7. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Fr., 04.06.2010, bis 14 Uhr, Lahnberge, Briefkästen Ebene D6

- (1) Sei (V, β) ein n-dimensionaler euklidischer Raum. Sei φ ein orthogonaler Endomorphismus von V. Zeigen Sie:
 - (i) $|\operatorname{Spur} \varphi| \leq n$.
 - (ii) $|\operatorname{Spur} \varphi| = n$ genau dann, wenn $\varphi = \operatorname{id}_V$ oder $\varphi = -\operatorname{id}_V$.
- (2) Sei (V,β) ein n-dimensionaler unitärer Raum. Sei U ein Unterraum von V. Dann gilt $V=U\oplus U^{\perp},$ d. h. jeder Vektor $\underline{\underline{v}}\in V$ besitzt eine eindeutige Darstellung der Form $\underline{\underline{v}}=\underline{\underline{u}}+\underline{\underline{w}}$ mit $\underline{\underline{u}}\in U, \underline{\underline{w}}\in U^{\perp}$. Sei $\varphi:V\to V$ die durch

$$\varphi(\underline{\underline{v}}) = \varphi(\underline{\underline{u}} + \underline{\underline{w}}) = \underline{\underline{u}} - \underline{\underline{w}}$$

definierte Abbildung. Zeigen Sie:

- (i) φ ist ein unitärer, selbstadjungierter Endomorphismus von V.
- (ii) Sei speziell V der \mathbb{R}^3 und β das kanonische Skalarprodukt. Sei U der von $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ aufgespannte Unterraum. Bestimmen Sie die Matrix von φ bezüglich der kanonischen Basis des \mathbb{R}^3 .
- (3) Sei (V, β) ein endlichdimensionaler unitärer Raum. Sei φ ein selbstadjungierter unitärer Endomorphismus von V.

Zeigen Sie: Es gibt einen Unterraum U von V, so dass φ die in Aufgabe (2) zu U definierte Abbildung ist.

(4) Im euklidischen Raum \mathbb{R}^3 mit dem kanonischen Skalarprodukt sei U die von

$$\underline{\underline{a}} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{und} \quad \underline{\underline{b}} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

aufgespannte Ebene. Sei φ die Drehung des \mathbb{R}^3 um den Winkel ϑ um die auf U senkrecht stehende Ursprungsgerade.

Bestimmen Sie die Koordinatenmatrix von φ bezüglich der kanonischen Basis des \mathbb{R}^3 .

(Anleitung: Bestimmen Sie eine Orthonormalbasis $\underline{a}_1, \underline{a}_2, \underline{a}_3$ von \mathbb{R}^3 , so dass $\underline{a}_1, \underline{a}_2$ die Ebene U aufspannen, und beschreiben Sie zunächst φ mit $\underline{a}_1, \underline{a}_2, \underline{a}_3$.)