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1 Theoretical Supplement

1.1 Preliminaries

Consider the process

X̃t =

∫ t

0
σbsh−1

n chn dBs , (1)

without drift and with block-wise constant volatility as a simplified approximation of X . In

the following, we distinguish between the estimator of the spot covariance matrix (12*) based

on oracle optimal weights (13*), Σ̂or
s , and the adaptive estimator Σ̂s.1 Furthermore, we write

Σ̂s(X̃ + ε) for the estimator built from observations in the simplified model in which X̃ is

observed in noise and denote the associated spectral statistics by:

S̃jk = πjh−1
n

( np∑
i=1

(
X̃

(p)

t
(p)
i

+ ε
(p)
i − X̃

(p)

t
(p)
i−1

− ε(p)i−1

)
Φjk

(
t
(p)
i −t

(p)
i−1

2

))
1≤p≤d

. (2)

On the compact interval [0, 1], it can be assumed that ‖bs‖, ‖σs‖‖ are uniformly bounded. This

is based on Jacod (2012), Lemma 6. 6 in Section 6. 3.

For the order of the weights we have by Lemma C.1 of Bibinger et al. (2014) uniformly over all

k that

‖Wj

(
Hn
k ,Σkhn

)
‖ . (log (n))−1

(
1 + j2(nh2

n)−1
)−2

. (3)

We introduce the short notation t̄(p)i = (1/2)
(
t
(p)
i + t

(p)
i−1

)
. Recall the summation by parts

identity from Equation (41c) and its generalization on p. 34 in Altmeyer and Bibinger (2015),

given by

S
(p)
jk ≈ −

np−1∑
v=1

Y (p)
v

(
Φjk

(
t̄
(p)
v+1

)
− Φjk

(
t̄(p)v

))

≈ −
np−1∑
v=1

Y (p)
v ϕjk(t

(p)
v )

t
(p)
v+1 − t

(p)
v−1

2
, (4)

with ϕjk(t) = Φ′jk(t) =
√

2h
−1/2
n cos

(
jπh−1

n (t− khn)
)
1[khn,(k+1)hn](t). The first remainder,

which is only due to end-effects when t(p)0 6= 0 or t(p)np 6= 1, and the second remainder by appli-

cation of the mean value theorem and passing to arguments t(p)v are asymptotically negligible.

1Numbers marked by an asterisk refer to equations in the paper.
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The following orthogonality approximations are satisfied by Φjk, ϕjk:

np∑
i=1

Φjk

(
t̄
(p)
i

)
Φqk

(
t̄
(p)
i

)(
t
(p)
i − t

(p)
i−1

)
= (δjq + O(1))

∫ 1

0
Φ2
jk(t) dt (5a)

= (δjq + O(1))h2
nπ
−2j−2,

with δjq = 1{j=q} being Kronecker’s delta. Likewise,

np−1∑
i=1

(
ϕjk
(
t
(p)
i

)
ϕqk
(
t
(p)
i

) t(p)i+1 − t
(p)
i−1

2

)
= (δjq + O(1))

∫ 1

0
ϕ2
jk(t) dt (5b)

= (δjq + O(1)) .

Moreover, we have the following approximations:

np−1∑
i=1

ϕ2
jk

(
t
(l)
i

)( t(l)i+1−t
(l)
i−1

2

)2
≈

nl−1∑
i=1

ϕ2
jk

(
t
(l)
i

) t(l)i+1−t
(l)
i−1

2

(F−1
l )′(khn)

nl
(6)

≈
(∫ 1

0
ϕ2
jk(t) dt

)
(F−1

l )′(khn)

nl
,

∑
khn≤t(l)i ≤(k+1)hn

(
t
(l)
i − t

(l)
i−1

)2 ≈ ∑
khn≤t(l)i ≤(k+1)hn

(F−1
l )′(khn)n−1

l

(
t
(l)
i − t

(l)
i−1

)
(7)

= (F−1
l )′(khn)n−1

l hn ,

where the remainders are asymptotically negligible. The last quantity reflects the local variation

of observation times similar to the (global) quadratic variation of time by Zhang et al. (2005).

