Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Prof. Dr. Hajo Holzmann

M. Sc. Philipp Naumann

Übungen zur Wahrscheinlichkeitstheorie (Stochastik II)

Abgabe: Montag, den 14.01.2013, 12:00 Uhr, HG 00/0070

Aufgabe 1 (4 Punkte)

Seien $(N_t)_{t\geqslant 0}$ und $(N'_t)_{t\geqslant 0}$ zwei Poisson Prozesse mit Intensitäten $\lambda, \lambda' > 0$. Die Prozesse seien unabhänig, d.h. $\sigma(N_t:t\geqslant 0)$ und $\sigma(N'_t:t\geqslant 0)$ sind unabhängig. Zeigen Sie: Die Familie $(N_t+N'_t)_{t\geqslant 0}$ ist wieder ein Poisson Prozess mit Intensität $\lambda+\lambda'$.

Aufgabe 2 (4 Punkte)

Sei $(N_t)_{t\geqslant 0}$ ein Poisson Prozess auf einem W-Raum (Ω, \mathcal{A}, P) sowie $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(t) = \begin{cases} t, & t \in \mathbb{Q} \\ 0, & t \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Weiter seien $X:\Omega\to\mathbb{R}$ eine Zufallsvariable mit stetiger Verteilung und

$$M_t(\omega) = N_t(\omega) + f(t + X(\omega)), \quad \omega \in \Omega, t \geqslant 0.$$

Zeigen Sie:

- a) Die Familie $(M_t)_{t\geqslant 0}$ ist kein Poisson Prozess, denn sie erfüllt keine der drei geforderten Pfadeigenschaften.
- b) Die Prozesse $(M_t)_{t\geqslant 0}$ und $(N_t)_{t\geqslant 0}$ besitzen die gleichen endlich-dimensionalen Verteilungen, da für beliebiges $t\geqslant 0$ gilt: $P(M_t=N_t)=1$.

Aufgabe 3 (4 Punkte)

Sei $(N_t)_{t\geqslant 0}$ ein Poisson Prozess mit Intensität λ . Zeigen Sie:

Für jedes $s \ge 0$ ist $(N_{s+t} - N_s)_{t \ge 0}$ wieder ein Poisson Prozess mit Intensität λ und unabhängig von $\sigma(N_r; r \le s)$.

Aufgabe 4 (4 Punkte + 2 Zusatzpunkte)

Sei X eine Poisson-verteilte Zufallsvariable mit Parameter $\lambda > 0$, also

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

Es seien Y_1, Y_2, \ldots u.i.v. und von X unabhängige Zufallsvariablen mit Verteilung

$$P(Y_i = 0) = 1 - p$$
, $P(Y_i = 1) = p$ für ein $p \in (0, 1)$.

Betrachte die Zufallsvariable Z mit

$$Z = \begin{cases} Y_1 + Y_2 + \dots + Y_n, & \text{falls } X = n \\ 0, & \text{falls } X = 0. \end{cases}$$

- a) Geben Sie die bedingte Verteilung von Z
 gegeben X=nan.
- b) Zeigen Sie mit Hilfe der Formel der totalen Wahrscheinlichkeit, dass $Z \sim Poi(p\lambda)$.
- c) Seien $(W_n)_{n\geqslant 1}$ unabhängige, $Exp(\lambda)\text{-verteilte}$ Zufallsvariablen und

$$T_n = W_1 + W_2 + \dots + W_n.$$

Nach Vorlesung ist durch die Konstruktion

$$N_t = \sum_{n=1}^{\infty} \mathbf{1}_{\{T_n \leqslant t\}}$$

die Familie $(N_t)_{t\geqslant 0}$ ein Poisson Prozess. Zeigen Sie unter Verwendung von b), dass der ausgedünnte Prozess $(\tilde{N}_t)_{t\geqslant 0}$ definiert durch

$$\tilde{N}_t = \sum_{n=1}^{\infty} Y_n \mathbf{1}_{\{T_n \leqslant t\}}$$

ein Poisson Prozess zum Parameter $p\lambda$ ist.