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1. Introduction

During the last century mixture models have become of great interest in the field of
statistic analysis. All the more when group structure within the given data is known
or at least supposed, modeling heterogeneity by means of a mixture of distributions is
highly reasonable and forms the basic tool for advanced cluster analysis, latent class
analysis, and discriminant analysis. But applications are more wide-spread. The use
of mixture models also provides a useful framework for the general modeling and
fitting of unknown distributional shapes, e. g. density estimation, even if the single
components do not have a physical interpretation. The main reason, of course, is the
higher flexibility one gains through working with mixtures of varied distributions,
without, however, losing control of the shape and the number of components as it
is in general kernel density estimation, for instance.

First approaches to statistic analysis using mixture models are due to Newcomb
[19] and Pearson [20]. In his now classic paper Pearson fits a mixture of two nor-
mal distributions to a sample of crab measurements, wherewith he attempts to
substantiate the presence of two subspecies within the observed population. The
unknown parameters of his model are determined by means of the so called method
of moments. In the following decades finite mixture models, especially parametric
mixtures, were studied exhaustively. With the advent of high speed computers the
methodology of estimation turned to maximum likelihood techniques, attributable
to Rao [21], and later also to the application of the EM algorithm, first formalized
by Dempster, Laird, and Rubin [8].1

In the seventies, however, first questions about the predominant usage of paramet-
ric mixture models arose. In fact, given observed data, stipulating the underlying
parametric family of distributions is hard but essential. This is why the field of
interest also turned to the study of so called semiparametric mixture models. In
the early eighties Hall [10] and Titterington [24], for example, introduced estima-
tors for the mixing proportions of a finite mixture without imposing any parametric
assumptions to the component distributions. The proposed methodology, however,
needs the number of components to be fixed and known. Further, training data
has to be on hand, not only for the mixture itself but rather for each single compo-
nent. About twenty years later Hettmansperger and Thomas [13] and Cruz-Medina,
Hettmansperger, and Thomas [7] suggested a generalized method, the so called cut-
point approach, an estimation algorithm for both the mixing proportions and the
unknown number of components. Essential for this methodology is the presence
of independent and identically distributed repeated measurements for each subject.

1For a brief sketch of the history of finite mixture models see e. g. McLachlan and Peel [18].
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Training data for the single mixture components is no longer required. Hall and
Zhou [11] considered a related model, a semiparametric two-component mixture
for d-variate data, where the component distributions are unspecified except of the
assumption that each observation, conditioned on the component which it comes
from, has independent marginals. They established identifiability of their model for
d ≥ 3 and suggested a strongly consistent estimation method, including estimates
for the mixing proportions and the two d-variate component distributions. Hunter,
Wang, and Hettmansperger [14] and Bordes, Mottelet, and Vandekerkhove [5], in-
dependently of each other, considered a k-component mixture for univariate data
with coinciding mixture components up to individual location parameters. Assum-
ing the component distributions to be symmetric, they proved identifiability of their
mixture model for k = 2 and k = 3 and introduced an estimator, which, in case
of identifiability, is strongly consistent for the mixing proportions and the location
parameters under mild assumptions. At the same time Bordes, Delmas, and Van-
dekerkhove [4] treated a semiparametric two-component mixture having symmetric
but potentially different component distributions. In order to obtain identifiability
in this generalized setup they assumed one of the mixture components to be known.
Applying this model is reasonable whenever one component is actually known, of
course, but also when at least additional training data is available for one of the
mixture components. Thus, it can be ranged in between the models of Hall [10]
and Hunter et al. [14]. A consistent estimator for the mixing proportions and the
location parameter of the unknown component was provided.

In this work we will exclusively address the type of mixture model considered by
Bordes et al. [4] and also Bordes and Vandekerkhove [3], i. e. modeling univariate
data by means of a semiparametric two-component mixture with symmetric com-
ponent distributions, where adequate information about one of the components is
assumed to on hand. The thesis is organized as follows.

Section 2 gives basic definitions of identifiability and a mathematical constitution
of the considered mixture model first. A brief summary of the identifiability results
established by Bordes et al. [4] follows. Thereafter, we consider two extensions of
this mixture model. We introduce an additional location parameter on the one
hand and an additional scale parameter on the other hand and suggest conditions
providing identifiability in these generalized setups.

In section 3 an adapted semiparametric estimator for the location parameter ex-
tended mixture model is introduced. After recapitulating some basic theory of em-
pirical processes, this estimator is proved to be strongly consistent for its Euclidean
part and asymptotically normal as a whole.

Finally, we give a numerical validation of the established estimator in section 4
and a brief outlook to future work in section 5.
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2.1. Definitions

Given a family of probability distributions F , commonly represented by the cor-
responding cumulative distribution functions (cdf) or probability density functions
(pdf), a finite mixture model is determined by its number of components k ∈ N, an
underlying parameter space Θ, and a mixture m, stipulating the mixing regulation.
Frequently, for some k, d ∈ N,

Θ =
{

(p1, . . . , pk) ∈ Rk | 0 ≤ p1, . . . , pk ≤ 1,
∑k

i=1 pi = 1
}
×Fk

and

m(x; θ) =
k∑
i=1

pifi(x) , x ∈ Rd , (2.1.1)

where θ = (p1, . . . , pk, f1, . . . , fk) ∈ Θ is the model parameter. (2.1.1) is referred to
as a k-component mixture for d-variate data. The pi’s are called themixing weights or
mixing proportions, the fi’s are the component distributions or component densities.
If the family F has a parametric shape, e. g.

{x 7→ σ−1f((x− µ)/σ) | µ ∈ Rd, σ > 0}

for some fixed pdf f , the mixture (model) is said to be parametric. Otherwise,
if F cannot be specified parametrically, it is referred to as being semiparametric.
As in (2.1.1) the number of components k is often assumed to be fixed. In many
semiparametric setups this is even essential to obtain any identifiability results, see
e. g. Hunter et al. [14], Bordes et al. [5].

Loosely spoken, identifiability describes the fact that a particular parameter con-
figuration yields a unique mixture, or the other way around, that a given mixture
density completely determines the corresponding model parameter. Let us denote
by Mm(Θ) the set of mixture densities induced by mixture m and the parameter
space Θ, i. e.

Mm(Θ) = {x 7→ m(x; θ) | θ ∈ Θ} .

Correspondingly, we defineMm(Θ0) for all subsets Θ0 ⊂ Θ. Further, let us introduce
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the map πm : Θ→Mm(Θ), canonically defined by

πm : θ 7→ m(x; θ) .

As motivated by the latter description, the definition of identifiability can be put
from two directions. First, we formally introduce the identifiability of a considered
parameter space.

Definition 2.1 (Identifiability parameter space). A parameter space Θ0 ⊂ Θ is
said to be identifiable if the restriction of πm to Θ0 is one to one, i. e. each pair of
parameters θ1, θ2 ∈ Θ0, θ1 6= θ2 induces two different mixtures.

To assess the difference of two parameters in this semiparametric setup one e. g.
applies the product norm

‖θ‖ =
k∑
i=1

|pi|+
k∑
i=1

∫
R

|fi(x)| dx ,

provided that the fi’s are Lebesgue densities. With this, θ(1), θ(2) ∈ Θ are considered
as being equal if there exists a permutation σ of {1, . . . , k} such that

k∑
i=1

|p(1)
i − p

(2)
σ(i)|+

k∑
i=1

∫
R

|f (1)
i (x)− f (2)

σ(i)(x)| dx = 0 .

Note that this approach also handles nonidentifiability due to label switching as
two parameters which only differ in the order of their components are considered as
being equal. This is reasonable since such parameters in the general setup (2.1.1)
always induce the same mixture pdf.

Second, we define the identifiability of a single mixture.

Definition 2.2 (Identifiability mixture). Let Θ0 ⊂ Θ and θ0 ∈ Θ0. The mixture
πm(θ0) is said to be identifiable over the parameter space Θ0 if it has a unique
representative in it, i. e.

#
(
π−1
m (πm(θ0)) ∩Θ0

)
= 1 .

Remark. (i) There is an obvious link between the definitions 2.1 and 2.2. In fact,
a parameter space Θ0 is identifiable if and only if all mixtures inMm(Θ0) are
identifiable over Θ0.

(ii) The concept of identifiability is highly important when it comes to the estima-
tion of the model parameter based on training data for the mixture. Within
a nonidentifiable setup an estimate θ̂ has no meaningful interpretation. Also,
whenever a mixture is nonidentifiable, consistency for the estimator can clearly
not be obtained.
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2.2. Identifiability of the semiparametric
two-component mixture

Let E denote the set of zero-symmetric (even) Lebesgue densities on R, i. e.

E =
{
f : R→ R | f ≥ 0,

∫
f(x) dx = 1, f(x) = f(−x), x ∈ R

}
.

Then, the mixture model studied by Bordes et al. [4],[3] is defined by the parameter
space

Θ = [0, 1]×R× E

and the overlying mixture

g(x; θ) = (1− p)f0(x) + pf(x− µ) , x ∈ R , (2.2.1)

where θ = (p, µ, f) ∈ Θ is the semiparametric model parameter, including the mixing
proportion p, the unknown component density f , and the corresponding location
parameter µ. The density f0 ∈ E is fixed and assumed to be known throughout the
following.

Even though we assume both f0 and f to be even it is easy to see that identifiability
of the whole parameter space Θ fails. If the mixing proportion p is equal to zero,
for instance, then any f1, f2 ∈ E and µ1, µ2 ∈ R yield

g(x; p, µ1, f1) = g(x; p, µ2, f2) , x ∈ R

and hence πg(p, µ1, f1) = πg(p, µ2, f2). Also, if µ = 0, then the pdf x 7→ g(x; p, µ, f)
is even itself, yielding

πg(p, µ, f) = πg(1, 0, g(x; p, µ, f)) .

If µ = 0 as well as f = f0, then

πg(p1, µ, f) = πg(p2, µ, f)

for any p1, p2 ∈ [0, 1].

In order to avoid these problematic cases in advance we restrict further studies to
the parameter space

Θ1 = (0, 1]×R1 × E , (2.2.2)

where for convenience R1 := R\{0}.
Unfortunately, identifiability of this restricted parameter space cannot be ob-

tained, either. Simple counterexamples can be given.
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Example 2.3. Let us consider a mixture of two uniform distributions with distinct
but connected supports and mixing proportion p1 ∈ (0, 1], e. g.

(1− p1)(2a)−11(−a,a)(x) + p1(2b)−11(−b,b)(x− (a+ b)) , x ∈ R (2.2.3)

for some a, b > 0. With f0(x) = (2a)−11(−a,a)(x), f1(x) = (2b)−11(−b,b)(x), and
θ1 = (p1, a+ b, f), mixture (2.2.3) can be written as

πg(θ1) .

Whenever p1 satisfies

p1

(
1 + a/b

)
≤ 1

the pdf πg(θ1) is not identifiable over Θ1, though. With

f2(x) = (2(a+ b))−11(−a−b,a+b)(x− b) ,

which covers the whole support (−a, a+ 2b) of πg(θ1), for all x ∈ (a, a+ 2b),

g(x; θ1) = p1/(2b) , f2(x) = (2(a+ b))−1 .

Therefore, defining

p2 := p1
2(a+ b)

2b
= p1

(
1 +

a

b

)
∈ (0, 1]

and θ2 := (p2, b, f2),

g(x; θ2) = g(x; θ1) , x ∈ (a, a+ 2b) .

Moreover, for all x ∈ (−a, a),

g(x; θ2) = (1− p2)(2a)−1 + p2(2(a+ b))−1

=
2b− 2p(a+ b)

4ab
+

p

2b
=

1− p
2a

= g(x; θ1) ,

too. Hence, πg(θ2) = πg(θ1), whereas θ1 6= θ2.

Necessary nonidentifiability conditions

In order to work for a parameter space which is identifiable with respect to mixture
g, as a first step we derive a relation, which holds whenever two parameters reveal
a situation of nonidentifiability.

Let us denote by Ek ⊂ E , k ∈ N the set of even pdfs having a kth order moment,
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i. e.

Ek =
{
f ∈ E |

∫
|x|kf(x) dx <∞

}
.

Denoting by g(k) the kth order moment of g, for (p, µ, f) ∈ Θ1 we obtain

g(1)(p, µ, f) = pµ ,

g(2)(p, µ, f) = (1− p)ξ0 + p(ξ + µ2) , and

g(3)(p, µ, f) = p(3ξµ+ µ3) ,

referring to the second order moments of f0 and f as ξ0 and ξ, respectively. Note
that, being even, f0 and f have first and third order moments equal to zero.

Lemma 2.4. Let θ1, θ2 ∈ Θ1, cf. (2.2.2), θi = (pi, µi, fi), i = 1, 2. If πg(θ1) = πg(θ2),
then either θ1 = θ2 or θ2 can be expressed in terms of θ1 according to

p2 =
2µ2

1p1

µ2
1 + 3(ξ1 − ξ0)

,

µ2 =
µ2

1 + 3(ξ1 − ξ0)

2µ1

, and (2.2.4)

ξ2 = ξ1 +
(µ2

1 + ξ1 − ξ0)(µ2
1 − 3(ξ1 − ξ0))

4µ2
1

,

where ξ0, ξ1, and ξ2 respectively denote the second order moments of f0, f1, and f2.

The detailed proof of lemma 2.4 can be found in Bordes et al. [4], p. 735, propo-
sition 1. Basically, the system of moment equations

g(k)(θ1) = g(k)(θ2) , k = 1, 2, 3 ,

induced by the equality πg(θ1) = πg(θ2), leads to(
2p1µ1µ2 − p1(µ2

1 + 3(ξ1 − ξ0))
)

(µ1 − µ2) = 0 ,

what is obviously fulfilled if and only if µ2 is equal to µ1 or if µ2 is as in (2.2.4). Either
way, the corresponding parameters p2 and f2 can be determined easily thereafter.

Sufficient identifiability conditions

So as to obtain satisfactory identifiability results for mixture g we now in addition
take account of the mixture’s Fourier transform. Recall that the Fourier transform
of a Lebesgue integrable function f , say, is given by

f̂ : R→ C , t 7→ f̂(t) =

∫
R

eity f(y) dy .
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Applying some basic rules for computation1 we obtain

ĝ(t; θ) = (1− p)f̂0(t) + peiµtf̂(t) , t ∈ R ,

where f̂0 and f̂ denote the Fourier transforms of f0 and f , respectively. Since f0 and
f are even functions, the corresponding Fourier transforms are real, f̂0, f̂ : R→ R.
As a result, splitting up ĝ into its real and imaginary part yields

Re ĝ(t; p, µ, f) = (1− p)f̂0(t) + p cos(µt)f̂(t) and

Im ĝ(t; p, µ, f) = p sin(µt)f̂(t) (2.2.5)

by means of Euler’s formula.

There are many ways of using the Fourier transform ĝ as for the derivation of
adequate conditions to the model parameter (p, µ, f) ensuring identifiability. Fre-
quently, regularity conditions with respect to the component’s Fourier transforms
are claimed, e. g.

lim
t→∞

f̂(t)/f̂0(t) = 0 .

Adapting this approach to mixture g actually leads to suitable identifiability results
as we will see later, cf. corollary 2.18. In this section, though, we bring up the
technique used by Bordes et al. [4], at what, strongly based on the symmetry of
f0 and f , the Fourier transform ĝ supplies satisfactory information while imposing
none but a rather weak condition on f̂0.

Theorem 2.5. If f̂0 > 0, then the parameter space

Θ∗ =
{

(0, 1]×R1 × E3

} ∖ ⋃
z∈Z

{
(p, µ, f) | ξ = ξ0 +

z − 2

3z
µ2
}
,

where ξ0 and ξ respectively denote the second order moments of f0 and f , is identi-
fiable, i. e. each mixture inMg(Θ

∗) has a unique representative in Θ∗.