1.2 Proof of Theorem 1 from the Paper

For the sake of notational brevity, we present the proof of Theorem 1 for the two-sided version

of the estimator and time points that lie in the interior of the unit interval. Therefore, in (12*),

we have Ls,n = bsh−1
n c −Kn, Us,n = bsh−1

n c + Kn and Us,n − Ls,n + 1 = 2Kn + 1. For

the one-sided estimator and/or points in the boundary region, the proof proceeds completely

analogous and requires only the obvious changes in the limits of summation, as well as in the

resulting length of the smoothing window.

Recall the notation from (4*), where ηp, p = 1, . . . , d, refers to the long-run noise variance,

namely the sum of all autocovariances, in component p.
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Lemma 1. By Assumption 3,2 we have for p, q ∈ {1, . . . , d}, p 6= q, that

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2
]

= νp
(
F−1
p

)′
ηpn
−1 + O

(
n−1

)
, (8a)

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)( nq∑
i=1

ε
(q)
i ϕjk

(
t
(q)
i

) t(q)i+1−t
(q)
i−1

2

)]
= 0 , (8b)

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)4
]

= ν2
p

((
F−1
p

)′)2
3 η2

pn
−2 + O

(
n−2

)
, (8c)

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2( nq∑
i=1

ε
(q)
i ϕjk

(
t
(q)
i

) t(q)i+1−t
(q)
i−1

2

)2
]

= νp
(
F−1
p

)′
ηpνq

(
F−1
q

)′
ηqn
−2 + O

(
n−2

)
. (8d)

Proof. Using (7) and an analogous estimate, we infer that

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2
]

= E

[ np∑
i=1

(
ε
(p)
i

)2
ϕ2
jk

(
t
(p)
i

)( t(p)i+1−t
(p)
i−1

2

)2

+ 2

np∑
i=1

R∑
u=1

ε
(p)
i ε

(p)
i+uϕjk

(
t
(p)
i

)
ϕjk
(
t
(p)
i+u

) t(p)i+1−t
(p)
i−1

2

t
(p)
i+u+1−t

(p)
i+u−1

2

]
= νp

(
F−1
p

)′
ηpn
−1 + O

(
n−1

)
.

Here and frequently below, we consider simple approximations for ϕjk(t)− ϕjk(s) as t− s =

O(n−1), using cos(t)− cos(s) = −2 sin((t− s)/2) sin((t+ s)/2).

We also introduce the shortcut δRi,v = 1{|i−v|≤R} for the following calculations. Accordingly,

the fourth moments yield

E

[( np∑
i=1

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)4
]

=

E

[ np∑
i,v,u,r=1

ε
(p)
i ε

(p)
v ε

(p)
u ε

(p)
r ϕjk

(
t
(p)
i

)
ϕjk
(
t(p)v

)
ϕjk
(
t(p)u

)
ϕjk
(
t(p)r

) t(p)i+1−t
(p)
i−1

2

t
(p)
v+1−t

(p)
v−1

2

2Assumptions and Theorem 1 always refer to the main paper.
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× t
(p)
u+1−t

(p)
u−1

2

t
(p)
r+1−t

(p)
r−1

2

]

