Philipps-Universität Marburg Fachbereich Mathematik und Informatik Prof. Dr. H. Holzmann G. Alexandrovich

Übungen zur vertiefenden mathematischen Statistik

Blatt 8

Abgabe: Montag, 17.06.2013 vor der Vorlesung

Aufgabe 1 (V) Sei $U_n(h)$ eine U-Statistik mit Kern h der Ordnung m und es gelte $\mathbb{E} h(X_1,\ldots,X_m)^2 < \infty$. Es gilt die asymptotische Aussage

$$\sqrt{n}[U_n - \mathbb{E}(U_n)] \stackrel{d}{\to} \mathcal{N}(0, m^2\zeta_1),$$

wobei $\zeta_1 := \text{Var } \mathbb{E}(h(X_1, \dots, X_n) | X_1) > 0$ vorausgestzt wird.

Machen Sie einen Vortrag (30-40 min) über den Beweis dieser Aussage mittels der Projektionsmethode.

Literatur: Shao J.: Mathematical Statistics Springer, (2003).

Aufgabe 2 Für eine U-Statistik $U_n(h)$ mit Kern h betrachten wir folgende Größen

$$h_k(x_1, \dots, x_k) = \mathbb{E} h(x_1, \dots, x_k, X_{k+1}, \dots, X_m), k = 1, \dots, m,$$

 $\zeta_k = \text{Var } h_k(X_1, \dots, X_n), k = 1, \dots, m.$

Sei $h(x_1, x_2, x_3) = 1_{(-\infty,0)}(x_1 + x_2 + x_3)$. Berechnen Sie h_k und ζ_k für k = 1, 2, 3, für $U_n(h)$ basierend auf u.i.v Beobachtungen X_1, \ldots, X_n mit Verteilungsfunktion F_{X_1} .

Aufgabe 3 Sei $U_n(h)$ eine U-Statistik mit Kern h basierend auf u.i.v Beobachtungen X_1, \ldots, X_n und ζ_i wie in Aufgabe 2, $i = 1, \ldots, m$. Zeigen Sie $\zeta_1 \leq \zeta_2 \leq \ldots \leq \zeta_m$.

Hinweis: Sie können die Jensen'sche Ungleichung für bedingte Erwartungswerte benutzen.