The proof of theorem 2.5 is stated in Bordes et al. [4], p. 736, proposition 2. The
basic idea is as follows. Provided that (p1, µ1, f1), (p2, µ2, f2) ∈ (0, 1]×R1 × E3 give
πg(p1, µ1, f1) = πg(p2, µ2, f2), the system of equations induced by (2.2.5) yields

(p2 − p1) sin(µ2t)f̂0(t) = p1 sin((µ1 − µ2)t)f̂1(t) , t ∈ R . (2.2.6)

With p1 6= p2, the particular argument t∗ = π/(µ1 − µ2) gives

sin
( µ2

µ1 − µ2

π
)

= 0 ,

1Cf. Bauer [1], p. 191.
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Figure 2.1.: The almost periodic function x 7→ F (x) = sin(1.5πx)− sin(2.2πx).

which holds true if and only if z∗ := µ2/(µ1 − µ2) is integer, so that

µ2 = µ1 · z∗/(z∗ + 1)

for some z∗ ∈ Z. Regarding lemma 2.4 we obtain

ξ1 = ξ0 +
z∗ − 1

3(z∗ + 1)
µ2

1 .

If p1 = p2, then we straightforward conclude (p1, µ1, f1) = (p2, µ2, f2). Hence, the
parameter space as stated in fact excludes all the crucial parameter configurations.

2.3. Almost periodic functions

For the further analysis of identifiability of semiparametric two-component mixtures
we will often deal with functions resulting from the intermixture of different sines,
e. g.

x 7→ α1 sin(β1x) + α2 sin(β2x) , x ∈ R (2.3.1)

with α1, α2, β1, β2 ∈ R. Figure 2.1 gives an example of (2.3.1). In general, these
functions are known not to be periodic. Nevertheless, several useful properties can
be derived.

Definition 2.6 (Almost periodic function). Let f : R→ R.

(i) The function f is said to be periodic if there exists τ ∈ R such that

f(x+ τ) = f(x) , x ∈ R .

The number τ is called a period or translation number of f .

(ii) We say the function f is almost periodic if for each arbitrary small value ε > 0
there exists a real number Lε > 0 such that every interval I ⊂ R of length
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greater or equal to Lε contains at least one real number τε,I giving

|f(x+ τε,I)− f(x)| < ε , x ∈ R .

The number τε,I is called an ε-translation number of f .

(iii) The function f is said to be normal if for any sequence (yn)n∈N ⊂ R one
can find a subsequence (y′n)n∈N such that the function series (f(x + y′n))n∈N
converges uniformly in x.

The simplest periodic functions one may think of is the trigonometric function
x 7→ sin(x). A corresponding period is 2π, for instance. Specifying an almost
periodic or a normal function seems to be much harder for now. Therefore, we
observe the following coherences at the first.

Lemma 2.7. (i) Each periodic function is almost periodic.

(ii) A continuous function is almost periodic if and only if it is normal.

Proof. (i) Let f : R→ R be a periodic function with translation number τ and let
us for some a ∈ R consider the arbitrary real interval I = [a, a + |τ |] of length |τ |.
Choosing z ∈ Z as the smallest integer such that zτ ≥ a, then zτ ∈ I and, if z ≥ 0,

|f(x+ zτ)− f(x)| ≤
z−1∑
k=0

|f(x+ (k + 1)τ)− f(x+ kτ)| = 0 , x ∈ R .

Likewise, if z < 0,

|f(x+ zτ)− f(x)| ≤
|z|−1∑
k=0

|f(x− (k + 1)τ)− f(x− kτ)| = 0 , x ∈ R .

Therefore, for any arbitrary small value ε > 0 we (independently from ε) choose
Lε := |τ | and, according to definition 2.6 (ii), conclude that f is almost periodic.

(ii) The equivalence of almost periodicity and normality for continuous functions
on R is stated in Corduneanu [6], p. 140, theorem 6.6, for instance. �

Theorem 2.8. (i) The set of continuous almost periodic functions forms a vector
space over the field R.

(ii) If f : R→ R is almost periodic and

lim
x→∞

f(x) = 0 ,

then f(x) = 0 for all x ∈ R.

Proof. (i) Let f, g : R→ R be continuous almost periodic functions. Let α ∈ R be
any scalar. If α = 0, then αf(x) ≡ 0 and hence αf is almost periodic since constant
functions clearly are. So, let α 6= 0 from now on.
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Consider ε > 0 and an arbitrary interval I of length greater or equal to Lδ, at
what δ > 0 is defined by δ := ε/|α|. Then, per definition, there exists a δ-translation
number τδ,I ∈ I of f such that

|αf(x+ τδ,I)− αf(x)| = |α| · |f(x+ τδ,I)− f(x)| < |α| · δ = ε , x ∈ R .

Thus, the continuous function αf is almost periodic.

Let us consider an arbitrary sequence (yn)n∈N ⊂ R. According to lemma 2.7 (ii)
we choose a subsequence (y′n)n∈N such that x 7→ f(x + y′n) converges uniformly as
n tends to infinity. Further, we choose a subsequence (y′′n)n∈N of (y′n)n∈N such that
x 7→ g(x + y′′n) converges uniformly, too. Therewith, x 7→ (f + g)(x) is continuous
and the function series x 7→ (f + g)(x+ y′′n) converges uniformly. We conclude that
f + g is almost periodic, see again lemma 2.7 (ii).

(ii) The second part we prove by contradiction. Suppose that there exists x0 ∈ R
such that |f(x0)| ≥ ε for some ε > 0. Since f(x)→ 0 as x→∞, there exists T ∈ R
such that

|f(x)| < ε/2 , x ≥ T .

As f is almost periodic, we choose Lε/2 > 0 according to definition 2.6 (ii) and
an appropriate ε/2-translation number τε/2,[T+|x0|,T+|x0|+Lε/2] =: τ ∗. By means of
triangle inequality we obtain

|f(x0)| ≤ |f(x0)− f(x0 + τ ∗)|+ |f(x0 + τ ∗)| < ε ,

what contradicts the assumption |f(x0)| ≥ ε and thus concludes the proof. �

Corollary 2.9. Let α, β ∈ R be such that

lim
x→∞

α sin(βx) = 0 .

Then α = 0 or β = 0 holds.

Proof. The function x 7→ F (x) := α sin(βx) is periodic with period 2π/β, for in-
stance. By lemma 2.7 (i) F is almost periodic and therefore from theorem 2.8 (ii)
it follows

F (x) = 0 , x ∈ R .

If β 6= 0, then the particular argument x = π/(2β) yields F (x) = α and thus α = 0.
If vice versa α 6= 0, then β = 0 follows. �

Corollary 2.10. Let α1, α2, β1, β2 ∈ R\{0}, α1, α2 > 0, and let

F (x) = α1 sin(β1x)− α2 sin(β2x) . (2.3.2)

If F (x)→ 0 as x→∞, then α1 = α2 and β1 = β2.
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Proof. The function F is almost periodic by lemma 2.7 (i) and theorem 2.8 (i).
Therefore, as F (x)→ 0, x→∞, from theorem 2.8 (ii) it follows F (x) ≡ 0, yielding

α1 sin(β1x) = α2 sin(β2x) , x ∈ R . (2.3.3)

Since both hand sides of (2.3.3) are continuous functions respectively taking on all
values in [−α1, α1] and [−α2, α2] we conclude α1 = α2. Canceling α1, α2 and taking
derivatives of (2.3.3) leads to

β1 cos(β1x) = β2 cos(β2x) , x ∈ R ,

where the particular argument x = 0 gives β1 = β2. The proof is concluded. �

2.4. A location parameter extension

So as to derive more general identifiability results, in this section we extend the pre-
viously considered mixture model in as much as we introduce an additional location
parameter ν to the mixture component that was assumed to be completely known
up to now. Accordingly, in the following we consider the parameter space

Θ = [0, 1]×R2 × E

and the mixture

h(x; θ) = (1− p)f0(x− ν) + pf(x− µ) (2.4.1)

with θ = (p, ν, µ, f) ∈ Θ. Further on, the pdf f0 ∈ E is fixed and assumed to be
known.

Definition 2.11 (Degenerate mixture). If p ∈ {0, 1}, then the mixture πh(θ) is said
to be degenerate. Correspondingly, we characterize the mixture as being 0-degenerate
or 1-degenerate. Otherwise, πh(θ) is said to be nondegenerate.

Obviously, identifiability cannot be obtained in case of degeneracy. For example,

πh(1, ν1, µ, f) = πh(1, ν2, µ, f)

for all ν1, ν2 ∈ R. We handle this problem by giving the following enhanced defini-
tion, where

ιk : Θ→ R ∪ E , k = 1, . . . , 4

denotes the projection onto the kth component.

Definition 2.12 (Identifiability of a degenerate mixture). Let Θ0 ⊂ Θ and θ0 ∈ Θ0

such that πh(θ0) is degenerate.
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(i) If πh(θ0) is 0-degenerate, then it is said to be identifiable over Θ0 if for all
θ ∈ π−1

h (πh(θ0)) ∩Θ0 it holds

ι1(θ) = 0 , ι2(θ) = ι2(θ0) .

(ii) If πh(θ0) is 1-degenerate, then it is said to be identifiable over Θ0 if for all
θ ∈ π−1

h (πh(θ0)) ∩Θ0 it holds

ι1(θ) = 1 , ι3(θ) = ι3(θ0) , ι4(θ) = ι4(θ0) .

Motivated by the fact that coinciding component densities form a source of non-
identifiability,

h(x; p, ν, µ, f0) = h(x; 1− p, µ, ν, f0) , x ∈ R ,

we consider the following regularity conditions with respect to the unknown com-
ponent pdf f , where f̂0 and f̂ again denote the Fourier transforms of f0 and f ,
respectively.

Condition C1. For large t ∈ R it holds f̂0(t) 6= 0 and

lim
t→∞

f̂(t)

f̂0(t)
= 0 .

Condition C2. For large t ∈ R it holds f̂(t) 6= 0 and

lim
t→∞

f̂0(t)

f̂(t)
= 0 .

The conditions C1 and C2 guarantee that the component pdfs f0 and f do not
coincide, but their Fourier transforms even differ significantly, what makes them
“distinguishable”. Let us define the disjoint sets

Ef0,i := {f ∈ E | f meets condition Ci} , i = 1, 2

and the union

Ef0 := Ef0,1 ∪ Ef0,2 .

As we will further require the existence of some moments of pdf h let

Ef0

k := Ek ∩ Ef0 , k ∈ N . (2.4.2)
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With θ = (p, ν, µ, f), provided that f0, f ∈ E3,

h(1)(θ) = (1− p)ν + pµ , (2.4.3)

h(2)(θ) = (1− p)(ξ0 + ν2) + p(ξ + µ2) , and

h(3)(θ) = (1− p)(3ξ0ν + ν3) + p(3ξµ+ µ3) ,

where h(k) denotes the kth order moment of h and where ξ0 and ξ denote the second
order moments of f0 and f , respectively.

Moreover, let us conformably denote by ĥ the Fourier transform of mixture pdf
h, that is

ĥ(t; θ) = (1− p) exp(iνt)f̂0(t) + p exp(iµt)f̂(t) , t ∈ R .

Splitting up ĥ into its real and imaginary part, minding again that f̂0 and f̂ are real
functions, we have

Re ĥ(t; θ) = (1− p) cos(νt)f̂0(t) + p cos(µt)f̂(t) ,

Im ĥ(t; θ) = (1− p) sin(νt)f̂0(t) + p sin(µt)f̂(t) . (2.4.4)

Finally, we give a technical result, which helps for later calculations.

Lemma 2.13. If θ1, θ2 ∈ Θ, θi = (pi, νi, µi, fi), i = 1, 2 give πh(θ1) = πh(θ2), then

f̂1(t)p1 sin((µ1 − µ2)t) = f̂0(t)[(1− p1) sin((µ2 − ν1)t)− (1− p2) sin((µ2 − ν2)t)]

holds true for all t ∈ R.

Proof. By the almost sure identity of h(x; θ1) and h(x; θ2), regarding (2.4.4), we
obtain

(1− p1) cos(ν1t)f̂0(t) + p1 cos(µ1t)f̂1(t) = (1− p2) cos(ν2t)f̂0(t) + p2 cos(µ2t)f̂2(t) ,

(1− p1) sin(ν1t)f̂0(t) + p1 sin(µ1t)f̂1(t) = (1− p2) sin(ν2t)f̂0(t) + p2 sin(µ2t)f̂2(t)

for all t ∈ R. Multiplying the first line by sin(µ2t), we plug in the second equation
into the first one, yielding

f̂1(t)p1[sin(µ1t) cos(µ2t)− sin(µ2t) cos(µ1t)]

= f̂0(t)[(1− p1)(sin(µ2t) cos(ν1t)− sin(ν1t) cos(µ2t))

− (1− p2)(sin(µ2t) cos(ν2t)− sin(ν2t) cos(µ2t))]

and hence

f̂1(t)p1[sin(µ1t) cos(−µ2t) + sin(−µ2t) cos(µ1t)]

= f̂0(t)[(1− p1)(sin(µ2t) cos(−ν1t) + sin(−ν1t) cos(µ2t))

− (1− p2)(sin(µ2t) cos(−ν2t) + sin(−ν2t) cos(µ2t))] .
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By means of an addition theorem for the sine2,

(1− p1)(sin(µ2t) cos(−ν1t) + sin(−ν1t) cos(µ2t))

− (1− p2)(sin(µ2t) cos(−ν2t) + sin(−ν2t) cos(µ2t))

= (1− p1) sin((µ2 − ν1)t)− (1− p2) sin((µ2 − ν2)t) ,

what leads to the stated assertion. �

2.4.1. Identifiability results in case of degeneracy

For convenience, let

R2 = R2\{(x, x) | x ∈ R}

in what follows.

Theorem 2.14. Let θ1 = (p1, ν1, µ1, f1) ∈ {0, 1} ×R2 × Ef0

1 , cf. (2.4.2).

(i) If p1 = 0, then πh(θ1) is identifiable over [0, 1]×R2 × Ef0

1 .

(ii) If p1 = 1, then πh(θ1) is identifiable over [0, 1]×R2 × Ef0

1 .

(iii) If in particular p1 = 1 and f1 meets condition C1, then πh(θ1) is identifiable
over [0, 1]×R2 × Ef0

1 .

Proof. (i) Let θ2 = (p2, ν2, µ2, f2) ∈ [0, 1] × R2 × Ef0

1 be such that πh(θ2) = πh(θ1).
Since p1 = 0, for almost all x ∈ R,

f0(x− ν1) = (1− p2)f0(x− ν2) + p2f2(x− µ2) (2.4.5)

and

ν1 = (1− p2)ν2 + p2µ2 (2.4.6)

by (2.4.3). If it was p2 = 1, then (2.4.6) would give ν1 = µ2 and thus f0 = f2 by
(2.4.5), which is a conflict with f2 ∈ Ef0

1 . Therefore, p2 ∈ [0, 1). Choosing some
µ3 ∈ R\{ν1, ν2, µ2},

πh(p1, ν1, µ3, f1) = πh(p1, ν1, µ1, f1) = πh(p2, ν2, µ2, f2) ,

yielding

f̂2(t)p2 sin((µ2−µ3)t) = f̂0(t)[(1−p2) sin((µ3−ν2)t)− sin((µ3−ν1)t)] , t ∈ R
(2.4.7)

2For all x, y ∈ R it holds sin(x+ y) = sin(x) cos(y)+ sin(y) cos(x), cf. Beardon [2], p. 38, theorem
4.2.1.
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by lemma 2.13. If f2 ∈ Ef0,2, then (2.4.7) gives

lim
t→∞

p2 sin((µ2 − µ3)t) = 0 .

As µ2 6= µ3 it follows p2 = 0 by corollary 2.9 and then ν1 = ν2 by (2.4.6). If
f2 ∈ Ef0,1, then (2.4.7) leads to

lim
t→∞

(1− p2) sin((µ3 − ν2)t)− sin((µ3 − ν1)t) = 0 .

As p2 < 1 corollary 2.10 yields p2 = 0 and ν2 = ν1, too.

(ii) Let p1 = 1 and µ2 6= ν2, for almost all x ∈ R yielding

f1(x− µ1) = (1− p2)f0(x− ν2) + p2f2(x− µ2) (2.4.8)

as well as

µ1 = (1− p2)ν2 + p2µ2 . (2.4.9)

By lemma 2.13 we have

f̂1(t) sin((µ1 − µ2)t) = −f̂0(t)(1− p2) sin((µ2 − ν2)t) , t ∈ R , (2.4.10)

Again, we handle (2.4.10) by differentiating different cases. If f1 ∈ Ef0,1, then it
follows

lim
t→∞

(1− p2) sin((µ2 − ν2)t) = 0 ,

yielding p2 = 1 as µ2 6= ν2 and therewith µ2 = µ1 by (2.4.9). If f1 ∈ Ef0,2, then
(2.4.10) gives

lim
t→∞

sin((µ1 − µ2)t) = 0

and hence µ1 = µ2, also leading to p2 = 1 by (2.4.9) as ν2 6= µ2. In both cases we
additionally have f1 = f2 by (2.4.8).