=

np∑
i,v,u,r=1

E
[
ε
(p)
i ε(p)v ε(p)u ε(p)r

](
δRi,vδ

R
u,r + δRi,uδ

R
v,r + δRi,rδ

R
v,u

)
ϕjk
(
t
(p)
i

)
ϕjk
(
t(p)v

)
× ϕjk

(
t(p)u

)
ϕjk
(
t(p)r

) t(p)i+1−t
(p)
i−1

2

t
(p)
v+1−t

(p)
v−1

2

t
(p)
u+1−t

(p)
u−1

2

t
(p)
r+1−t

(p)
r−1

2

= ν2
p

((
F−1
p

)′)2
3 η2

pn
−2 −Rn ,

with a remainder Rn, which satisfies for some constant C that

Rn .
np∑

i,v,u,r=1

C
(
δRi,vδ

R
u,r

(
δRi,u + δRv,r + δRi,r + δRv,u

)
+ δRi,uδ

R
v,r

(
δRi,v + δRu,r + δRi,r + δRv,u

)
+ δRi,rδ

R
v,u

(
δRi,v + δRu,r + δRi,u + δRv,r

))
n−4

= O
(
nR3n−4

)
= O

(
n−3

)
= O

(
n−2

)
.

Thus, Rn is of smaller order than the leading term. Roughly speaking, the expectation above

vanishes if no two pairs of indices are in the range of autocorrelations. The terms where

both pairs are again correlated is asymptotically negligible. The statements for terms with

p 6= q readily follow from the fact that we have non-correlated noise components and that

E[ε
(p)
i ] = E[ε

(q)
v ] = 0 for all i, v.

Decompose the estimation error of the estimator (12*) as follows:

nβ/2 vec
(
Σ̂s − Σs

)
= nβ/2 vec

(
Σ̂or
s (X̃ + ε)− Σs

)
+ nβ/2 vec

(
Σ̂or
s − Σ̂or

s (X̃ + ε
))

+ nβ/2 vec
(
Σ̂s − Σ̂or

s

)
.

Theorem 1 is implied by Proposition 1.1, Proposition 1.2 and Proposition 1.3 below.

Proposition 1.1. On the assumptions of Theorem 1, for any s ∈ (0, 1) it holds true that

nβ/2 vec
(
Σ̂or
s (X̃ + ε)− Σs

) d−(st)−→ N
(

0, 2
(
Σ⊗ Σ

1/2
H + Σ

1/2
H ⊗ Σ

)
s
Z
)
. (9)

Proof. We consider the estimator (12*) under observations of the simplified process X̃ + ε and

associated spectral statistics S̃jk in (2). By virtue of the identity

COV
(

vec
(
S̃jkS̃

>
mk

)∣∣Fkhn) = I−1
jk Z(δjm + O(1)) , (10)
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we deduce the conditional variance-covariance matrix

COV
(
vec
(
Σ̂or
s

)∣∣FUs,n

)
=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2
Jn∑
j=1

WjkCOV
(
vec
(
S̃jkS̃

>
jk

)∣∣Fkhn)W>jk
+ O(K−1

n )

=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2I−1
k

Jn∑
j=1

IjkI
−1
jk ZIjkI

−1
k + O(K−1

n )

=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2I−1
k Z + O(K−1

n ) ,

using the tower property of conditional expectation and since the covariances between different

blocks are asymptotically negligible, which can be seen by considering conditional expectations.

Recall the definition of the symmetric matrices Ik and Ijk from (13*). Having established the

asymptotic equality (10), the asymptotic form of the conditional variance-covariance matrix

follows by bounding E
[
‖I−1
l − I−1

m ‖
]

for different blocks with |l − m| ≤ 2Kn + 1 and

a computation analogously to the proof of Corollary 4.3 of Bibinger et al. (2014). There,

the asymptotic theory is pursued for continuous-time observations, but, once we have the

conforming illustration for I−1
k , the analysis is similar. Using block-wise transformations which

diagonalize Σkhn and transfer the noise level (5*) to the identity matrix, i.e.,

Λkhn = OkHkhnΣkhnHkhnO
>
k ,

with Ok being orthogonal matrices and Λkhn being diagonal, we can infer the asymptotic form

via

COV
(

vec
(
Σ̂or
s

)∣∣FUs,n

)
=

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2
(
OkH

−1
k

)−⊗2
Ĩ−1
k

(
H−1
k O>k

)−⊗2Z

+ O(K−1
n ),

with a diagonalized version Ĩk of Ik. Along the same lines as in the proof of Corollary 4.3 in

