Philipps-Universität Marburg Fachbereich Mathematik und Informatik Prof. Dr. H. Holzmann G. Alexandrovich

Übungen zur vertiefenden mathematischen Statistik

Blatt 9

Abgabe: Montag, 24.06.2013 vor der Vorlesung

Aufgabe 1 (V) Sei X_1, \ldots, X_n eine u.i.v. Stichprobe einer Binomialverteilung mit unbekanntem Parameter p. Machen Sie einen Vortrag (30-40 min.) über den UMPU-Test der Hypothese $H_0: p = p_0$ gegen $H_1: p \neq p_0$. Gehen Sie dabei auf die Theorie zur Konstruktion von UMPU-Tests in einparamterischen Exponentialfamilien ein.

Vergleichen Sie die Power des UMPU-Tests (Funktion umpu.binom() aus dem R-Paket ump) mit der eines exakten Binomialtests (Funktion binom.test() aus dem Paket stats) im Rahmen einer Simulation.

Literatur: Lehmann L. E.: Testing Statistical Hypotheses Springer, (2008).

Aufgabe 2 Seien f_1, \ldots, f_{m+1} messbare Funktionen auf \mathbb{R}^p , integrierbar bezüglich eines σ endlichen Maßes ν und $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$. Seien

$$\mathcal{T} := \{ \phi : \mathbb{R}^p \to [0, 1] \mid \phi \text{ messbar }, \int \phi(x) f_i(x) d\nu(x) \le \alpha_i, \ i = 1, \dots, m \},$$

$$\mathcal{T}_0 := \{ \phi \in \mathcal{T} \mid \int \phi(x) f_i(x) d\nu(x) = \alpha_i, \ i = 1, \dots, m \}.$$

Zeigen Sie: Falls Konstanten $c_1, \ldots, c_m \in \mathbb{R}$ existieren, s.d.

$$\phi^*(x) = \begin{cases} 1 & f_{m+1}(x) > \sum_{j=1}^m c_j f_j(x) \\ 0 & f_{m+1}(x) < \sum_{j=1}^m c_j f_j(x) \end{cases}$$

Element von \mathcal{T}_0 ist, dann maximiert ϕ^* das Integral $\int \phi(x) f_{m+1}(x) d\nu(x)$ über \mathcal{T}_0 . Sind zusätzlich die Konstanten $c_j \geq 0$, so maximiert ϕ^* das Integral $\int \phi(x) f_{m+1}(x) d\nu(x)$ über \mathcal{T} .

Aufgabe 3 Sei $(\mathcal{X}, \mathcal{F}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ ein statistisches Modell und ϕ^* ein UMP-Test mit Umfang $\alpha \in (0,1)$ für das Testproblem $H_0: \theta = \theta_0$ gegen $H_1: \theta = \theta_1$, für zwei bekannte Elemente $\theta_0, \theta_1 \in \Theta$. Sei $\beta = G_{\phi^*}(\theta_1) < 1$.

Zeigen Sie: Der Test $1 - \phi^*$ ist ein UMP-Test zum Niveau $1 - \beta$ für das Testproblem $H_0: \theta = \theta_1$ gegen $H_1: \theta = \theta_0$.