(iii) Let p1 = 1 and particularly f1 ∈ Ef0,1. It remains to consider the case µ2 = ν2.
From (2.4.9) it follows µ1 = µ2 = ν2 and thus

f̂1(t) = (1− p2)f̂0(t) + p2f̂2(t) , t ∈ R (2.4.11)

by (2.4.8). At first this gives p2 6= 0 as f̂1 6= f̂0. Since f̂1(t)/f̂0(t)→ 0 we obtain

lim
t→∞

f̂2(t)/f̂0(t) = (p2 − 1)/p2 .

As f2 ∈ Ef0 , this holds true if and only if p2 = 1. The remaining can be concluded
as in (ii). �

Remark. Claiming condition C2, identifiability cannot be obtained in the case of
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Figure 2.2.: Nonidentifiability in case of degeneracy: The left-hand side shows the pdf f1 (dashed) resulting from
the intermixture of two centered Gaussian pdfs f0 (solid) and f (two-dashed) with variances σ0 = 2
and σ = 1, respectively, at mixing proportion p = 0.5. The right-hand side shows the corresponding
Fourier transform ratios f̂0/f̂1 (dashed) and f̂0/f̂ (two-dashed).

coinciding component location parameters in general, cf. theorem 2.14 (ii) and (iii).
For example, with p ∈ (0, 1), µ ∈ R, and f1 ∈ Ef0,2, let us consider the mixture
πh(p, µ, µ, f1), i. e.

x 7→ (1− p)f0(x− µ) + pf1(x− µ) .

As the pdf f2 := (1− p)f0 + pf1 is even itself it follows

πh(1, µ, µ, f2) = πh(p, µ, µ, f1) ,

where f2 meets condition C2, too. In fact,

lim
t→∞

f̂0(t)

f̂2(t)
= lim

t→∞

f̂0(t)

(1− p)f̂0(t) + pf̂(t)
= lim

t→∞

f̂0(t)/f̂(t)

(1− p)f̂0(t)/f̂(t) + p
= 0 .

Figure 2.2 illustrates this situation based on the mixture of two centered Gaussian
pdfs with variances σ0 = 2 and σ = 1.

2.4.2. Global results

Lemma 2.15. Let θi = (pi, νi, µi, fi) ∈ [0, 1] × R2 × E3, i = 1, 2. If in particular
(p1, ν1, µ1) ∈ (0, 1)×R2 as well as µ1 = µ2 and πh(θ1) = πh(θ2), then θ1 = θ2.

Proof. With (2.4.3) and µ1 = µ2, the almost sure identity of h(x; θ1) and h(x; θ2)
gives

(1− p1)ν1 + p1µ1 = (1− p2)ν2 + p2µ1 ,

(1− p1)(ξ0 + ν2
1) + p1(ξ1 + µ2

1) = (1− p2)(ξ0 + ν2
2) + p2(ξ2 + µ2

1) , and
(1− p1)(3ξ0ν1 + ν3

1) + p1(3ξ1µ1 + µ3
1) = (1− p2)(3ξ0ν2 + ν3

2) + p2(3ξ2µ1 + µ3
1) ,
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where ξ0, ξ1, and ξ2 label the second order moments of f0, f1, and f2, respectively.
The first moment equation can be written as

(1− p2)ν2 = (1− p1)ν1 + (p1 − p2)µ1 . (2.4.12)

Multiplying the second moment equation by (1− p2) we obtain

(1−p2)2ν2
2 = (1−p2)

(
(1− p1)(ξ0 + ν2

1) + p1(ξ1 + µ2
1)− (1− p2)ξ0 − p2(ξ2 + µ2

1)
)
.

(2.4.13)

Applying (2.4.12) and (2.4.13) to the (1− p2)2 times of the third moment equation
yields

(µ1 − ν1)3(1− p1)(p2 − p1)(p2 + p1 − 2) = 0 . (2.4.14)

Since µ1 6= ν1 and p1 < 1 we conclude p2 = p1. Applying this to the first moment
equation gives

(1− p1)ν1 + p1µ1 = (1− p1)ν2 + p1µ1 ,

which leads to ν2 = ν1 as p1 < 1. Finally, the representation

f(x) = (h(x+ µ; p, ν, µ, f) + (1− p)f0(x+ µ− ν))/p (2.4.15)

additionally provides the almost sure identity of f1 and f2. �

Theorem 2.16. The parameter space

Θ∗ =
(

[0, 1]×R2 × Ef0

3

)
\
{

(p, ν, µ, f) | µ = ν , f ∈ Ef0,2
}

is identifiable, i. e. each mixture inMh(Θ
∗) has a unique representative in Θ∗.

Proof. Let θi = (pi, νi, µi, fi) ∈ Θ∗, i = 1, 2 such that πh(θ1) = πh(θ2). If p1 = 0
or p1 = 1 and µ2 6= ν2, then identifiability follows from theorem 2.14 (i) and (ii),
respectively. If p1 = 1 and µ2 = ν2, though, then

f̂1(t) = (1− p2)f̂0(t) + p2f̂2(t) , t ∈ R , (2.4.16)

cf. (2.4.11), and particularly f2 ∈ Ef0,1 due to the definition of Θ∗, leading to

lim
t→∞

f̂1(t)/f̂0(t) = 1− p2 .

Since f1 ∈ Ef0 we conclude p2 = 1 and f1 ∈ Ef0,1, so that identifiability now follows
from theorem 2.14 (iii).

Hence, let p1, p2 ∈ (0, 1) from now on. If µ1 = ν1 as well as µ2 = ν2, then the first
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moment equation

(1− p1)ν1 + p1µ1 = (1− p2)ν2 + p2µ2 , (2.4.17)

cf. (2.4.3), leads to µ1 = ν1 = µ2 = ν2 and thus

(1− p1)f̂0(t) + p1f̂1(t) = (1− p2)f̂0(t) + p2f̂2(t) , t ∈ R . (2.4.18)

As in this case f1, f2 ∈ Ef0,1, dividing (2.4.18) by f̂0(t) and taking limits in t gives
p1 = p2 and therewith moreover f1 = f2. As a result, we w.l.o.g. henceforth assume
µ1 6= ν1 in addition. By lemma 2.13,

f̂1(t)p1 sin((µ1−µ2)t) = f̂0(t)[(1−p1) sin((µ2−ν1)t)−(1−p2) sin((µ2−ν2)t)] (2.4.19)

for all t ∈ R. On the one hand, if f1 ∈ Ef0,2, then (2.4.19) yields

lim
t→∞

p1 sin((µ1 − µ2)t) = 0 .

As p1 6= 0, from corollary 2.9 it follows µ1 = µ2 and hence θ1 = θ2, using lemma
2.15. On the other hand, if f1 ∈ Ef0,1, then (2.4.19) leads to

lim
t→∞

(1− p1) sin((µ2 − ν1)t)− (1− p2) sin((µ2 − ν2)t) = 0 .

Note that µ2 6= ν1 and µ2 6= ν2, since if one equality was true, then corollary 2.9
would give the validity of both, yielding µ1 = ν1 by (2.4.17). So, by corollary 2.10
we obtain p1 = p2 and ν1 = ν2 and thus µ1 = µ2 and f1 = f2 using (2.4.17) and
(2.4.15). �

Taking a closer look at the second half of the proof above we even learn the
following. Provided that p1, p2 ∈ (0, 1) and µ1 6= ν1, the assumption f2 ∈ Ef0 can be
omitted. As a consequence we immediately obtain the following result, which will
actually turn out to be highly valuable when estimating the model parameters in
the location parameter extended setup.

Theorem 2.17. Provided that θ∗ ∈ (0, 1)×R2 × Ef0

3 , mixture πh(θ∗) is identifiable
over the parameter space (0, 1)×R2 × E3.

Further, it is worth remembering that the mixture pdf h is a generalization of
mixture g, cf. (2.2.1), so that from theorems 2.16 and 2.17 we straightforward derive
the following results.

Corollary 2.18. (i) In the original setup, see section 2.2, the parameter space(
[0, 1]×R× Ef0

3

)
\
{

(p, µ, f) | µ = 0 , f ∈ Ef0,2
}

is identifiable.

(ii) Provided that θ∗ ∈ (0, 1) × R1 × Ef0

3 , mixture πg(θ∗) is identifiable over the
parameter space (0, 1)×R× E3.
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2.5. A scale parameter extension

In this section we want to study a scale parameter extended setup of mixture (2.2.1),
i. e. we introduce the additional scale parameter σ to the known component pdf f0.
Hence, in the following,

Θ = [0, 1]×R> ×R× E ,

where R> := {x ∈ R | x > 0}, and let

s(x; θ) = (1− p)f0(x/σ)/σ + pf(x− µ) (2.5.1)

with θ = (p, σ, µ, f) ∈ Θ. In this context the pdf f0 can w.l.o.g. be assumed to have
a second order moment equal to one, provided that f0 ∈ E2. Thus, each pdf

x 7→ f0(x/σ)/σ , σ ∈ R>

has a second order moment equal to σ2. In fact,∫
R

x2f0(x/σ)/σ dx = σ2

∫
R

y2f0(y) dy = σ2 , (2.5.2)

using the substitution y = x/σ.

Lemma 2.19. Let θ1, θ2 ∈ [0, 1] × R> × R1 × E3, θi = (pi, σi, µi, fi), i = 1, 2. If
p1 ∈ (0, 1), µ1 = µ2, and πs(θ1) = πs(θ2), then θ1 = θ2.

Proof. Regarding the first three moments of mixture (2.5.1), the almost sure identity
of s(x; θ1) and s(x; θ2), using µ1 = µ2 and (2.5.2), leads to

p1µ1 = p2µ1 , (2.5.3)
(1− p1)σ2

1 + p1(ξ1 + µ2
1) = (1− p2)σ2

2 + p2(ξ2 + µ2
1) , and (2.5.4)

p1(3ξ1µ1 + µ3
1) = p2(3ξ2µ1 + µ3

1) . (2.5.5)

As usual, ξ1 and ξ2 respectively denote the second order moments of f1 and f2. As
µ1 6= 0, (2.5.3) gives p1 = p2. Then, (2.5.5) and p1µ1 6= 0 lead to ξ1 = ξ2, yielding
σ1 = σ2 by (2.5.4) as p1 6= 1. Finally, through

f1(x) =
1

p1

s(x+ µ1; θ1)− (1− p1)f0((x+ µ1)/σ1)

σ1p1

a.s.
=

1

p2

s(x+ µ2; θ2)− (1− p2)f0((x+ µ2)/σ2)

σ2p2

= f2(x)

we obtain θ1 = θ2. �

In order to derive identifiability results for (2.5.1) we will again make use of the
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mixture’s Fourier transform ŝ given by

ŝ(t; p, σ, µ, f) = (1− p)f̂0(σt) + p exp(iµt)f̂(t) , t ∈ R

with

Re ŝ(t; p, σ, µ, f) = (1− p)f̂0(σt) + p cos(µt)f̂(t) ,

Im ŝ(t; p, σ, µ, f) = p sin(µt)f̂(t) , (2.5.6)

where f̂0 and f̂ denote the Fourier transforms of f0 and f , respectively.

Condition C3. For large t ∈ R it holds f̂(t) 6= 0 and for all σ ∈ R> we have

lim
t→∞

f̂0(σt)

f̂(t)
= 0 .

Condition C4. For large t ∈ R it holds f̂0(t) 6= 0, for all σ ∈ R>

lim
t→∞

f̂(t)

f̂0(σt)
= 0 ,

and each pair of differing scale parameters can be ordered such that

lim
t→∞

f̂0(σ1t)

f̂0(σ2t)
= 0 .

Referring to section 2.4, cf. page 13 in particular, let us conformably introduce
the sets Ef0,3, Ef0,4, Ẽf0 := Ef0,3 ∪ Ef0,4, and Ẽf0

3 .

Remark. The conditions C3 and C4 impose rather strong constraints since now
even the choice of the scale parameter σ must not influence the convergence be-
havior of the component’s Fourier transform ratio. Condition C4 moreover claims
σ to influence the convergence rate of the known component’s Fourier transform
significantly, though. This holds true, for instance, whenever f̂0(t) decreases at
exponential rate.

Example 2.20. Let us consider densities ϕ and c, respectively denoting the stan-
dard Gaussian and the standard Cauchy pdf. The corresponding Fourier transforms
are given by

ϕ̂(t) = exp(−t2/2) , ĉ(t) = exp(−|t|) , t ∈ R .

For all σ > 0,

lim
t→∞

ϕ̂(t)

ĉ(σt)
= lim

t→∞
exp(−t2/2 + σ|t|) = lim

t→∞
exp(−t(t/2− σ)) = 0 .
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Considering σ1, σ2 > 0 such that σ1 > σ2,

lim
t→∞

ĉ(σ1t)

ĉ(σ2t)
= lim

t→∞
exp(−(σ1 − σ2)|t|) = 0 ,

so that ϕ and c in fact meet regularity condition C4.

Theorem 2.21. Provided that θ∗ ∈ (0, 1)×R> ×R1 × Ẽf0

3 , mixture πs(θ∗) is iden-
tifiable over the parameter space [0, 1]×R> ×R× E3.

Proof. Let θi = (pi, σi, µi, fi), i = 1, 2, where θ1 ∈ (0, 1) × R> × R1 × Ẽf0

3 and
θ2 ∈ [0, 1]×R> ×R× E3 such that πs(θ1) = πs(θ2). By (2.5.6), for all t ∈ R,

(1− p1)f̂0(σ1t)− (1− p2)f̂0(σ2t) + p1 cos(µ1t)f̂1(t) = p2 cos(µ2t)f̂2(t) ,

p1 sin(µ1t)f̂1(t) = p2 sin(µ2t)f̂2(t) .

Multiplying these equations by sin(µ2t) and cos(µ2t), respectively, yields

((1− p1)f̂0(σ1t)− (1− p2)f̂0(σ2t)) sin(µ2t)

= p1f̂1(t)(sin(µ1t) cos(µ2t)− sin(µ2t) cos(µ2t))

= p1f̂1(t)(sin(µ1t) cos(−µ2t) + sin(−µ2t) cos(µ2t))

= p1f̂1(t) sin((µ1 − µ2)t) ,

that is, for all t ∈ R,

((1− p1)f̂0(σ1t)− (1− p2)f̂0(σ2t)) sin(µ2t) = p1f̂1(t) sin((µ1 − µ2)t) . (2.5.7)

Provided that condition C3 holds, dividing (2.5.7) by f̂1(t) and taking limits in t
gives

lim
t→∞

p1 sin((µ1 − µ2)t) = 0 .

As p1 > 0, from corollary 2.9 it follows µ1 = µ2, so that by lemma 2.19 we obtain
θ1 = θ2.

Otherwise, provided that condition C4 holds, we have to handle several cases
differently. First, let us assume that σ1 6= σ2. Then either (i) limt f̂0(σ1t)/f̂0(σ2t) = 0
or (ii) limt f̂0(σ2t)/f̂0(σ1t) = 0. In (ii), dividing (2.5.7) by f̂0(σ1t) and taking limits
in t gives

lim
t→∞

(1− p1) sin(µ2t) = 0 ,

what promptly causes µ2 = 0 since p1 < 1. Therewith, the first moment equation

p1µ1 = p2µ2 (2.5.8)
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yields p1µ1 = 0, contradicting p1 > 0, µ1 6= 0. In (i), we in a similar way obtain

lim
t→∞

(1− p2) sin(µ2t) = 0 .

Considering p2 < 1 we deduce a contradiction just as before. If we have p2 = 1,
though, then (2.5.8) gives µ2 = p1µ1, so that by the third moment equation

p1(3ξ1µ1 + µ3
1) = p2(3ξ2µ2 + µ3

2)

we obtain

p1(3ξ1µ1 + µ3
1) = (3ξ2p1µ1 + (p1µ1)3) = p1(3ξ1µ1 + µ3

1) + p1µ
3
1(p2

1 − 1) ,

yielding

p1µ
3
1(p2

1 − 1) = 0 .

