8. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Do., 10.06.2010, bis 17 Uhr, Lahnberge, Briefkästen Ebene D6

- (1) Untersuchen Sie, bei welchen der folgenden Beispiele es sich um Äquivalenzrelationen handelt. Geben Sie ggf. ein vollständiges Repräsentantensystem für die Menge der Äquivalenzklassen an:
 - (i) Sei M eine nichtleere Menge. Für Elemente $x, y \in M$ gelte x R y genau dann, wenn x = y.
 - (ii) Sei $\mathbb R$ die Menge der reellen Zahlen. Für Elemente $x,y\in\mathbb R$ gelte x R y genau dann, wenn x< y.
 - (iii) Sei $\mathbb R$ die Menge der reellen Zahlen. Für $x,y\in\mathbb R$ gelte x R y genau dann, wenn $x\leqslant y$.
 - (iv) Sei \mathbb{Z} die Menge der ganzen Zahlen. Sei n eine feste natürliche Zahl. Für $x, y \in \mathbb{Z}$ gelte x R y genau dann, wenn n ein Teiler von x y ist (d. h. $\exists z \in \mathbb{Z}$ mit $n \cdot z = x y$).
- (2) Seien M und Nnichtleere Mengen und sei $f:M\to N$ eine Abbildung. Zeigen Sie: Auf M wird durch

$$m_1 R m_2 \Longleftrightarrow f(m_1) = f(m_2)$$

eine Äquivalenzrelation definiert. f induziert eine Bijektion zwischen M/R und f(M).

Zeigen Sie weiter: Ist M eine nichtleere Menge und ist R eine Äquivalenzrelation auf M, so gibt es eine Menge N und eine Abbildung $f: M \to N$, so dass gilt:

$$m_1 R m_2$$
 genau dann, wenn $f(m_1) = f(m_2)$.

(Mit anderen Worten: Jede Äquivalenzrelation auf M kann durch eine Abbildung wie im ersten Teil definiert werden.)

bitte wenden!

- (3) Sei V ein n-dimensionaler Vektorraum über dem Körper K. Sei φ ein Endomorphismus von V. Für einen Vektor $\underline{v} \in V$ heißt ein Polynom $p(X) \in K[X] \setminus \{0\}$ φ -Annihilationspolynom von \underline{v} , falls gilt: $p(\varphi)(\underline{v}) = \underline{0}$. Das φ -Annihilationspolynom von \underline{v} mit minimalem Grad und mit führendem Koeffizienten 1 heißt φ -Minimal-polynom von \underline{v} . Zeigen Sie:
 - (i) Sei $\underline{\underline{v}} \in V$ und sei $p_{\underline{\underline{v}}}(X)$ das φ -Minimalpolynom von $\underline{\underline{v}}$. Dann gilt: $p_{\underline{\underline{v}}}(X)$ ist ein Teiler des Minimalpolynoms $\mu_{\varphi}(X)$ von φ .

 (Anleitung: Divisionsalgorithmus für Polynome.)
 - (ii) Der Grad von $p_{\underline{\underline{v}}}(X)$ (vgl. (i)) stimmt mit der Dimension des Unterraums

$$U(\varphi, \underline{v}) := \langle \underline{v}, \varphi(\underline{v}), \varphi^2(\underline{v}), \ldots \rangle$$

überein.

(iii) Hat $p_{\underline{v}}(X)$ den Grad k, so bilden

$$\underline{v}, \varphi(\underline{v}), \dots, \varphi^{k-1}(\underline{v})$$

eine Basis von $U(\varphi, \underline{v})$.

(iv) $\varphi|_{U(\varphi,\underline{v})}$ ist ein Endomorphismus von $U(\varphi,\underline{v})$. $p_{\underline{v}}(X)$ stimmt mit dem Minimalpolynom des Endomorphismus

$$\varphi|_{U(\varphi,v)}:U(\varphi,\underline{v})\longrightarrow U(\varphi,\underline{v})$$

überein.