Bibinger et al. (2014), we then derive that

COV
(

vec
(
Σ̂or
s

)∣∣FUs,n

)
= (2 + O(1))

bsh−1
n c+Kn∑

k=bsh−1
n c−Kn

(2Kn + 1)−2

×
(
Σkhn ⊗

(
Σkhn
H

)1/2
+
(
Σkhn
H

)1/2 ⊗ Σkhn

)
Z ,
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with the short notation Σkhn
H = Hkhn

(
H−1
khn

ΣkhnH
−1
khn

)1/2
Hkhn . The expression in Theorem 1

now follows by approximating Σ and H constant over the smoothing window using the smooth-

ness of Σ and H granted by Assumptions 2-4. Therefore, to deduce the variance-covariance

structure, it remains to prove that (10) is indeed valid. The computations rely on the prelimi-

naries above, namely summation by parts, the orthogonality relations (5a) and (5b), as well as

(6) and (7). For the signal term, we apply Lemma 4.4 of Altmeyer and Bibinger (2015), which

states that in our asymptotic framework we can, without loss of generality, consider the signal

terms as stemming from synchronous observations. Though this Lemma directly follows from a

basic approximation of Φjk(t)−Φjk(s) as (t− s) gets small, similarly as employed above, this

is a main simplification of the analysis. Then, we obtain with X =
∑n

i=1 ∆iXΦjk(t̄i) from

some synchronous reference observation scheme ti, i = 0, . . . , n, that

COV
(

vec
(
π2j2h−2

n XX>
)∣∣Fkhn) =

1

n

(
Σ⊗2
khn
Z
)
,

with (5a) and by Itô isometry. As the noise level (5*) is diagonal, we can restrict ourselves to

variances

Var
((
π2j2h−2

n

∑
i

ε
(p)
i ϕjk

(
t
(p)
i

) t(p)i+1−t
(p)
i−1

2

)2)
= π4j4h−4

n 2
((

Hn
k

)(pp))2
,

with Hn
k as defined in (9*), as well as by Lemma 1, (5b) and (6). The multiplication with Z/2

when evaluating the variance-covariance matrix of the vectorized diagonal matrix is performed

by elementary matrix calculus. While we consider in general random conditional covariances

of signal terms, we may work with deterministic time-varying noise levels under Assumption 4

that sampling times are exogenous (condition in case of independent random sampling). Using

the same preliminaries again together with the independence of signal and noise, the form of

cross terms is easily proved, such that we conclude (10). Considering the statistics

ζns = nβ/2
bsh−1

n c+Kn∑
k=bsh−1

n c−Kn

(2Kn + 1)−1
Jn∑
j=1

Wj

(
Hn
k ,Σkhn

)
Z̃jk , (11a)

Z̃jk = vec
(
S̃jkS̃

>
jk − πj2h−2

n Hn
k − Σkhn

)
, (11b)

we obtain the following convergences:

E
[
ζns
∣∣FUs,n

] p→ 0 , (11c)
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E
[(
ζns (ζns )>

)∣∣FUs,n

]
p→ 2
(
Σ⊗ Σ

1/2
H + Σ

1/2
H ⊗ Σ

)
s
Z , (11d)

E
[(
ζns (ζns )>ζns (ζns )>

)∣∣FUs,n

]
p→ 0 . (11e)

In case that α ≤ 1/2 in Assumption 2, volatility jumps can occur. However, a standard estimate

gives

P
(

sup
t∈[(bsh−1

n c−Kn)hn,(bsh−1
n c+Kn)hn]

‖σt − σt−‖ > 0
)
≤ C Knhn → 0 as n→∞ , (12)

with σt− = limτ→t,τ<t στ and a constant C. This shows that for any fixed time the probability

that the semi-martingale component σ(1)
s exhibits jumps in [(bsh−1

n c − Kn)hn, (bsh−1
n c +

Kn)hn] tends to zero. From the explicit form of I−1
k from (13*) the difference E