This again leads to a contradiction according to the suppositions p1 ∈ (0, 1) and
µ1 6= 0. Therefore, finally, let σ1 = σ2. Then, dividing (2.5.7) by f̂0(σ1t) and taking
limits in t brings

lim
t→∞

(p2 − p1) sin(µ2t) = 0 . (2.5.9)

As we have seen before, it is µ2 6= 0, so that from corollary 2.9 it follows p2 = p1 6= 0,
again yielding µ1 = µ2 by (2.5.8). Lemma 2.19 concludes the proof. �



3. Estimation

We consider a real random variable X, representing any observable occurrence,
which follows a probability distribution P having Lebesgue density h, cf. (2.4.1).
Based on the observation of n independent realizations of X, in this section our
goal is the derivation of an estimator θ̂n : Rn → [0, 1] × R2 × E for the unknown
semiparametric model parameter θ. The way of deriving this estimator θ̂n will be
strongly based on the symmetry of the unknown component pdf f as well as the
identifiability results obtained in section 2.4. Properties of the estimator are worked
for thereafter.

3.1. Estimating the model parameter

Let X1, X2, . . . , Xn, n ∈ N be independent copies of X and let H denote the cdf
corresponding to the distribution of X, i. e. if θ? = (p?, ν?, µ?, f?) denotes the true
model parameter, then x 7→ H(x), x ∈ R is given by

H(x) =

∫ x

−∞
h(y; θ?) dy = (1− p?)

∫ x

−∞
f0(y − ν?) dy + p?

∫ x

−∞
f?(y − µ?) dy

= (1− p?)
∫ x−ν?

−∞
f0(z) dz + p?

∫ x−µ?

−∞
f?(z) dz

= (1− p?)F0(x− ν?) + p?F (x− µ?) ,

at what the antiderivatives F0 and F respectively correspond to f0 and f?. Provided
that p? > 0 we in particular have

F (x) = H(x+ µ?)/p? − (1− p?)F0(x− ν? + µ?)/p? . (3.1.1)

In the following we denote by ϑ = (p, ν, µ) ∈ (0, 1]×R2 the Euclidean part of the
model parameter θ. Motivated by (3.1.1) let us consider the functions

D1(x;ϑ) = H(x+ µ)/p− (1− p)F0(x− ν + µ)/p ,

D2(x;ϑ) = 1−D1(−x;ϑ) = 1−H(−x+ µ)/p+ (1− p)F0(−x− ν + µ)/p ,
(3.1.2)

as well as

D(x;ϑ) = D1(x;ϑ)−D2(x;ϑ) , x ∈ R . (3.1.3)



3. Estimation 25

For fixed cdfsH and F0 and any given parameter ϑ the functionD can be interpreted
as an indicator for the symmetry of the probability distribution induced by the cdf
D1. In fact, if the derivative of D1 is symmetric about zero, then for all x ∈ R it
follows D1(x) = 1−D1(−x), yielding D1(x;ϑ) = D2(x;ϑ) and thus D(x;ϑ) = 0.

Being measurable and bounded, D is square integrable with respect to any finite
measure µ, say, what gives reason for considering its L2(µ)-norm

‖D(·;ϑ)‖µ,2 =

∫
R

|D(x;ϑ)|2 µ(dx) . (3.1.4)

In particular, Bordes and Vandekerkhove [3] propose to rate D by means of the
L2(P )-norm, leading to

d(ϑ) :=

∫
R

|D(x;ϑ)|2 P (dx) , (3.1.5)

which will in fact prove to be reasonable from a computational point of view in the
following.

Let ϑ? = (p?, ν?, µ?) denote the Euclidean part of θ?. As we will see now, in case
of identifiability the function d can in fact be used to signalize the “correctness” of
a considered parameter ϑ. For convenience, let again

R2 = R2\{(x, x) | x ∈ R} .

Theorem 3.1. If f0 ∈ E3, H is strictly increasing on R, and if θ? ∈ (0, 1)×R2×Ef0

3 ,
then

d : (0, 1)×R2 → [0,∞) ,

defined as in (3.1.5), is a discrepancy function with respect to ϑ?, i. e. for all
ϑ ∈ (0, 1)×R2 it holds d(ϑ) ≥ 0 as well as d(ϑ) = 0 if and only if ϑ = ϑ?.

Proof. Obviously, d(ϑ) ≥ 0 for all ϑ in the domain of d. Therefore, let ϑ ∈ (0, 1)×R2

be fixed such that d(ϑ) = 0. As

d(ϑ) =

∫
R

|D(x;ϑ)|2 P (dx) =

∫
R

|D(x;ϑ)|2 h(x; θ?) dx

and since H is strictly increasing, we have D(x;ϑ) ·h(x; θ?) = 0 and h(x; θ?) > 0 for
almost all x ∈ R with respect to the Lebesgue measure λ. As therefore

λ({x ∈ R | D(x, ϑ) 6= 0})
≤ λ({x ∈ R | D(x;ϑ) 6= 0, h(x; θ?) > 0}) + λ({x ∈ R | h(x; θ?) = 0}) = 0 ,

it follows

D(x;ϑ) = 0 (3.1.6)
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for almost all x ∈ R with respect to λ. Finally, since x 7→ D(x, ϑ) is continuous on
R, (3.1.6) actually holds true on the entire real line, giving

D1(x;ϑ) = D2(x;ϑ) = 1−D1(−x;ϑ) , x ∈ R . (3.1.7)

In general, D1 need not be a distribution function. Nevertheless, the Fourier
transform φD1 exists since D1 is of bounded variation, where in particular φD1 is
a real function because of the symmetry (3.1.7). Further, as f0, f? ∈ E3, D1 has a
third order moment, too, so that we can proceed with similar arguments as in the
proof of theorem 2.16, i. e. from the equality

π(p, ν, µ,D1) = π(p?, ν?, µ?, F?)

it finally follows that ϑ = ϑ?. �

Provided that θ? ∈ (0, 1)×R2×Ef0

3 , by theorem 3.1 the true Euclidean parameter
ϑ? is the unique minimizer of the discrepancy function d on (0, 1)×R2. Even if f?
satisfies neither condition C1 nor C2, ϑ? keeps being a minimizer of d, no longer
necessarily a unique one, though.

As the true distribution of X and hence cdf H and particularly the function
D are assumed to be unknown, we cannot determine ϑ? through a deterministic
minimization routine. Nevertheless, d can be used to derive a reasonable estimator
ϑ̂n : Rn → (0, 1)×R2 for the Euclidean parameter based on the independent copies
X1, . . . , Xn. For this, we replace P and D in (3.1.5) by adequate estimators. A
natural estimator for P , of course, is its empirical distribution P̂n, that is the sum of
n Dirac measures with mass 1/n at each value of the randomly observed n-sample,

P̂n =
1

n

n∑
i=1

δXi . (3.1.8)

The measure P̂n is the uniquely identified probability measure on R corresponding
to the empirical cdf Ĥn of X,

Ĥn(y) =
1

n

n∑
i=1

1(−∞,y](Xi) , y ∈ R .

Since we need to find a minimizer of d or, more precisely, of an estimate d̂ of d and
since therefore we need to apply some optimization routine to d̂, the function D has
to be replaced by a differentiable estimator D̃n, say. This is why we substitute H in
(3.1.2) by the smoothed version

H̃n(y) =

∫ y

−∞
h̃n(x) dx , y ∈ R , (3.1.9)
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where h̃n constitutes some kernel density estimator for pdf x 7→ h(x; θ?), giving

D̃n(x;ϑ) =
1

p

(
H̃n(x+ µ)− (1− p)F0(x− ν + µ)

+ H̃n(−x+ µ)− (1− p)F0(−x− ν + µ)
)
− 1 . (3.1.10)

Thus, we finally come to the empirical discrepancy function

d̂n(ϑ) =

∫
R

|D̃n(x;ϑ)|2 P̂n(dx)

=
1

n

n∑
i=1

|D̃n(Xi;ϑ)|2 , n ∈ N . (3.1.11)

As d̂n is continuous on (0, 1]×R2, restricted to any compact subset Θ it attains
its minimum value, so that a reasonable estimate of ϑ? is given by a corresponding
(but in general not unique) minimizer,

ϑ̂n = (p̂n, ν̂n, µ̂n) ∈ arg min
ϑ∈Θ

d̂n(ϑ) . (3.1.12)

Thereupon, of course, a natural estimator for the unknown pdf f? is induced by
the derivative of D1, replacing ϑ by ϑ̂n and h by the kernel density estimator h̃n,
yielding

f̂n(x) = h̃n(x+ µ̂n)/p̂n − (1− p̂n)f0(x− ν̂n + µ̂n)/p̂n , x ∈ R ,

what completes the semiparametric estimator

θ̂n = (ϑ̂n, f̂n) = (p̂n, ν̂n, µ̂n, f̂n) .

3.2. Empirical processes

The estimator ϑ̂n in (3.1.12) is said to be a M-estimator as it minimizes some given
criterion function. This concept is common, e. g. in maximum likelihood estimation.
In our case, however, the applied criterion function d̂n is stochastic itself, containing
the nonparametric cdf estimator H̃n. This is why we first have to recall some theory
of empirical processes before we are capable of studying further conditions of ϑ̂n.
For this, in the following we consider P -integrable functions f , say, and take a closer
look at their expectation under both the empirical and the true distribution of X,

EP̂n
[f ] =

∫
f dP̂n =

1

n

n∑
i=1

f(Xi) , n ∈ N ,

EP [f ] =

∫
f dP .
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For convenience, let

E(f) := EP [f ] , Ên(f) := EP̂n
[f ] , n ∈ N .

3.2.1. Glivenko-Cantelli theorem

Definition 3.2 (Glivenko-Cantelli). A class F of P -integrable functions is said to
be P -Glivenko-Cantelli if

‖Ên − E‖F := sup
f∈F
|Ên(f)− E(f)| −→ 0 a.s. (3.2.1)

as n tends to infinity.

On a Glivenko-Cantelli class of functions the empirical expectation converges uni-
formly to the real expectation as the number of observations tends to infinity. At
this one could be reminded of the empirical cdf Ĥn converging uniformly to the true
cdf H of X. In fact, choosing F = {1(−∞,y] | y ∈ R}, then, for all y ∈ R,

Ên(1(−∞,y]) =
1

n

n∑
i=1

1(−∞,y](Xi) = Ĥn(y;X1, . . . , Xn) ,

E(1(−∞,y]) =

∫
1(−∞,y] dP = P ((−∞, y]) = H(y) , (3.2.2)

so that the convergence (3.2.1) follows from the classical Glivenko-Cantelli-Lemma1.
As a result, the set of indicator functions on the cells (−∞, y], y ∈ R is Glivenko-
Cantelli.

We will now give a sufficient criterion for a class of functions being Glivenko-
Cantelli. Let F be any set of P -integrable functions. Given two functions l, u ∈
Lk(P ), l ≤ u, k ∈ N, we define the bracket [l, u] as the subset of functions f ∈ F
satisfying l ≤ f ≤ u. A bracket [l, u] having∫

(u− l)k dP < εk

for some ε > 0, k ∈ N is referred to as an (ε, k)-bracket. Finally, the bracketing
number

N(ε, k,F)

is defined as the minimum number of (ε, k)-brackets needed to cover the set F .
Theorem 3.3 (Glivenko-Cantelli). Every class F of P -integrable functions satisfy-
ing

N(ε, 1,F) <∞ , ε > 0

1Cf. van der Vaart [25], p. 266, theorem 19.1.
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is P -Glivenko-Cantelli.

The proof is quite similar to the classical Glivenko-Cantelli-lemma. It can e. g. be
found in van der Vaart and Wellner [26], p. 122, theorem 2.4.1.

Corollary 3.4. Let F = {fθ | θ ∈ Θ} be a parametric Family indexed by a compact
metric set Θ such that for all x ∈ R the mapping θ 7→ fθ(x) is continuous and such
that there exists a P -integrable envelope for the fθ. Then, F is P -Glivenko-Cantelli.

Proof. For θ ∈ Θ let us denote by Br
θ the open ball in Θ with center θ and radius r.

Let us consider an arbitrary fixed θ0 ∈ Θ. Defining pointwise

fBrθ0
:= inf

θ∈Brθ0
fθ , fB

r
θ0 := sup

θ∈Brθ0

fθ

yields a bracket Brrθ0 := [fBrθ0
, fB

r
θ0 ] such that for all θ ∈ Br

θ0
it is fθ ∈ Brrθ0 . If

(rn)n∈N is a sequence of decreasing radii, then due to the assumed continuity we
have

fB
rn
θ0 (x)− fBrnθ0 (x) ↓ 0 , x ∈ R , n→∞ .

Thus and since there is a P -integrable envelope, by Lebesgue’s dominated conver-
gence theorem2 this convergence holds true in L1(P ), too, giving∫

(fB
rn
θ0 − fBrnθ0 )dP ↓ 0 , n→∞ .

So, for all ε > 0 there exists a radius rε and an open ball Brε
θ0

such that Brrεθ0 is an
(ε, 1)-bracket.

For all θ ∈ Θ let Bε
θ denote the open ball around θ inducing the (ε, 1)-bracket

Brεθ. Trivially, Θ can be covered by the union
⋃
θ∈ΘB

ε
θ . By the compactness of Θ,

though, there exists a finite subset Θ̃ ⊂ Θ such that

Θ ⊂
⋃
θ∈Θ̃

Bε
θ .

Hence,
⋃
θ∈Θ̃Br

ε
θ is a finite cover of F . It follows

N(ε, 1,F) ≤ #(Θ̃) <∞ .

As ε > 0 was arbitrarily chosen, the proof is concluded. �

2Cf. Bauer [1], p. 95, theorem 15.6.
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3.2.2. Donsker’s theorem and the functional Delta-method

In addition to the uniform convergence we are also interested in the asymptotic
distribution of Ên. Let F be some class of square P -integrable functions. Then, for
all n ∈ N, defining

En(f) :=
√
n(Ên(f)− E(f)) , f ∈ F ,

we regard

En := (En(f))f∈F

as a stochastic process indexed by the class F . The process En is called the empirical
process with respect to F and the probability measure P .

Definition 3.5 (Gaussian process). Let T be an arbitrary index set. A stochastic
process G = (G(t))t∈T is said to be Gaussian if any finite linear combination

n∑
i=1

αiG(ti) , n ∈ N , αi ∈ R , ti ∈ F , i = 1, . . . , n

is normally distributed.

Definition 3.6 (Donsker). A class F of square P -integrable functions is said to be
P -Donsker if

En  G ,

as n tends to infinity3, where G is a zero mean Gaussian process with covariance
functional ρ : F2 → R given by

ρ(fi, fj) = Cov [G(fi),G(fj)] = E(fifj)− E(fi)E(fj) , fi, fj ∈ F .

A criterion for a class of functions to be P -Donsker can be given by a bracketing
argument, too.

Theorem 3.7 (Donsker). Every class F of square P -integrable functions satisfying

∫ 1

0

√
logN(ε, 2,F) dε <∞ (3.2.3)

is P -Donsker.

For a proof of Donsker’s theorem cf. van der Vaart [25], p. 270, theorem 19.5, for
instance.

3Here and in the following we use  to express convergence in distribution.
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Corollary 3.8. If P is absolutely continuous with respect to the Lebesgue measure,
then the class F = {1(−∞,y] | y ∈ R} is P -Donsker.

Proof. For all 0 < ε ≤ 1 there exists N ∈ N such that

1/N < ε2 , N ≤ 2/ε2 .

Defining x0 := −∞, xN := +∞ as well as xk, k = 1, . . . , N − 1 such that

P ((−∞, xk]) = k/N ,

which exist because of the absolute continuity of P , then the N brackets

[1(−∞,xN−1],1(−∞,xN )] , [1(−∞,xk−1],1(−∞,xk]] , k = 1, . . . N − 1

cover the set F and have L2(P )-norm smaller than ε2. In fact, e. g.∫
(1(−∞,xk] − 1(−∞,xk−1])

2 dP = P ((xk−1, xk]) = 1/N < ε2 .

Thus, for all 0 < ε ≤ 1 we obtain N(ε, 2,F) ≤ N ≤ 2/ε2 and hence∫ 1

0

√
logN(ε, 2,F) dε ≤

∫ 1

0

√
log(2/ε2) dε <∞ .

