9. Übungsblatt zur Vorlesung "Lineare Algebra II"

Abgabe: Do., 17.06.2010, bis 17 Uhr, Lahnberge, Briefkästen Ebene D6

- (1) Sei U der von $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ und $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ erzeugte Unterraum des \mathbb{R}^3 .
 - (i) Geben Sie ein vollständiges Repräsentantensystem in \mathbb{R}^3 für die Elemente von \mathbb{R}^3/U an.
 - (ii) Bestimmen Sie eine Basis von \mathbb{R}^3/U .
 - (iii) Behandeln Sie (i) und (ii) für den von $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ und $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ erzeugten Unterraum U.
- (2) Seien V und V' Vektorräume über dem Körper K. Seien U bzw. U' Unterräume von V bzw. von V'. Sei $\varphi:V\to V'$ eine lineare Abbildung. Seien $\pi_U:V\to V/U$ und $\pi_{U'}:V'\to V'/U'$ die kanonischen Projektionen. Zeigen Sie:

Genau dann gibt es eine lineare Abbildung

$$\tilde{\varphi}: V/U \longrightarrow V'/U',$$

so dass gilt: $\tilde{\varphi} \circ \pi_U = \pi_{U'} \circ \varphi$, wenn $\varphi(U) \subset U'$.

$$V \xrightarrow{\pi_U} V/U$$

$$\varphi \downarrow \qquad \qquad \downarrow \tilde{\varphi}$$

$$V' \xrightarrow{\pi_{U'}} V'/U'$$

Anleitung: Definieren Sie $\tilde{\varphi}$ durch die Zuordnung

$$\underline{v} \bmod U \longmapsto \varphi(\underline{v}) \bmod U'$$
.

Zeigen Sie: Diese Zuordnung ist eine Abbildung, wenn $\varphi(U) \subset U'$.

(3) Sei

$$A = \begin{pmatrix} 25 & 34 & 18 \\ -14 & -19 & -10 \\ -4 & -6 & -1 \end{pmatrix} \in \mathfrak{M}(3; \mathbb{R}).$$

- (i) Zeigen Sie: A zerfällt über \mathbb{R} .
- (ii) Bestimmen Sie eine zu A ähnliche Matrix nach Satz 13.21.
- (4) Sei V ein Vektorraum über dem Körper K mit Dim V=n. Sei φ ein Endomorphismus von V mit Rang $\varphi=1$.

Zeigen Sie: Entweder ist φ diagonalisierbar oder φ ist nilpotent.