.2010, bis 17 Uhr, Lahnberge, Briefkästen Ebene D6

(1) Berechnen Sie die Eigenwerte der Matrix

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

und bestimmen Sie eine Matrix $S \in \mathfrak{M}(3;\mathbb{R})$, so dass $S^{-1}AS$ eine Diagonal-matrix ist.

(2) Sei φ der von

$$A = \begin{pmatrix} \frac{1}{2} + \frac{\sqrt{2}}{4} & -\frac{1}{2} + \frac{\sqrt{2}}{4} & -\frac{1}{2} \\ -\frac{1}{2} + \frac{\sqrt{2}}{4} & \frac{1}{2} + \frac{\sqrt{2}}{4} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

induzierte Endomorphismus von \mathbb{R}^3 .

- (i) Zeigen Sie: φ ist normal.
- (ii) Geben Sie eine Basis des \mathbb{R}^3 an, bezüglich derer φ eine Koordinatenmatrix wie in Satz 11.16 hat.
- (3) Sei (V, β) ein unitärer (bzw. Euklidischer) Vektorraum der Dimension n. Sei φ ein Endomorphismus von V. Zeigen Sie:
 - (i) φ ist antiselbstadjungiert genau dann, wenn die Koordinatenmatrix A von φ bezüglich einer Orthonormalbasis $\underline{e}_1, \ldots, \underline{e}_n$ von V der Beziehung $A^* = -A$ genügt.
 - (ii) Ist φ antiselbstadjungiert, und ist V unitär, so gibt es eine Orthonormalbasis $\underline{e}_1, \dots, \underline{e}_n$ von V, welche aus Eigenvektoren von φ besteht. Ist $A = (a_{ij})_{1 \leq i,j \leq n}$ die Koordinatenmatrix von φ bezüglich $\underline{e}_1, \dots, \underline{e}_n$, so gilt für $i = 1, \dots, n$: Re $a_{ii} = 0$.
 - (iii) Sei A eine Matrix in $\mathfrak{M}(n;\mathbb{C})$ mit $A^* = -A$, so gibt es eine nichtsinguläre Matrix $S \in \mathfrak{M}(n;\mathbb{C})$, so dass gilt:

$$S^{-1}AS = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

mit $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ und Re $\lambda_i = 0$ für $i = 1, \ldots, n$. (Vgl. Aufgabe (3), Blatt 4.)

(4) Sei (V,β) ein unitärer Vektorraum mit Dim V=n. Sei φ ein Endomorphismus von V. Dann besitzt φ eine eindeutige Darstellung der Form

$$\varphi = \varphi_1 + \varphi_2$$

mit Endomorphismen φ_1 und φ_2 , so dass φ_1 selbstadjungiert und φ_2 antiselbstadjungiert sind.

(Anleitung: $\varphi_1 = \frac{1}{2}(\varphi + \varphi^*)$, $\varphi_2 = \frac{1}{2}(\varphi - \varphi^*)$.) (Vgl. Aufgabe (3), Blatt 4.)