The finiteness of the integral above can for example be seen by the inequality√
log(2/x2) ≤ x−0.8, 0 < x ≤ 1. �

Remark. Corollary 3.8 keeps its validity without requiring the absolute continu-
ity of P , too. Constructing the grid of (ε, 2)-brackets becomes more complicated,
though.

Corollary 3.9. If P is absolutely continuous with respect to the Lebesgue measure,
then the sequence of empirical processes

(
√
n(F̂n(y)− F (y)))y∈R , n ∈ N ,

where F and F̂n denote the cdf and empirical cdf corresponding to P , respectively,
converges in distribution to a zero mean Gaussian process G with autocovariance
function ρ : R2 → R given by

ρ(x, y) = min(F (x), F (y))− F (x)F (y) , x, y ∈ R .

Proof. Regarding (3.2.2), for all n ∈ N and y ∈ R,
√
n(F̂n(y)− F (y)) =

√
n(Ên(1(−∞,y])− E(1(−∞,y])) = En(1(−∞,y]) .

As {1(−∞,y | y ∈ R} is P -Donsker by corollary 3.8, it follows

En  G , n→∞ ,
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where the autocovariance function of G is given by

ρ(x, y) = E(1(−∞,x]1(−∞,y])− E(1(−∞,x])E(1(−∞,y])

=

∫
1(−∞,min(x,y)] dP −

∫
1(−∞,x] dP

∫
1(−∞,y] dP

= F (min(x, y))− F (x)F (y)

= min(F (x), F (y))− F (x)F (y) ,

see definition 3.6. �

As one is often interested in the convergence behavior of a random element φ(X),
where the convergence of X is known, we finally need to work for a result concerning
the transfer of weak convergence under adequate mappings φ.

Definition 3.10 (Hadamard-differentiable). Let D and E be normed linear spaces.
A function φ : D → E is said to be Hadamard-differentiable at d0 ∈ D if there exists
a linear map φ′d0

: D → E such that

t−1
n

(
φ(d0 + tnhn)− φ(d0)

)
−→ φ′d0

(h) , n→∞

for all sequences (tn)n∈N ⊂ R, tn → 0 and (hn)n∈N ⊂ D, hn → h ∈ D.

Example 3.11. Let us denote by D(R) the Skorohod Space, the linear space of
bounded cadlag functions4 on R, equipped with the general supremum norm. Fur-
ther, for γ > 0, let BVγ(R) ⊂ D(R) be the set of cadlag functions of total variation
bounded by γ. Then, the map

φ : D(R)×BVγ(R)→ R , (f, g) 7→
∫
f dg

is Hadamard-differentiable at all pairs (f, g) such that f is of finite total variation
and the derivative of φ at (f, g) is given by

φ′(f,g)(h1, h2) =

∫
f dh2 +

∫
h1 dg , (3.2.4)

see van der Vaart and Wellner [26], p. 382, lemma 3.9.17.

Remark. Note that whenever g is of bounded variation the Riemann-Stieltjes in-
tegral

∫
f dg and hence the map φ is well-defined.

Corollary 3.12 (Chain rule). Let D, E, and F be normed linear spaces as well as
ψ : D → E and φ : E → F be functions. If ψ is Hadamard-differentiable at d0 ∈ D
and φ is Hadamard-differentiable at ψ(d0) ∈ E with derivatives ψ′d0

and φ′ψ(d0),
respectively, then φ ◦ ψ : D → F is Hadamard-differentiable at d0 with derivative

(φ ◦ ψ)′d0
= φ′ψ(d0) ◦ ψ′d0

.

4A function being right-continuous with existing left limits (continue à droite, limitée à gauche).
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Proof. Given arbitrary sequences (tn)n∈N ⊂ R, tn → 0 and (hn)n∈N ⊂ D, hn → h ∈
D we rewrite

t−1
n

(
φ(ψ(d0 + tnhn))− φ(ψ(d0))

)
= t−1

n

(
φ(ψ(d0) + tnkn))− φ(ψ(d0))

)
,

where kn = t−1
n

(
ψ(d0 + tnhn)− ψ(d0). Due to the differentiability of ψ at d0

kn −→ ψ′d0
(h) , n→∞ .

Thus, applying the differentiability of φ at ψ(d0) concludes the proof. �

Theorem 3.13 (Delta-method). Let D and E be normed linear spaces and let
φ : D → E be Hadamard-differentiable at d0 ∈ D. Let Xn, n ∈ N, and X be random
elements, X be separable, with values in D such that

rn(Xn − d0) X

for some sequence (rn)n∈N ⊂ R, rn →∞. Then,

rn(φ(Xn)− φ(d0)) φ′d0
(X) ,

where φ′d0
is the Hadamard-derivative of φ at d0, cf. definition 3.10. If φ′d0

is con-
tinuous on the whole of D, then also

rn(φ(Xn)− φ(d0)) = φ′d0
(rn(Xn − d0)) + op(1) .

For the proof of theorem 3.13 see van der Vaart and Wellner [26], p. 374.

3.2.3. Smooth Estimates

Let f : R → R be any Lebesgue pdf with corresponding cdf F , empirical cdf F̂n,
and smoothed empirical cdf F̃n,

F̃n(y) =

∫ y

−∞
f̃n(x) dx , y ∈ R ,

where f̃n is a kernel density estimator for f ,

f̃n(x) =
1

nbn

n∑
i=1

k

(
x−Xi

bn

)
, x ∈ R ,

with kernel function5 k and bandwidth (bn)n∈N such that bn → 0.

Assumption 3.14. (i) The pdf f is continuously differentiable and both f and
its first order derivative, f ′ say, are bounded.

5A continuous Lebesgue density is referred to as a kernel function.



3. Estimation 34

(ii) The kernel k is centered about zero, has a finite second order moment, and
integrates to one, i. e.∫

x k(x) dx = 0 ,

∫
x2 k(x) dx <∞ ,

∫
k(x) dx = 1 .

Theorem 3.15. If there exists a sequence (cn)n∈N ⊂ R such that cn → ∞ and
nbncn/ log(n)→∞ as n tends to infinity, then, under assumption 3.14,

√
n‖F̃n − F̂n‖∞ = Oa.s.

(√
bncn| log bncn|+

√
log log n

∫ ∞
cn

k(x) dx+
√
nb2

n

)
.

The proof of theorem 3.15 can be found in Shorack and Wellner [22], see corollary
1, p. 766. With regard to this result, in the following we assume that some given
sequence (cn)n∈N satisfies

cn −→∞ , nbncn/ log(n) −→∞ ,
√
bncn| log bncn| −→ 0 , and

√
log log n

∫ ∞
cn

k(x) dx −→ 0 . (3.2.5)

Corollary 3.16. If the bandwidth bn gives
√
nb2

n → 0, then, under assumption 3.14,

‖F̃n − F̂n‖∞ = oa.s.(n
−1/2)

and

‖F̃n − F‖∞ = Oa.s.

(√
(log log n)/n

)
.

Proof. The first assertion is a straight consequence of theorem 3.15.

For all x ∈ R,

F̂n(x) =
1

n

n∑
i=1

1(−∞,x](Xi) ,

where the random variables 1(−∞,x](Xi), i ∈ N are independent and identically
distributed, as this is true for the Xi’s, with mean F (x) and variance F (x)(1−F (x)).
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Hence, by the law of the iterated logarithm due to Hartman-Wintner6,

lim sup
n→∞

√
n√

log log n
|F̂n(x)− F (x)| = lim sup

n→∞

∑n
i=1

(
1(−∞,x](Xi)− F (x)

)
√
n log log n

=
√

2F (x)(1− F (x))

≤
√

2

almost surely, giving

‖F̂n − F‖∞ = Oa.s.

(√
(log log n)/n

)
.

By means of triangle inequality

‖F̃n − F‖∞ ≤ ‖F̃n − F̂n‖∞ + ‖F̂n − F‖∞ = oa.s.(n
−1/2) +Oa.s.

(√
(log log n)/n

)
and the second assertion follows. �

The next result by Silverman [23] provides the handling of the kernel density
estimator f̃n and its derivative f̃ ′n.

Theorem 3.17. Under adequate assumptions, cf. Silverman [23], theorems A and
C, both

(i) ‖f̃n − f‖∞ = oa.s.(1) and

(ii) ‖f̃ ′n − f ′‖∞ = oa.s.(1)

hold.

Finally, theorem 3.17 (i) can be aggravated as follows.

Theorem 3.18. Under assumption 3.14 and some further conditions on k and bn,
cf. Giné and Guillou [9], theorem 2.3,

‖f̃n − f‖∞ = Oa.s.

(√
| log bn|/(nbn)

)
+O(bn) .

Proof. By Giné and Guillou [9],

‖f̃n − E
[
f̃n
]
‖∞ = Oa.s.

(√
| log bn|/(nbn)

)
.

Moreover, for all x ∈ R,

E
[
f̃n(x)

]
= b−1

n

∫
k
(x− y

bn

)
f(y) dy =

∫
k(z)f(x− bnz) dz

=

∫
k(z)

(
f(x)− bnzf ′(ξzx)

)
dz

= f(x)− bn
∫
zf ′(ξzx)k(z) dz

6Cf. e. g. Bauer [1], p. 272, theorem 31.1.
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by a zero order Taylor expansion of f around x, where ξzx lies in the line segment
between x and x− bnz. Hence, as f ′ is bounded, denoting by k̄1 the finite absolute
first order moment of k, for some constant c > 0 it follows

sup
x∈R
|E
[
f̃n(x)

]
− f(x)| ≤ sup

x∈R
bn

∫
|z||f ′(ξzx)|k(z) dz ≤ ck̄1bn ,

yielding

‖E
[
f̃n(x)

]
− f(x)‖∞ = O(bn) .

We conclude the proof by means of triangle inequality. �

Remark. For a detailed listing of the presuppositions to the kernel function k and
the bandwidth bn required for theorems 3.17 and 3.18 see assumption 3.24 (i)-(iv).

3.3. Consistency

In this section we will show that ϑ̂n, cf. (3.1.12), is a consistent estimator for the
Euclidean model parameter ϑ, that is we verify that ϑ̂n converges almost surely to
ϑ? as the number n of observations tends to infinity.

For convenience, in the following we denote the true pdf corresponding to the
distribution P of X by h, i. e.

h(x) = h(x;ϑ?) , x ∈ R .

Provided that h is differentiable we further denote its first order derivative by h′.

Lemma 3.19. (i) The function D : R×Θ→ R, cf. (3.1.3), is bounded whenever
Θ is a compact subset of (0, 1]×R2.

(ii) The discrepancy function d, cf. (3.1.5), is continuous on (0, 1]×R2.

Proof. (i) From the compactness of Θ it follows that there exists c > 0 such that
p ≥ c for all ϑ = (p, ν, µ) ∈ Θ. Hence, for all x ∈ R, ϑ ∈ Θ,

|D(x;ϑ)| =
∣∣(H(x+ µ)− (1− p)F0(x− ν + µ)

+H(−x+ µ)− (1− p)F0(−x− ν + µ)
)
/p− 1

∣∣
≤ 4/c+ 1 .

(ii) The mapping ϑ 7→ D(x;ϑ)2 is continuous on (0, 1]×R2 for all fixed x ∈ R.
Let ϑ0 ∈ (0, 1] × R2 be fixed. In order to prove the continuity of d in ϑ0 let

us consider an arbitrary sequence (ϑn)n∈N in Θ such that ϑn → ϑ0 as n tends to
infinity, where Θ is some compact subset of (0, 1] × R2 with ϑ0 ∈ Θ. Due to the
boundedness on Θ, see part (i), there exists a P -integrable envelope for theD(x;ϑn)2,
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n ∈ N, so that by Lebesgue’s dominated convergence theorem the function series
(x 7→ D(x;ϑn)2)n∈N converges to x 7→ D(x;ϑ0)2 in L1(P ), too, yielding

|d(ϑn)− d(ϑ0)| ≤
∫
R

|D(x;ϑn)2 −D(x;ϑ0)2| P (dx) −→ 0 , n→∞ ,

what concludes the proof. �

In the following we will give evidence of the empirical discrepancy function d̂n
being a consistent estimator for the real discrepancy d under adequate assumptions,
what immediately provides the strong consistency of d(ϑ̂n) thereafter.

Assumption 3.20. Let bn and k respectively denote the bandwidth and the kernel
function of the kernel density estimator h̃n, cf. (3.1.9). Then, the following holds.

(i) The pdf h is continuously differentiable and both h and h′ are bounded.

(ii) The kernel function k meets assumption 3.14 (ii).

(iii) There exists a sequence (cn)n∈N ⊂ R which suffices (3.2.5).

(iv) The bandwidth bn gives
√
nb2

n → 0, n→∞.

Recall that assumption 3.20 provides the almost sure convergence of the smooth
empirical cdf H̃n.

Lemma 3.21. Let d ∈ N. If (fn)n∈N, fn : Rd → R is a function series such that

lim
n→∞

‖fn − f‖∞ = 0

and if g : R→ R is uniformly continuous on the codomain of f and the fn, then

lim
n→∞

‖g ◦ fn − g ◦ f‖∞ = 0 .

Proof. Let ε > 0 be arbitrarily small. Due to the uniform continuity of g there exists
δε > 0 such that, for all n ∈ N and x1, x2 ∈ Rd, the implication

|fn(x1)− f(x2)| < δε =⇒ |g(fn(x1))− g(f(x2))| < ε (3.3.1)

holds true. Since (fn)n∈N converges uniformly in x there moreover exists n0 ∈ N
such that

|fn(x)− f(x)| < δε , n ≥ n0 , x ∈ Rd ,

which combined with (3.3.1) yields

sup
x∈Rd
|g(fn(x)− g(f(x))| ≤ ε , n ≥ n0 .

The proof is concluded. �
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Remark. Clearly, lemma 3.21 is transferable to the case where fn(x), n ∈ N, x ∈ Rd

is a random variable and the convergence ‖fn − f‖∞ → 0 holds true no better than
almost surely.

Lemma 3.22. Under assumption 3.20 the following holds.

(i) If Θ is a compact subset of (0, 1]×R2, then

sup
ϑ∈Θ
|d̂n(ϑ)− d(ϑ)| = oa.s.(1) .

(ii) If further ϑ? ∈ Θ, then d(ϑ̂n) converges almost surely to zero.

Proof. (i) For all ϑ ∈ Θ, n ∈ N,

|d̂n(ϑ)− d(ϑ)| =
∣∣∣ 1
n

n∑
i=1

D̃n(Xi;ϑ)2 −
∫
D(x;ϑ)2 P (dx)

∣∣∣
≤ 1

n

n∑
i=1

∣∣D̃n(Xi;ϑ)2 −D(Xi;ϑ)2
∣∣+
∣∣∣ 1
n

n∑
i=1

D(Xi, ϑ)2 −
∫
D(x;ϑ)2 P (dx)

∣∣∣ ,
where the last expression can be handled as follows.

For all ϑ = (p, ν, µ) ∈ Θ,

sup
x∈R
|D̃n(x;ϑ)−D(x;ϑ)|

= sup
x∈R
|H̃n(x+ µ)−H(x+ µ) + H̃n(−x+ µ)−H(−x+ µ)|/p

≤ sup
x∈R
|H̃n(x+ µ)−H(x+ µ)|/p+ sup

x∈R
|H̃n(−x+ µ)−H(−x+ µ)|/p

= 2
p
· sup
x∈R
|H̃n(x)−H(x)|

≤ c‖H̃n −H‖∞ , (3.3.2)

where the constant c > 0 results from the compactness of Θ. As c‖H̃n − H‖∞ is
independent of the choice of ϑ and converges to zero by corollary 3.16,

sup
x∈R,ϑ∈Θ

|D̃n(x;ϑ)−D(x;ϑ)| = oa.s.(1) .

Since D, D̃n, n ∈ N are bounded on R × Θ, see lemma 3.19, and thus only take
values in some compact interval in R, the squaring x 7→ x2 is uniformly continuous
on their joint codomain, so that regarding lemma 3.21 we further obtain

sup
x∈R,ϑ∈Θ

|D̃n(x;ϑ)2 −D(x;ϑ)2| = oa.s.(1) .