[
‖I−1
l −

I−1
m ‖

]
, |l − m| ≤ 2Kn + 1, is determined by E

[
‖σlhn − σmhn‖

]
, |l − m| ≤ 2Kn + 1 on

Assumption 2. By (12), the order (Knhn)α of the approximation in the variance is readily

obtained and is of the same order as the bias of the estimator. The above analysis for the

variance thus implies (11d). The bias condition (11c) is readily obtained using Lemma 1,

summation by parts, Itô isometry for the signal part, as well as (5a), (5b) and (12). The

Lyapunov condition (11e) follows using analogous bounds as for the stable CLT of the integrated

version in Section 6.2.3 of Altmeyer and Bibinger (2015). We are left to prove that αn =

nβ/2 vec
(
Σ̂or
s (X̃ + ε)− Σs

)
satisfy

E [Zg(αn)]→ E [Zg(α)] = E[Z]E [g(α)] , (13)

for any F-measurable bounded random variable Z and continuous bounded function g with

α =
(
Σ1/2 ⊗ Σ

1/4
H

)
s
ZU +

(
Σ

1/4
H ⊗ Σ1/2

)
s
ZU ′ (14)

and U,U ′ ∈ Rd2 being two independent standard normally distributed vectors independent of

F . (13) ensures that the central limit theorem (9) is F-stable. The limit α gives indeed the

asymptotic law of (9) as Z2 = 2Z and

(
Σ1/2 ⊗ Σ

1/4
H

)
s
Z
((

Σ1/2 ⊗ Σ
1/4
H

)
s
Z
)>

= 2
(
Σ⊗ Σ

1/2
H

)
s
Z ,

because Z commutes with
(
Σ1/2 ⊗ Σ

1/4
H

)
s

and by the analogous transform for the second

addend.
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The proof of (13) relies on separating the sequence of intervals with the blocks involved in

Σ̂or
s from the rest of [0, 1] and conditioning. Thereto, set

An = [s− (Kn + 1)hn, s+ (Kn + 1)hn] ,

X̃(n)t =

∫ t

0
1An(s)σbsh−1

n chn dBs , X̄(n)t = Xt − X̃(n)t .

Denote withHn the σ-field generated by X̄(n)t andF0. Then,
(
Hn
)
n∈N is an isotonic sequence

and
⋃
n∈NHn = F1. Since E[Z|Hn] → Z in L1(P) as n → ∞, it is enough to show that

E[Zg(αn)] → E[Z]E[g(α)] for Z being Hn0-measurable for some n0 ∈ N. Observe that

αn includes only increments ∆iX̃
(p), p = 1, . . . , d, of X̃(n)t and uncorrelated from those

of X̄(n)t. For all n ≥ n0, we conclude E[Zg(αn)] = E[Z]E[g(αn)] → E[Z]E[g(α)] by a

standard central limit theorem. This proves (13) and completes the proof of Proposition 1.1.

Proposition 1.2. On the assumptions of Theorem 1, for any s ∈ (0, 1) it holds true that

nβ/2 vec
(
Σ̂or
s − Σ̂or

s (X̃ + ε
)) p→ 0 . (15)

Proof. The left-hand side above equals

nβ/2 vec
(
Σ̂or
s − Σor

s (X̃ + ε
))

= nβ/2
(
2Kn + 1

)−1
bsh−1

n c+Kn∑
k=bsh−1

n c−Kn

Jn∑
j=1

Wj

(
Hn
k ,Σkhn

)
× vec

(
SjkS

>
jk − S̃jkS̃>jk

)
.

