Arbeitsgebiet Stochastik und mathematische Statistik

Prof. Dr. Hajo Holzmann Daniel Hohmann

WS 2010/11

9. Übungsblatt zur Stochastik 2

Abgabe: Montag, 20.12.2010

Aufgabe 32 (4 Punkte)

Die Zufallsvariable X genügt per Definition der studentschen t-Verteilung mit n Freiheitsgraden, $n \in \mathbb{N}$, falls ihre Verteilung die Lebesgue-Dichte

$$f_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} , \quad x \in \mathbb{R}$$

besitzt, $X \sim t(n)$. Seien Z standard normalverteilt und $X_n \sim t(n)$, $n \in \mathbb{N}$.

(i) Verwenden Sie die Stirling-Approximation

$$\Gamma(x) = \sqrt{2\pi/x} (x/e)^x e^{\alpha(x)} \quad , \quad x > 0$$

mit $\alpha(x) \to 0$ für $x \to \infty$, um zu zeigen, dass

$$\lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n}\Gamma\left(\frac{n}{2}\right)} = \frac{1}{\sqrt{2}}.$$

(ii) Folgern Sie $X_n \Rightarrow Z$.

Aufgabe 33 (4 Punkte)

Seien X_1, X_2, \ldots reelle Zufallsvariable mit gleichmäßig beschränktem zweiten Moment, d.h. es existiert ein C > 0 mit

$$\mathbf{E}(X_n^2) \le C$$
 , $n \in \mathbb{N}$.

Zeigen Sie, dass die Familie $(X_n)_{n\in\mathbb{N}}$ straff ist.

Aufgabe 34 (4 Punkte)

Seien X_1, X_2, \ldots u.i.v. Zufallsvariable und $S_n := X_1 + \ldots + X_n$. Die zu X_1 gehörige charakteristischer Funktion φ sei differenzierbar in 0 mit $\varphi'(0) = i\mu$ für ein $\mu \in \mathbb{R}$. Zeigen Sie, dass dann

$$\frac{S_n}{n} \longrightarrow \mu$$

für $n \to \infty$ in Wahrscheinlichkeit.

Hinweis: Sind $c, c_1, c_2, \ldots \in \mathbb{C}$ mit $\lim_n c_n = c$, so gilt $\lim_n (1 + c_n/n)^n = e^c$.

Aufgabe 35 (4 Punkte)

Seien X_1, X_2, \ldots u.i.v. Zufallsvariable mit $X_1 \geq 0$, $\mathbf{E}(X_1) = 1$ und $\mathbf{V}(X_1) = \sigma^2 \in (0, \infty)$ sowie $S_n = X_1 + \ldots + X_n$. Zeigen Sie unter Verwendung der Delta-Methode, dass

$$\frac{2(\sqrt{S_n} - \sqrt{n})}{\sigma} \Rightarrow Z,$$

wobei wieder $Z \sim N(0, 1)$.