As the parameter space Θ is compact, ϑ 7→ D(x;ϑ)2, ϑ ∈ Θ is continuous for
every fixed x ∈ R, and since there exists a P -integrable envelope for the D(x;ϑ)2
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due to their boundedness on R×Θ, by corollary 3.4 the parametric family

FΘ := {x 7→ D(x;ϑ)2 | ϑ ∈ Θ}

is P -Glivenko-Cantelli. Therefore,

sup
f∈FΘ

|Ên(f)− E(f)| = oa.s.(1) ,

inducing

sup
ϑ∈Θ

∣∣∣ 1
n

n∑
i=1

D(Xi;ϑ)2 −
∫
D(x;ϑ)2 P (dx)

∣∣∣ = oa.s.(1) .

In total, for all ϑ ∈ Θ,

sup
ϑ∈Θ
|d̂n(ϑ)− d(ϑ)| ≤ sup

x∈R,ϑ∈Θ
|D̃n(x;ϑ)2 −D(x;ϑ)2|

+ sup
ϑ∈Θ

∣∣∣ 1
n

n∑
i=1

D(Xi;ϑ)2 −
∫
D(x;ϑ)2 P (dx)

∣∣∣ = oa.s.(1) .

(ii) As d(ϑ?) = 0 and per definition d̂n(ϑ̂n) ≤ d̂n(ϑ?), n ∈ N,

d(ϑ̂n) ≤ d(ϑ̂n)− d̂n(ϑ̂n) + d̂n(ϑ?)− d(ϑ?) ≤ 2 sup
ϑ∈Θ
|d̂n(ϑ)− d(ϑ)| ,

where the right-hand side converges almost surely to zero by part (i). �

The almost sure convergence of d(ϑ̂n) will now be essential to obtain the strong
consistency of the estimator ϑ̂n.

Theorem 3.23. If θ? ∈ (0, 1) × R2 × Ef0

3 , f0 ∈ E3, and H is strictly increasing,
then, under assumption 3.20, on every compact subset Θ ⊂ (0, 1)×R2 with ϑ? ∈ Θ
the estimator ϑ̂n converges almost surely to the true Euclidean model parameter ϑ?
as n tends to infinity.

Proof. In order to conclude the strong consistency of ϑ̂n we make use of the necessary
and sufficient condition

lim
n→∞

P (supm≥n ‖ϑ̂m − ϑ?‖1 > ε) = 0 , ε > 0 . (3.3.3)

Therefore, let ε > 0 be arbitrarily small. Due to its continuity, cf. lemma 3.19,
the discrepancy function d attains its minimum value on every compact subset of
(0, 1]×R2. Hence, since

Θε := {ϑ ∈ Θ | ‖ϑ− ϑ?‖ ≥ ε}
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is compact, there exists ϑε ∈ Θε such that

d(ϑ) ≥ d(ϑε) =: δε , ϑ ∈ Θε .

This is why{
sup
m≥n
‖ϑ̂m − ϑ?‖ > ε

}
⊂
{

sup
m≥n
|d(ϑ̂m)| ≥ δε

}
,

yielding

P (supm≥n ‖ϑ̂n − ϑ?‖ > ε) ≤ P (supm≥n |d(ϑ̂m)| ≥ δε) , n ∈ N . (3.3.4)

As ϑε 6= ϑ? and d is a discrepancy function with respect to ϑ?, see theorem 3.1, it
holds δε > 0, so that by lemma 3.22 (ii) the probability on the right-hand side of
(3.3.4) converges to zero as n tends to infinity. The proof is concluded. �

3.4. Asymptotic normality

In addition to the strong consistency of the Euclidean part ϑ̂n we now want to
establish the asymptotic normality of the semiparametric estimator (ϑ̂n, F̂n), where

F̂n(x) = Ĥn(x+ µ̂n)/p̂n − (1− p̂n)F0(x− ν̂n + µ̂n)/p̂n , x ∈ R .

In order to do so, we will derive the joint limiting distribution of
√
n(ϑ̂n − ϑ?, F̂n − F ) , n ∈ N .

Here, for all n, the empirical cdf F̂n is regarded as a random element in the Skorohod
Space D(R), the normed linear space of bounded cadlag functions on R, which we
equip with the general supremum norm.

Provided that d̂n is twice continuously differentiable, the residuals
√
n(ϑ̂n − ϑ?)

can be expressed in terms of the first and second order derivative of d̂n. In fact,
defining

ḋn := ∂ϑd̂n , d̈n := ∂2
ϑ2 d̂n , n ∈ N ,

a zero order Taylor expansion of ḋn around ϑ? yields

ḋn(ϑ̂n) = ḋn(ϑ?) + (ϑ̂n − ϑ?)d̈n(ϑ̄n)

for some ϑ̄n ∈ {ϑ? + t(ϑ̂n − ϑ?) | t ∈ (0, 1)}. If ϑ? ∈ Θ, then by the almost sure
convergence of ϑ̂n, cf. theorem 3.23, we expect ϑ̂n being a local minimizer in the
interior of Θ, giving ḋn(ϑ̂n) = 0 and thus

√
n(ϑ̂n − ϑ?)d̈n(ϑ̄n) = −

√
nḋn(ϑ?) . (3.4.1)
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Assumption 3.24. (i) Both h and f0 are continuously differentiable on R, h′ is
uniformly continuous, and all functions h, f0, h′, and f ′0 are bounded.

(ii) The kernel function k is centered about zero, has a finite second order moment,
and integrates to one. Further, k is differentiable, both k and its first order
derivative, k′ say, are uniformly continuous and of bounded variation, and k′
has a finite first order moment. Also,{

x 7→ k
(y − x

z

)
| y ∈ R, z ∈ R>

}
is a bounded VC-class of functions7.

(iii) For both k0 = k and k0 = k′,∫ √
|x log |x|| |dk0(x)| <∞ .

Further, if k′ admits ψk′ as modulus of continuity8, then∫ 1

0

√
log(y−1) d

√
ψk′(y) <∞ .

(iv) The bandwidth (bn)n∈N ⊂ R, bn ↓ 0 satisfies
√
nb2

n → 0,

log n

nbn
−→ 0 ,

log b−1
n

nb3
n

−→ 0 , (3.4.2)

as well as

log b−1
n

nbn
−→ 0 ,

log b−1
n

log log n
−→∞ , (3.4.3)

and bn ≤ cb2n for some constant c > 0.

(v) There exists (cn)n∈N ⊂ R sufficing (3.2.5).

(vi) The parameter space Θ ⊂ (0, 1)×R2 on which to estimate is compact.

(vii) We have θ? ∈ (0, 1)×R1 × Ef0

3 , f0 ∈ E3, and H is strictly increasing on R.

Recall that assumption 3.24 simultaneously provides the strong consistency of
the cdf H̃n, pdf h̃n, its derivative h̃′n, and the Euclidean estimator ϑ̂n. Part (iii), in
particular, is required for theorem 3.17. The demand for a VC-class of functions is
essential regarding theorem 3.18. Part (vii) ensures the continuity of the discrepancy
function d which is necessary for the convergence of ϑ̂n.

7Concerning VC-classes, named for V. Vapnik and A.Y. Čhervonenkis, cf. e. g. van der Vaart and
Wellner [26], p. 141 et seq.

8For each function f , which is uniformly continuous, there exists ψf : [0,∞) → [0,∞) such that
|f(x1) − f(x2)| ≤ ψf (|x1 − x2|), x1, x2 ∈ R. The function ψf is referred to as modulus of
continuity with respect to f .
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Lemma 3.25. Under assumption 3.24,

ḋn(ϑ?) =
2

n

n∑
i=1

D̂n(Xi;ϑ?) · ∂ϑD(Xi;ϑ?) + oa.s.
(
n−1/2

)
,

where D̂n is defined as D̃n, cf. (3.1.10), replacing H̃n by Ĥn.

Proof. As

ḋn(ϑ?) =
2

n

n∑
i=1

D̃n(Xi;ϑ?) · ∂ϑD̃n(Xi;ϑ?) (3.4.4)

let us define

Sn :=
2

n

n∑
i=1

(
D̃n(Xi;ϑ?) · ∂ϑD̃n(Xi;ϑ?)− D̂n(Xi;ϑ?) · ∂ϑD(Xi;ϑ?)

)
.

By a zero addition

Sn =
2

n

n∑
i=1

(
D̃n(Xi;ϑ?) · ∂ϑD̃n(Xi;ϑ?)− D̃n(Xi;ϑ?) · ∂ϑD(Xi;ϑ?)

+ D̃n(Xi;ϑ?) · ∂ϑD(Xi;ϑ?)− D̂n(Xi;ϑ?) · ∂ϑD(Xi;ϑ?)
)

=
2

n

n∑
i=1

(
D̃n(Xi;ϑ?) ·

(
∂ϑD̃n(Xi;ϑ?)− ∂ϑD(Xi;ϑ?)

)
+
(
D̃n(Xi;ϑ?)− D̂n(Xi;ϑ?)

)
· ∂ϑD(Xi;ϑ?)

)
= T (1)

n + T (2)
n ,

where

T (1)
n =

2

n

n∑
i=1

(
D̃n(Xi;ϑ?)−D(Xi;ϑ?)

)
·
(
∂ϑD̃n(Xi;ϑ?)− ∂ϑD(Xi;ϑ?)

)
,

T (2)
n =

2

n

n∑
i=1

(
D̃n(Xi;ϑ?)− D̂n(Xi;ϑ?)

)
· ∂ϑD(Xi;ϑ?) ,

minding that D(x;ϑ?) ≡ 0.

For all x ∈ R,

|D̃n(x;ϑ?)−D(x;ϑ?)| = p−1
?

∣∣H̃n(x+ µ?)−H(x+ µ?)

+ H̃n(−x+ µ?)−H(−x+ µ?)
∣∣

≤ 2p−1
? ‖H̃n −H‖∞ . (3.4.5)
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Similarly, we obtain

|∂pD̃n(x;ϑ?)− ∂pD(x;ϑ?)| ≤ 2p−2
? ‖H̃n −H‖∞ ,

|∂νD̃n(x;ϑ?)− ∂νD(x;ϑ?)| = 0 ,

|∂µD̃n(x;ϑ?)− ∂µD(x;ϑ?)| ≤ 2p−1
? ‖h̃n − h‖∞ ,

so that

‖T (1)
n ‖1 ≤ 8p−2

?

(
p−1
? ‖H̃n −H‖2

∞ + ‖H̃n −H‖∞‖h̃n − h‖∞
)

= Oa.s.

(
(log log n)/n

)
+Oa.s.

(√
(log log n)/n

)(
Oa.s.

(√
(log b−1

n )/(nbn)
)

+O(bn)
)

= oa.s.(n
−1/2) +Oa.s.

(√log log n
√

log b−1
n

n
√
bn

+
bn
√

log log n√
n

)
.

by corollary 3.16 and theorem 3.18. Note that
√
nb2

n = o(1) implies the convergence
of bn log log n to zero. Hence, using (3.4.2),

√
n
(√log log n

√
log b−1

n

n
√
bn

+
bn
√

log log n√
n

)
=

√
log log n

√
log b−1

n√
nbn

+ o(1)

= bn
√

log log n

√
log b−1

n

nb3
n

+ o(1)

= o(1) .

We conclude T (1)
n = oa.s.(n

−1/2).

Similar to (3.4.5), for all x ∈ R,

|D̃n(x;ϑ?)− D̂n(x;ϑ?)| ≤ 2p−1
? ‖H̃n − Ĥn‖∞ .

Further, ∂ϑD(x;ϑ?) is bounded on R due to the boundedness of f0, F0, and h (for
the exact computation of ∂ϑD(x;ϑ?) cf. (3.4.9)-(3.4.11)), so that there exists c > 0
such that

‖T (2)
n ‖1 ≤ 4cp−1

? ‖H̃n − Ĥn‖∞ .

Thus, corollary 3.16 leads to T (2)
n = oa.s.(n

−1/2), what concludes the proof. �

Lemma 3.26. If (ϑn)n∈N ⊂ Θ such that ϑn → ϑ?, then, under assumption 3.24,

(i) supx∈R |D(x;ϑn)| −→ 0 and

(ii) supx∈R |∂ϑD(x;ϑn)− ∂ϑD(x;ϑ?)| −→ 0

as n tends to infinity.

Proof. (i) The cdfs H and F0 are Lipschitz continuous on R as h and f0 are bounded,
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i. e. there exist c1, c2 > 0 such that

|H(x1)−H(x2)| ≤ c1|x1−x2| , |F0(x1)−F0(x2)| ≤ c2|x1−x2| , x1, x2 ∈ R .

Since D(x;ϑ?) = 0, x ∈ R,

|D(x;ϑn)| = |D(x;ϑn)−D(x;ϑ?)|
≤ |D(x;ϑn)−D(x; p?, νn, µn)|+ |D(x; p?, νn, µn)−D(x;ϑ?)| .

First, by the compactness of Θ and the boundedness of H and F0,

D(x;ϑn)−D(x; p?, νn, µn) =
(
p−1
n − p−1

?

)
O(1) ,

giving

sup
x∈R
|D(x;ϑn)−D(x; p?, νn, µn)| −→ 0 , n→∞

by the convergence of ϑn. Second,

D(x; p?, νn, µn)−D(x;ϑ?) = p−1
?

(
H(x+ µn)− (1− p?)F0(x− νn + µn)

+H(−x+ µn)− (1− p?)F0(−x− νn + µn)

−H(x+ µ?) + (1− p?)F0(x− ν? + µ?)

+H(−x+ µ?)− (1− p?)F0(−x− ν? + µ?)
)
,

so that by the Lipschitz continuity

|D(x; p?, νn, µn)−D(x;ϑ?)| ≤ p−1
?

(
2c1|µn − µ?|

+ 2(1− p?)c2|µn − νn − µ? + ν?|
)

≤ p−1
? 2
(
c1 + (1− p?)c2

)
‖ϑn − ϑ?‖1 .

Hence,

sup
x∈R
|D(x; p?, νn, µn)−D(x;ϑ?)| −→ 0 , n→∞ ,

concluding (i).

(ii) Additionally using the boundedness of h′ and f ′0, the uniform convergence of
∂ϑD(x;ϑn) can be concluded likewise. �

Lemma 3.27. Let ϑ̄n be as in (3.4.1). Then, under assumption 3.24,

(i) d̈n(ϑ̄n) converges almost surely to the deterministic 3× 3 matrix

I = 2

∫
∂ϑD(x;ϑ?)

t · ∂ϑD(x;ϑ?) P (dx)

as n→∞.



3. Estimation 45

(ii) The matrix I is positive definite.

Proof. (i) Taking the derivative of (3.4.4) gives

d̈n(ϑ) =
2

n

n∑
i=1

(
∂ϑD̃n(Xi;ϑ)t · ∂ϑD̃n(Xi;ϑ) + D̃n(Xi;ϑ) · ∂2

ϑ2D̃n(Xi;ϑ)
)
.

With the particular argument ϑ̄n we rewrite

d̈n(ϑ̄n) = T (1)
n + T (2)

n + T (3)
n , (3.4.6)

where

T (1)
n =

2

n

n∑
i=1

D̃n(Xi; ϑ̄n) · ∂2
ϑ2D̃n(Xi; ϑ̄n) ,

T (2)
n =

2

n

n∑
i=1

(
∂ϑD̃n(Xi; ϑ̄n)t · ∂ϑD̃n(Xi; ϑ̄n)− ∂ϑD(Xi;ϑ?)

t · ∂ϑD(Xi;ϑ?)
)
,

T (3)
n =

2

n

n∑
i=1

∂ϑD(Xi;ϑ?)
t · ∂ϑD(Xi;ϑ?) .

Let us successively examine the convergence behavior of T (1)
n , T (2)

n , and T (3)
n .

1. First, we conclude ∂2
ϑ2D̃n(x; ϑ̄) = Oa.s.(1) through pointing out the asymptotic

boundedness of all component. Basically, this follows from the compactness
of Θ and from h, f0, and their derivatives all being bounded. In fact, e. g.

∂2
µ2D̃n(x;ϑ) = p−1

(
h̃′n(x+ µ)− (1− p)f ′0(x− ν + µ)

+ h̃′n(−x+ µ)− (1− p)f ′0(−x− ν + µ)
)

, x ∈ R ,

where h̃′n denotes the first order derivative of h̃n. As h′ is bounded and h̃′n
converges uniformly to h′, cf. theorem 3.17 (ii),

‖h̃′n‖∞ = ‖h′‖∞ + ‖h̃′n − h′‖∞ = O(1) + oa.s.(1) = Oa.s.(1) .