Using that

∥∥SjkS>jk − S̃jkS̃>jk∥∥ =
∥∥S̃jk(S>jk − S̃>jk)+

(
Sjk − S̃jkS>jk

∥∥
≤
(
‖Sjk‖+ ‖S̃jk‖

)∥∥Sjk − S̃jk∥∥ ,
and the order of the weights provided by (3), a crude estimate suffices here:∥∥∥nβ/2 vec

(
Σ̂or
s − Σor

s (X̃ + ε
))∥∥∥

. nβ/2
(
2Kn + 1

)−1
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

Jn∑
j=1

∥∥Wj

(
Hn
k ,Σkhn

)∥∥(‖Sjk‖+ ‖S̃jk‖
)∥∥Sjk − S̃jk∥∥

= Op
(
nβ/2

Jn∑
j=1

(
1 + j2(nh2

n)−1
)−1

(log (n))−1
)

= Op
(
nβ/2hαn log (n)

)
= Op(1) .
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This follows with

Jn∑
j=1

(
1 ∧ j−2nh2

n

)
.

√
nhn∑
j=1

1 +

Jn∑
j=1

j−2nh2
n . log2 (n) ,

and with ‖COV(Sjk)‖ = O
((

1 + j2(nh2
n)−1

)2) and ‖E[Sjk]‖ = O(1).

Proposition 1.3. On the assumptions of Theorem 1, for any s ∈ (0, 1) it holds true that

nβ/2
(

vec
(
Σ̂s − Σ̂or

s

)) p→ 0 . (16)

Proof. We write the left-hand side above

nβ/2
(

vec
(
Σ̂s − Σ̂or

s

))
= nβ/2

(
2Kn + 1

)−1
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

Jn∑
j=1

(
Ŵj

(
Σ̂khn

)
−Wj

(
Σkhn

))
Zjk,

Zjk = vec
(
SjkS

>
jk − πj2h−2

n Hn
k − Σkhn

)
.

By Proposition 1.2, the expectation ofZjk is asymptotically negligible. To extend our asymptotic

theory to an adaptive approach, we shall concentrate in the following on the error due to pre-

estimating Σkhn to determine the optimal weights in (13*). The effect of an estimated noise

level as in (11*) is easily shown to be asymptotically negligible using Theorem A 1 and (7). We

decompose the difference between adaptive and oracle estimator using

Ŵj

(
Σ̂khn

)
−Wj

(
Σkhn

)
= Ŵj

(
Σ̂m(2Kn+1)hn

)
−Wj

(
Σm(2Kn+1)hn

)
+

+ Ŵj

(
Σ̂khn

)
− Ŵj

(
Σ̂m(2Kn+1)hn

)
+Wj

(
Σm(2Kn+1)hn

)
−Wj

(
Σkhn

)
,

where Σ̂m(2Kn+1)hn ,m = 0, . . . , b(2Kn + 1)−1h−1
n c − 1, is a pre-estimator, which is constant

on the coarse grid, such that it is constant over the smoothing window of Σ̂s from (12*), and

Σm(2Kn+1)hn is the locally constantly approximated true covariance matrix on the same coarse

grid. We apply triangular inequality and prove that all three terms tend to zero in probability.

10



For the first term, we obtain

∥∥∥∥∥
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

(2Kn + 1)−1
Jn∑
j=1

(
Ŵj

(
Σ̂m(2Kn+1)hn

)
−Wj

(
Σm(2Kn+1)hn

))
Zjk

∥∥∥∥∥
≤ (2Kn + 1)−1

Jn∑
j=1

∥∥∥Ŵj

(
Σ̂m(2Kn+1)hn

)
−Wj

(
Σm(2Kn+1)hn

)∥∥∥ ∥∥∥∥∥
bsh−1

n c−Kn∑
k=bsh−1

n c−Kn

Zjk

∥∥∥∥∥
= Op

(
K−1/2
n

Jn∑
j=1

δn log (n)
(
1 + j2(nh2

n)−1
)(

1 ∨ j−4n2h4
n

))
= O

(
n−β/2

)
,

as the weight matrices in this term do not depend on k if ‖Σ̂− Σ‖ = Op(δn
)

is the rate of the

pre-estimator on the coarse grid and by (3), as well as Lemma C.2 in Bibinger et al. (2014).