The asymptotic boundedness of ∂2
µ2D̃n(x;ϑ) follows. The remaining compo-

nents of ∂2
ϑ2D̃n(x;ϑ) can be handled likewise, most are easier, actually.

Second, as ϑ̄n = ϑ? + tn(ϑ̂n − ϑ?) for some tn ∈ (0, 1),

‖ϑ̄n − ϑ?‖ ≤ ‖ϑ̂n − ϑ?‖ −→ 0 a.s. , n→∞
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by theorem 3.23. Therefore,

sup
x∈R
|D̃n(x; ϑ̄n)| ≤ sup

x∈R
|D̃n(x; ϑ̄n)−D(x; ϑ̄n)|+ sup

x∈R
|D(x; ϑ̄n)|

≤ c2‖H̃n −H‖∞ + sup
x∈R
|D(x; ϑ̄n)|

= oa.s.(1) (3.4.7)

by corollary 3.16 and lemma 3.26 (i), where the constant c2 results from the
compactness of Θ, cf. (3.3.2). Using (3.4.7) and the asymptotic boundedness
of ∂2

ϑ2D̃n(x;ϑ) we conclude

T (1)
n = oa.s.(1) .

2. Let us representatively consider the (1,3)-component of the matrix T (2)
n , i. e.

2

n

n∑
i=1

(
∂pD̃n(Xi; ϑ̄n) · ∂µD̃n(Xi; ϑ̄n)− ∂pD(Xi;ϑ?) · ∂µD(Xi;ϑ?)

)
,

which we in the following denote by (1,3)T
(2)
n . For all x ∈ R,

∂pD̃n(x; ϑ̄n) · ∂µD̃n(x; ϑ̄n)− ∂pD(x;ϑ?) · ∂µD(x;ϑ?) = L(1)
n (x) + L(2)

n (x) ,

where

L(1)
n (x) = ∂pD̃n(x; ϑ̄n) ·

(
∂µD̃n(x; ϑ̄n)− ∂µD(x;ϑ?)

)
,

L(2)
n (x) = ∂µD(x;ϑ?) ·

(
∂pD̃n(x; ϑ̄n)− ∂pD(x;ϑ?)

)
.

Note that both ∂pD̃n(x; ϑ̄n) and ∂µD(x;ϑ?) are bounded. Through a zero
addition similar to (3.4.7) we obtain

sup
x∈R

(
∂µD̃n(x; ϑ̄n)− ∂µD(x;ϑ?)

)
≤ c2‖h̃n − h‖∞

+ sup
x∈R

(
∂µD(x; ϑ̄n)− ∂µD(x;ϑ?)

)
= oa.s.(1)

and

sup
x∈R

(
∂pD̃n(x; ϑ̄n)− ∂pD(x;ϑ?)

)
≤ c2

2‖H̃n −H‖∞

+ sup
x∈R

(
∂pD(x; ϑ̄n)− ∂pD(x;ϑ?)

)
= oa.s.(1)

by theorem 3.17, corollary 3.16, and lemma 3.26 (ii). It follows ‖L(1)
n ‖∞ =
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oa.s.(1) as well as ‖L(2)
n ‖∞ = oa.s.(1) and hence

|(1,3)T
(2)
n | ≤ 2

(
‖L(1)

n ‖∞ + ‖L(2)
n ‖∞

)
−→ 0 a.s. , n→∞ .

The remaining components of T (2)
n can be handled in a similar way, altogether

giving

T (2)
n = oa.s.(1) .

3. The random matrices ∂ϑD(Xi;ϑ?)
t · ∂ϑD(Xi;ϑ?), i ∈ N are independent and

identically distributed as the Xi’s are. Moreover,

E
[
‖∂ϑD(X1;ϑ?)

t · ∂ϑD(X1;ϑ?)‖1

]
<∞

due to the boundedness of h and f0 and the compactness of Θ. By the strong
law of large numbers it follows that, as n tends to infinity, almost surely

1

n

n∑
i=1

∂ϑD(Xi;ϑ?)
t · ∂ϑD(Xi;ϑ?) −→ E

[
∂ϑD(X1;ϑ?)

t · ∂ϑD(X1;ϑ?)
]

=

∫
∂ϑD(x;ϑ?)

t · ∂ϑD(x;ϑ?) P (dx) .

Hence,

T (3)
n −→ I a.s. , n→∞ .

With (3.4.6) and 1.-3. we conclude the convergence of d̈n(ϑ̄n).

(ii) For any arbitrary w ∈ R3,

wtIw = 2

∫
wt
(
∂ϑD(x;ϑ?)

t · ∂ϑD(x;ϑ?)
)
w P (dx)

= 2

∫
(∂ϑD(x;ϑ?)w)2 P (dx) ≥ 0 , (3.4.8)

giving the positivity of I. Therefore, let w be such that wtIw = 0 in what follows.

As H is strictly increasing and thus h > 0 almost surely, (3.4.8) leads to

∂ϑD(x;ϑ?)w = 0 , x ∈ R ,

minding the continuity of x 7→ ∂ϑD(x;ϑ?)w. Defining ζ ∈ R\{0} according to
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ζ := µ? − ν?, a more precise consideration of the partial derivatives gives

∂pD(x;ϑ?) = p−2
?

(
F0(x+ ζ) + F0(−x+ ζ)−H(x+ µ?)−H(−x+ µ?)

)
= p−2

?

(
F0(x+ ζ) + F0(−x+ ζ)

− (1− p?)F0(x+ ζ)− p?F (x)

− (1− p?)F0(−x+ ζ)− p?F (−x)
)

= p−1
?

(
F0(x+ ζ) + F0(−x+ ζ)− F (x)− F (−x)

)
= p−1

?

(
F0(x+ ζ) + F0(−x+ ζ)− 1

)
= p−1

?

(
F0(x+ ζ)− F0(x− ζ)

)
=: g1(x) , (3.4.9)

∂νD(x;ϑ?) =
1− p?
p?

(
f0(x+ ζ) + f0(−x+ ζ)

)
=

1− p?
p?

(
f0(x+ ζ) + f0(x− ζ)

)
=: g2(x) , (3.4.10)

∂µD(x;ϑ?) = p−1
?

(
h(x+ µ?)− (1− p?)f0(x− ν? + µ?)

+ h(−x+ µ?)− (1− p?)f0(−x− ν? + µ?)
)

= f?(x) + f?(−x)

= 2f?(x)

=: g3(x) , (3.4.11)

satisfying

w1g1(x) + w2g2(x) + w3g3(x) = 0 , x ∈ R . (3.4.12)

Referring to the Fourier transform of gk as ĝk, k = 1, . . . , 3,

ĝ1(t) = sgn(ζ)p−1
? f̂0(t)

∫ |ζ|
−|ζ|

eitz dz ,

ĝ2(t) =
1− p?
p?

(
e−itζ − eitζ

)
f̂0(t) ,

ĝ3(t) = 2f̂?(t) , t ∈ R ,
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at what f̂? and f̂0 respectively denote the Fourier transforms of f? and f0. In fact,

p?ĝ1(t) =

∫
e−itx

(
F0(x+ ζ)− F0(x− ζ)

)
dx

=

∫
e−itx

(∫ x+ζ

−∞
f0(y) dy −

∫ x−ζ

−∞
f0(y) dy

)
dx

= sgn(ζ)

∫ ∫ x+|ζ|

x−|ζ|
e−itx f0(y) dy dx

= sgn(ζ)

∫ ∫ |ζ|
−|ζ|

e−itx f0(z + x) dz dx

= sgn(ζ)

∫ |ζ|
−|ζ|

∫
e−itx f0(z + x) dx dz

= sgn(ζ)

∫ |ζ|
−|ζ|

∫
e−it(y−z) f0(y) dy dz

= sgn(ζ)f̂0(t)

∫ |ζ|
−|ζ|

eitz dz ,

where the order of integration is interchangeable due to Fubini’s theorem9 as the
function (x, z) 7→ e−itx f0(z + x) is λ2-integrable on R × [−|ζ|, |ζ|] for fixed ζ ∈ R.
The remaining Fourier transforms ĝ2 and ĝ3 can be computed easily.

Let us consider the Fourier transform equation induced by (3.4.12), i. e.

w1ĝ1(t) + w2ĝ2(t) + w3ĝ3(t) = 0 , t ∈ R . (3.4.13)

First, note that the imaginary parts of ĝ1 and ĝ3 are equal to zero since f? and f0

are even functions,

ĝ1(t) = sgn(ζ)p−1
? f̂0(t)

(∫ |ζ|
−|ζ|

cos(tz) dz + i

∫ |ζ|
−|ζ|

sin(tz) dz
)
, (3.4.14)

and ∫ |ζ|
−|ζ|

sin(tz) dz = 0 , t ∈ R .

Further,

ĝ2(t) =
1− p?
p?

(
cos(−tζ) + i sin(−tζ)− cos(tζ)− i sin(tζ)

)
f̂0(t)

=
−2(1− p?)

p?
sin(tζ)i f̂0(t) , t ∈ R ,

9Cf. Bauer [1], p. 158, corollary 23.7, for instance.
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so that the imaginary part of (3.4.13) gives

w2
−2(1− p?)

p?
sin(tζ) f̂0(t) = 0 , t ∈ R .

As t 7→ f̂0(t) is continuous with f̂0(0) = 1 and sin(tζ) 6= 0 for small t > 0, there
exists t0 ∈ R such that sin(t0ζ)f̂0(t0) 6= 0, yielding w2 = 0.

Considering the real part of (3.4.13), using (3.4.14), we obtain

w1 sgn(ζ)p−1
? f̂0(t)

∫ |ζ|
−|ζ|

cos(tz) dz + w32f̂?(t) = 0 , t ∈ R . (3.4.15)

As f? ∈ Ef0

3 by presupposition, i. e. f? meets one of the conditions C1 and C2, we
conclude the following.

If f̂0(t)/f̂?(t)→ 0 holds, then w3 = 0 by (3.4.15) as t 7→
∫ |ζ|
−|ζ| cos(tz)dz is bounded.

Further,

w1 sgn(ζ)p−1
? f̂0(t)

∫ |ζ|
−|ζ|

cos(tz) dz = 0 , t ∈ R

in this case. As f̂0(t)
∫ |ζ|
−|ζ| cos(tz) dz 6= 0 for small t > 0, it also follows w1 = 0.

If on the other hand f̂?(t)/f̂0(t)→ 0, then

lim
t→∞

w1 sgn(ζ)p−1
?

∫ |ζ|
−|ζ|

cos(tz) dz = 0

by (3.4.15), giving w1 = 0 as t 7→
∫ |ζ|
−|ζ| cos(tz) dz is periodic and unequal to zero

whenever t /∈ {nπ/|ζ| | n ∈ N}. As then w32f̂?(t) = 0, t ∈ R, the particular
argument t = 0 gives w3 = 0.

In consequence, wtIw = 0 holds true if and only if w = 0, that is the matrix I is
definite, too. �

For convenience, let us introduce the random sequence

(Un)n∈N ⊂ R3 , Un = (U (1)
n ,U (2)

n ,U (3)
n )

defined by

Un =
2

n

n∑
i=1

D̂n(Xi;ϑ?) · ∂ϑD(Xi;ϑ?) .

Lemma 3.25 points out the relevance of the process (Un)n∈N.
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Lemma 3.28. If (Yn)n∈N ⊂ R is a random sequence such that Yn = op(1), then

YnUn = op(n
−1/2) .

Proof. As Θ is compact, x 7→ ∂ϑD(x;ϑ?) is bounded, and D(x;ϑ?) ≡ 0 there exists
c > 0 such that

|U (k)
n | ≤ 2c‖Ĥn −H‖∞ , k = 1, 2, 3 .

As H is continuous, there exists a real random variable K such that
√
n‖Ĥn−H‖∞,

known as the Kolmogorov-Smirnov statistic10, gives
√
n‖Ĥn −H‖∞  K .

Hence, by Slutsky’s theorem11,
√
n|YnU (k)

n | ≤ 2c
√
n|Yn|‖Ĥn −H‖∞  0 ,

yielding
√
n|YnU (k)

n | 0 and thus, as the limit is constant,

YnU (k)
n = op(n

−1/2) , k = 1, 2, 3 .

The convergence of YnUn follows. �

Lemma 3.29. Under assumption 3.24 the random sequence
√
n(ϑ̂n − ϑ?), n ∈ N

converges in distribution to a zero mean Gaussian random vector with covariance
matrix I−1ΣI−1, where I comes from lemma 3.27 and Σ is given in (3.4.19).

Proof. By lemma 3.27 the matrix d̈n(ϑ̄n) is regular for sufficiently large n with

d̈n(ϑ̄n)−1 −→ I−1 a.s. , n→∞ .

Therefore, regarding (3.4.1),
√
n(ϑ̂n − ϑ?) = −

√
nḋn(ϑ?)d̈n(ϑ̄n)−1

=
√
n
(
Un + oa.s.(n

−1/2)
)(
I−1 + oa.s.(1)

)
=
√
n UnI−1 +

√
n Unoa.s.(1) + oa.s.(1)

=
√
n UnI−1 + op(1) , (3.4.16)

using lemmata 3.25 and 3.28. The Un can be written in terms of a Riemann-Stieltjes
integral according to

Un = 2

∫
D̂n(x;ϑ?) · ∂ϑD(x;ϑ?) Ĥn(dx) .

10Cf. van der Vaart [25], p. 277, section 19.3 and particularly corollary 19.21.
11Cf. van der Vaart [25], p. 11, lemma 2.8.
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Regarding D̂n as a function of Ĥn, e. g.

D̂n(x;ϑ?) = D(x;ϑ?, Ĥn) = p−1
?

(
Ĥn(x+ µ?)− (1− p?)F0(x− ν? + µ?)

+ Ĥn(−x+ µ?)− (1− p?)F0(−x− ν? + µ?)
)
− 1 ,

let us introduce the maps ψ : BV1(R)→ D(R)3 ×BV1(R) according to

ψ(F ) =

(
2 ·D(x;ϑ?, F ) · ∂ϑD(x;ϑ?)

F

)
and φ : D(R)3 ×BV1(R)→ R3 given by

φ(G1, G2) =

∫
G1 dG2 , G1 ∈ D(R)3 , G2 ∈ BV1(R) ,

where BV1(R) and D(R) are defined as in example 3.11. We obtain

Un = (φ ◦ ψ)(Ĥn) , n ∈ N . (3.4.17)

The map φ◦ψ is Hadamard-differentiable atH. In fact, ψ is Hadamard-differentiable
at H with derivative

ψ′H(F (x)) =

(
2p−1

?

(
F (x+ µ?) + F (−x+ µ?)

)
· ∂ϑD(x;ϑ?)

F (x)

)
and concerning the differentiability of φ see example 3.11. Applying corollary 3.12
leads to

(φ ◦ ψ)′H(F (x)) = φ′ψ(H)(ψ
′
H(F (x)))

= 2p−1
?

∫ (
F (x+ µ?) + F (−x+ µ?)

)
· ∂ϑD(x;ϑ?)H(dx)

for all F ∈ BV1(R), where the first integral of the derivative of φ, cf. (3.2.4), drops
out since ψ(H) = (0, H)t as D(x;ϑ?, H) ≡ 0.

By corollary 3.9 there exists a Gaussian process G such that
√
n(Ĥn −H)  G

as n → ∞. As φ ◦ ψ is Hadamard-differentiable at H and as φ(ψ(H)) = 0, by the
Delta-method, theorem 3.13, we obtain

√
n Un =

√
n
(
φ(ψ(Ĥn))− φ(ψ(H))

)
 (φ ◦ ψ)′H(G) ,

where

G := (φ◦ψ)′H(G(x)) = 2p−1
?

∫ (
G(x+µ?)+G(−x+µ?)

)
·∂ϑD(x;ϑ?)H(dx) (3.4.18)

is a three dimensional zero mean Gaussian random vector.12 The covariance matrix

12Cf. Ibragimov and Rozanov [15], p. 12.
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of G can be calculated as follows. Denoting the autocovariance function of the limit
process G by ρ, cf. corollary 3.9, the autocovariance function of the Gaussian process
(G(x+ µ?) +G(−x+ µ?))x∈R, noting that G has a zero mean, is given by

ρ̄(x, y) = E [(G(x+ µ?) +G(−x+ µ?))(G(y + µ?) +G(−y + µ?))]