The latter is a key ingredient of this proof as it gives a uniform upper bound on the norm of the

matrix derivatives of Wj(Σ) w.r.t. Σ, such that we can use the Delta-method. Actually some

rate δn = n−ε, ε > 0, suffices here and we can ensure a much faster rate.

Hence, it remains to show that the two other terms are negligible, as well. Since all weight

matrices satisfy
∑

jWj = Id2×d2 , i.e. their sum equals the identity matrix, we consider the

sum of the norms of the variance-covariance matrices of those terms, which is bounded by:

(2Kn + 1)−2

bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

∥∥∥∥∥∥
Jn∑
j=1

COV
((
Wj

(
Σm(2Kn+1)hn

)
−Wj

(
Σkhn

))
Zjk

)∥∥∥∥∥∥
+ (2Kn + 1)−2

bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

∥∥∥∥∥∥
Jn∑
j=1

COV
((
Ŵj

(
Σ̂m(2Kn+1)hn

)
− Ŵj

(
Σ̂khn

))
Zjk

)∥∥∥∥∥∥
≤ (2Kn + 1)−2

bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

 Jn∑
j=1

(∥∥∥Wj

(
Σm(2Kn+1)hn

)
−Wj

(
Σkhn

)∥∥∥2

×
∥∥COV

(
Zjk
)∥∥)1/2

2

+ (2Kn + 1)−2

bsh−1
n c−Kn∑

k=bsh−1
n c−Kn

 Jn∑
j=1

(∥∥∥Ŵj

(
Σ̂m(2Kn+1)hn

)
− Ŵj

(
Σ̂khn

)∥∥∥2

×
∥∥COV

(
Zjk
)∥∥)1/2

2

= Op

(
K−1
n

(
Jn∑
j=1

(
1 ∨ j−4n2h4

n

)(
1 ∧ j2(nh2

n)−1
))2(

δ2
n ∨ (Knhn)−2α

))
= Op(n

−β).
11



This completes the proof of Theorem 1. The feasible version (17a*) readily follows from the

induced consistency of Î−1
k

(
Σ̂khn

)
for I−1

k

(
Σkhn

)
.

1.3 Microstructure Noise: Endogeneity and Serial Correlation

Estimating Noise Autocovariances
According to part (i) of Assumption 3, the estimation of the long-run noise variance ηp, p =

1, . . . , d, defined in (4*), only requires estimates of component-wise auto-covariances, but

no covariances across processes. Therefore, for ease of exposition, we restrict the analysis

in this Section to d = 1, focusing on a one-dimensional model with n + 1 observations of

Yi = Xti + εi, i = 0, . . . , n. Further, we set ηu = η
(1)
u = Cov(εi, εi+u) for the u-th order

autocovariance, while the long-run variance is now simply denoted by η. Following part (iii)

of Assumption 3, for some R ≥ 0, we may neglect all dependencies ηu, u > R. Hence,

εi, i = 0, . . . , n, is an R-dependent process and the returns ∆iY have a MA(R)-structure.

Fix R ≥ 0 as the order of serial dependence. We shall discuss below how to choose R from

the data in practice. We successively estimate the autocovariances by

η̂R = (2n)−1
n∑
i=1

(
∆iY

)2
+ n−1

R∑
r=1

n−r∑
i=1

∆iY∆i+rY , (17a)

η̂r − η̂r+1 = (2n)−1
n∑
i=1

(
∆iY

)2
+ n−1

r∑
u=1

n−u∑
i=1

∆iY∆i+uY , 0 ≤ r ≤ R− 1 . (17b)