= E [G(x+ µ?)G(y + µ?)] + E [G(x+ µ?)G(−y + µ?))]

+ E [G(−x+ µ?)G(y + µ?)] + E [G(−x+ µ?)G(−y + µ?))]

= ρ(x+ µ?, y + µ?) + ρ(x+ µ?,−y + µ?)

+ ρ(−x+ µ?, y + µ?) + ρ(−x+ µ?,−y + µ?) .

Therewith,

G ∼ N (0,Σ) ,

where the covariance matrix Σ is defined by

Σ =
4

p2
?

∫∫
ρ̄(x, y) ∂ϑD(x;ϑ?)

t∂ϑD(y;ϑ?)H(dx)H(dy) , (3.4.19)

cf. Ibragimov and Rozanov [15], (4.13).

By (3.4.16) it follows that
√
n(ϑ̂n − ϑ?) converges in distribution to a zero mean

Gaussian random vector with covariance matrix I−1ΣI−1. �

Theorem 3.30. Under assumption 3.24 the random sequence
√
n
(
ϑ̂n − ϑ?, F̂n − F

)
, n ∈ N

converges in distribution to a zero mean Gaussian process with covariance function
Γ? given in (3.4.22).

Proof. First, recall that F̃n and F̂n are interchangeable at rate
√
n, cf. corollary 3.16,

what allows to consider the sequence
√
n(F̃n − F ) instead of

√
n(F̂n − F ). For all

x ∈ R,

F (x) = p−1
?

(
H(x+ µ?)− (1− p?)F0(x− ν? + µ?)

)
,

F̃n(x) = p̂−1
n

(
H̃n(x+ µ̂n)− (1− p̂n)F0(x− ν̂n + µ̂n)

)
.

Regarding F̃n(x) = F̃n(x; ϑ̂n) as a function of ϑ, its first order derivative, for all
x ∈ R, is given by

∂ϑF̃n(x;ϑ)t =

 p−2
(
F0(x− ν + µ)− H̃n(x+ µ)

)
p−1(1− p)f0(x− ν + µ)

p−1
(
h̃n(x+ µ)− (1− p)f0(x− ν + µ)

)
 .
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Hence, by a zero order Taylor expansion of F̃n around ϑ? we obtain
√
n
(
F̂n(x)− F (x)

)
=
√
n
(
F̃n(x; ϑ̂n)− F (x)

)
+ oa.s.(1)

=
√
n
(
F̃n(x;ϑ?) + ∂ϑF̃n(x; ϑ̄n)(ϑ̂n − ϑ?)t − F (x)

)
+ oa.s.(1)

=
√
n p−1

?

(
H̃n(x+ µ?)−H(x+ µ?)

)
+
√
n(p̂n − p?)(p̄n)−2

(
F0(x− ν̄n + µ̄n)− H̃n(x+ µ̄n)

)
+
√
n(ν̂n − ν?)(p̄n)−1(1− p̄n)f0(x− ν̄n + µ̄n)

+
√
n(µ̂n − µ?)(p̄n)−1

(
h̃n(x+ µ̄n)− (1− p̄n)f0(x− ν̄n + µ̄n)

)
+ oa.s.(1) .

for some ϑ̄n ∈ {ϑ? + t(ϑ̂n − ϑ?) | t ∈ (0, 1)}, n ∈ N. As almost surely ϑ̄n converges
to ϑ?, H̃n converges to H, h̃n converges to h, and

√
n(ϑ̂n − ϑ?) is tight, cf. lemma

3.29, we have, uniformly in x,
√
n
(
F̂n(x)− F (x)

)
=
√
n p−1

?

(
Ĥn(x+ µ?)−H(x+ µ?)

)
+
√
n(ϑ̂n − ϑ?)u+ op(1) , (3.4.20)

where the deterministic vector u is defined as

u =

p−2
?

(
F0(x− ν? + µ?)−H(x+ µ?)

)
p−1
? (1− p?)f0(x− ν? + µ?)

f?(x)

 .

Using (3.4.16) and (3.4.20) we obtain
√
n(ϑ̂n − ϑ?, F̂n(x)− F (x)) =

√
n
(
Un, Ĥn(x+ µ?)−H(x+ µ?)

)
J + op(1)

as an element in R3 ×D(R), where

J =

(
I−1 I−1u
0 p−1

?

)
. (3.4.21)

Introducing the map ϕ : BV1(R)→ D(R) according to

ϕ(F (x)) = F (x+ µ?)−H(x+ µ?) ,

which is Hadamard-differentiable at H with derivative

ϕ′H(F (x)) = F (x+ µ?) ,

we rewrite(
Un, Ĥn(x+ µ?)−H(x+ µ?)

)
= (φ ◦ ψ, ϕ)(Ĥn) ,
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cf. (3.4.17). By means of the Delta-method, theorem 3.13, as
√
n
(
Ĥn − H

)
 G,

(φ ◦ ψ, ϕ)(H) = 0, and using (3.4.18), we conclude
√
n
(
Un, Ĥn(x+ µ?)−H(x+ µ?)

)
 
(
(φ ◦ ψ)′H , ϕ

′
H

)
(G) =

(
G,G(x+ µ?)

)
.

The covariance function of the process
(
G,G(x+ µ?)

)
x∈R is given by

Γ(x, y) =

(
Σ σ(y)t

σ(x) %(x, y)

)
,

where the matrix Σ is defined in (3.4.19), the vector valued function σ is defined by

σ(x) = E [GG(x+ µ?)]

=
2

p?

∫ (
ρ(x+ µ?, y + µ) + ρ(x+ µ?,−y + µ?)

)
∂ϑD(y;ϑ?) dy ,

and %, the autocovariance function of the process
(
G(x+ µ?)

)
x∈R, is

%(x, y) = ρ(x+ µ?, y + µ?) .

Recall that ρ is the covariance function of the process G, cf. corollary 3.9. Altogether
we conclude that the random process

√
n
(
ϑ̂n−ϑ?, F̂n−F

)
converges in distribution

to a zero mean Gaussian process with covariance function

Γ?(x, y) = J tΓ(x, y)J , (3.4.22)

where J is given in (3.4.21). �



4. Simulation study

Finally, we want to carry out a numerical validation of the estimator ϑ̂n suggested
in section 3.1 using the free software environment R for statistical computing. The
implementation of the estimator is straightforward. Based on the independent copies
X1, . . . , Xn, given a kernel function k and the bandwidth bn, the smooth empirical
cdf H̃n can be written as

H̃n(y) =

∫ y

−∞

1

nbn

n∑
i=1

k
(x−Xi

bn

)
dx =

1

n

n∑
i=1

∫ y

−∞

1

bn
k
(x−Xi

bn

)
dx

=
1

n

n∑
i=1

K
(y −Xi

bn

)
,

denoting by K the antiderivative of k. Choosing a Gaussian kernel we use the func-
tion pnorm for the evaluation ofK. This allows an easy bottom-up implementation of
H̃n, D̃n, and d̂n. The minimization of d̂n is done by a quasi-Newton method applying
the function optim with option method=’BFGS’. Further, the following calculations
use the bandwidth rate bn = n−1.6. In combination with the Gaussian kernel this
rate meets all the assumptions 3.20 (ii)-(iv), which ensure a consistent estimation.
Also, it performed best during initial tests using the rates n−α for α = 0.5, 1, 1.6, 2.

Estimating a normal mixture

We assess the actual performance of the estimator ϑ̂n by way of comparison using
the results obtained by Bordes et al. [4] when estimating the normal mixture

x 7→ (1− p)ϕ(x; 4) + pϕ(x− µ; 1) , (4.0.1)

where x 7→ ϕ(x;σ2) denotes the centered Gaussian pdf with variance σ2. Here,
in conformity with our model, the component pdf f0(x) = ϕ(x; 4) is assumed to be
known. Given a n-sample drawn from mixture (4.0.1) they estimated the parameters
p and µ for true values (p?, µ?) = (0.3, 3) and (p?, µ?) = (0.15, 3). The corresponding
mixtures are illustrated in figure 4.1. Using sample sizes n = 250 and n = 1000 they
each time performed 200 estimations. The estimates thus obtained are given in table
4.1, aggregated to their means and standard deviations.

We repeated these estimations in much the same manned except for applying the
estimator ϑ̂n established in section 3.1, that is we additionally determine estimates
for the second, latent location parameter ν with true value ν? = 0. The performed
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Figure 4.1.: Mixture (4.0.1) with true values (p?, µ?) = (0.3, 3) on the left-hand and (p?, µ?) = (0.15, 3) on the
right-hand side. Each plot shows the mixture pdf (solid) with corresponding known (dashed) and
unknown (two-dashed) component pdfs.

estimations are all based on the initial value ϑ0 = (0.2, 0, 0), which was passed to
the optimization routine optim. As previous implementations attested, however, the
choice of this initial value does not influence the estimation method significantly.

The outcomes we obtained are much plausible as they nearly match those by Bor-
des et al. [4]. The estimates can be taken from table 4.2. At large, our extended
method seems to be slightly inferior. This is as was expected, though, since simul-
taneously estimating an additional parameter means further efforts, as well. For
a theoretical support we take a closer look at the asymptotic covariance matrix of
the residuals

√
n(ϑ̂n − ϑ?), provided by lemma 3.29. Based on the true parameter

(p?, ν?, µ?) = (0.3, 0, 3) numerical calculations give

I =

10.200 1.649 1.469
1.649 0.314 0.180
1.469 0.180 0.308

 , Σ =

49.033 7.893 7.194
7.893 1.318 1.092
7.194 1.092 1.159

 ,

and therewith

I−1ΣI−1 =

 1.996 −6.248 −4.287
−6.248 28.756 13.459
−4.287 13.459 16.995

 .

Canceling the second row and the second column of I and Σ leads to the asymp-
totic covariance matrix corresponding to the estimator applied by Bordes et al. [4].
Denoting the reduced matrices by Ī and Σ̄ we obtain

Σ̄
−1

Σ̄Ī
−1

=

(
0.664 −1.472
−1.472 11.158

)
.

Comparing the upper left and the lower right entries of these two covariance matrices
in fact substantiates the inferiority of the extended estimator ϑ̂n.
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Table 4.1.: Estimates obtained by Bordes et al. [4]. The table gives the mean values and standard deviations (in
brackets) of 200 estimates for true values (p?, µ?) = (0.15, 3) and (p?, µ?) = (0.3, 3) and sample sizes
n = 250 and n = 1000.

p̂n µ̂n

p = 0.15 / n = 250 0.165 (0.055) 2.878 (0.418)
p = 0.15 / n = 1000 0.154 (0.031) 2.944 (0.272)
p = 0.30 / n = 250 0.303 (0.057) 2.963 (0.226)
p = 0.30 / n = 1000 0.301 (0.029) 2.976 (0.131)

Table 4.2.: Estimates obtained using the estimator ϑ̂n. The table gives the mean values and standard deviations
(in brackets) of 200 estimates for true values (p?, ν?, µ?) = (0.15, 0, 3) and (p?, ν?, µ?) = (0.3, 0, 3) and
sample sizes n = 250 and n = 1000.

p̂n ν̂n µ̂n

p = 0.15 / n = 250 0.161 (0.021) -0.024 (0.222) 2.838 (0.691)
p = 0.15 / n = 1000 0.157 (0.017) -0.025 (0.095) 2.954 (0.242)
p = 0.30 / n = 250 0.303 (0.012) -0.017 (0.238) 2.959 (0.359)
p = 0.30 / n = 1000 0.303 (0.009) -0.009 (0.098) 2.990 (0.095)



5. Outlook

Throughout this thesis we have considered two generalized versions of the semi-
parametric mixture model treated by Bordes, Delmas, and Vandekerkhove [4] and
Bordes and Vandekerkhove [3], namely an additional location parameter on the one
hand and an additional scale parameter on the other hand was added to their mix-
ture. We worked for conditions on the model parameter providing identifiability in
these generalized setups and supplied an adapted estimator in the location param-
eter context, which was proved to be strongly consistent for its Euclidean part and
asymptotically normal as a whole.

Of course, a next step should be the simultaneous consideration of both exten-
sions, i. e. we only assume the “known” mixture component to belong to a predefined
location-scale family. This provides more flexibility and is reasonable from a practi-
cal point of view. Absolutely, the crucial part will then be the derivation of suitable
identifiability results for the corresponding mixture

m(x; p, ν, σ, µ, f) = (1− p)f0

(
(x− ν)/σ

)
/σ + pf(x− µ) .

So far it is unclear if observing the moments of m provides satisfactory conclusions
as compared with lemma 2.15, for instance. Considering multivariate data such
as repeated measurements could perhaps be a source of additional information, cf.
Hall and Zhou [11] and more recently Kasahara and Shimotsu [16]. Also, regarding
conditional mixtures based on the presence of covariates could assist, cf. Kitamura
[17] and Henry, Kitamura, and Salanié [12]. After that, the estimator θ̂n can be
adapted canonically. Provided that the mixture pdf induced by the true parameter
θ? is identifiable, consistency results and the asymptotic normality of the extended
estimator should follow by similar arguments as in sections 3.3 and 3.4.
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A. Notation

A.1. Total and partial derivatives

If f : R→ R, x 7→ f(x) is differentiable, then we denote its derivative with respect
to the argument x by ∂xf ,

∂xf =
d

dx
f(x) .

Thus, ∂xf(x0) gives the derivative of f evaluated at the particular argument x0,

∂xf(x0) =
d

dx
f(x)

∣∣
x=x0

.

Let g : Rn → R be totally differentiable. Then, the partial derivative of g with
respect to the argument xk, k = 1, . . . , n, evaluated at x0 ∈ Rn, is denoted by

∂xkg(x0) .

The total derivative of g is defined by the (1× n)-matrix

∂xg(x0) :=
(
∂x1g(x0), . . . , ∂xng(x0)

)
.

Hence, we regard the derivative of g as a row vector.

Finally, let h : Rn → Rm be totally differentiable. Rewriting

h(x) = (h1(x), . . . , hm(x)) , x ∈ Rn ,

where hk : Rn → R, k = 1, . . . ,m, the total derivative of h, evaluated at x0 ∈ Rn,
is given by the (m× n)-matrix

∂xh(x0) =

∂xh1(x0)
...

∂xhm(x0)

 .
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A.2. Stochastic Landau symbols

Landau symbols, or the “big-oh” and “small-oh” notations, are common to express
bounds and the asymptotic behavior of random sequences. Let (rn)n∈N, (Xn)n∈N ⊂
R, Xn, n ∈ N be stochastic.

We say that Xn = oa.s.(1) if Xn converges almost surely to zero as n tends to
infinity, i. e.

P
[
lim
n
Xn = 0

]
= 1 .

Xn is said to be oa.s.(rn) if there exists another random sequence (Yn)n∈N such that

|Xn| ≤ rnYn , n ∈ N , Yn = oa.s.(1) .

If rn is positive for large n, then we obtain

Xn = oa.s.(rn) ⇐⇒ r−1
n Xn = oa.s.(1) .

If Xn is almost surely bounded, then we say Xn = Oa.s.(1). Whenever |Xn| ≤ rn,
n ∈ N almost surely we say that Xn = Oa.s.(rn). Of course, if rn is positive for large
n, then we likewise obtain

Xn = Oa.s.(rn) ⇐⇒ r−1
n Xn = Oa.s.(1) .

Similarly, we say that Xn = op(1) if Xn converges stochastically to zero as n tends
to infinity, i. e.

lim
n→∞

P [|Xn| > ε] = 0 , ε > 0 ,

as well as Xn = op(rn) if |Xn| ≤ rnYn for all n ∈ N and Yn = op(1), where again

Xn = op(rn) ⇐⇒ r−1
n Xn = op(1)

for positive rn. If Xn is stochastically bounded (tight), that is for all ε > 0 there
exists a compact K such that

P [Xn /∈ K] < ε , n ∈ N ,

then we say Xn = Op(1). Further, we say Xn = Op(rn) if |Xn| ≤ rnYn, n ∈ N and
Yn = Op(1). Once more, for positive rn, we have

Xn = Op(rn) ⇐⇒ r−1
n Xn = Op(1) .
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