In particular, this includes

η̂0 − η̂1 = (2n)−1
n∑
i=1

(
∆iY

)2
, (17c)

which is the classical estimator of η0 in an i.i.d. setting as in Zhang et al. (2005). The estimators

are
√
n-consistent and satisfy central limit theorems. To construct an estimator for the variance

of η̂r, denote for q, r, r′ ∈ {0, . . . , R}

Γ̃rr
′

q = n−1

n−(r∨(q+r′))∑
i=1

∆iY∆i+rY,∆i+qY∆i+q+r′Y − [η̂r − η̂r+1 − (η̂r−1 − η̂r)] (18)

× [η̂r′ − η̂r′+1 − (η̂r′−1 − η̂r′)] ,

12



where η̂r− η̂r+1, η̂r−1− η̂r, η̂r′ − η̂r′+1 and η̂r′−1− η̂r′ are computed according to (17b). Then,

the variance of η̂r, 0 ≤ r ≤ R, is consistently estimated by

V̂ar(η̂r) = n−1
(
V n
r+1 + V n

r + 2Cnr,r+1

)
, (19a)

withCnr,r+1 =

 Γ̂00
0

4
+

1

2

r∑
u=1

Γ̂00
u +

r∑
u=0

r+1∑
u′=1

(
Γ̂uu

′
0 + 2

R∑
q=1

Γ̂uu
′

q

) , (19b)

and V n
r = Cnr,r. Particularly, for r = R, we have V̂ar(η̂R) = n−1V n

R . Below, we give a feasible

central limit theorem, which entails an asymptotic distribution-free test of the hypotheses

H
Q
0 : ηu = 0 for all u ≥ Q, Q = R+ 1.

Theorem A 1. Under Assumption 3, the following central limit theorem applies to the estimators

defined by (17a) and (17b):

√
n(V n

r + V n
r+1 + 2Cnr,r+1)−1/2

(
η̂r − ηr

) d−→ N(0, 1) . (20)

Consequently, underHQ
0 :

TnQ(Y ) =
√
n/V n

Q η̂Q
d−→ N(0, 1) . (21)

Proof. Observe that

E [∆iY∆i+rY ] = E [∆iε∆i+rε] + O(1)

= E [εiεi+r − εi−1εi+r − εiεi+r−1 + εi−1εi+r−1]

= 2ηr − ηr−1 − ηr+1 = γr,

for r ≥ 1, 1 ≤ i ≤ (n− r), and

γ0 = 2(η0 − η1) = E
[
(∆iY )2

]
+ O(1) .

The remainders stem from the signal terms X , which are of smaller order. Hence, by the

definition of the estimators in (17b), it readily follows that

E [η̂R] = η0 − η1 +
R∑
u=1

(
2ηu − ηu−1 − ηu+1

)
+ O(1) = ηR + O(1),

13



and we have consistency of all η̂r, 0 ≤ r ≤ R. For the analysis of the variances of the estimators

(17a)-(17c), denote by

Γrr
′

|i−k| = Cov (∆iε∆i+rε,∆kε∆k+r′ε) .

The variance of η̂R for the maximum lag R > 1, for which ηj = 0 for j > R, becomes

Var(η̂R) = (2n)−2
n∑
i=1

Var
(
(∆iY )2

)
+ (2n)−2

n−R∑
i=1

2
R∑
u=1

Cov
(
(∆iY )2, (∆i+uY )2

)
+ n−2

n−R∑
i=1

R∑
r=1

R∑
r′=1

(
Cov

(
∆iY∆i+rY,∆iY∆i+r′Y

)
+2

R∑
u=1

Cov
(
∆iY∆i+rY,∆i+uY∆i+u+r′Y

))

+ n−2
n−R∑
i=1

R∑
r=1

(
Cov

(
(∆iY )2,∆iY∆i+rY

)
+2

R∑
u=1

Cov
(
(∆iY )2,∆i+uY∆i+u+rY

))

= n−1

(
1
4Γ00

0 + 1
2

R∑
u=1

Γ00
u +

R∑
r=1

R∑
r′=1

(
Γrr

′
0 + 2

R∑
u=1

Γrr
′

u

)
+

R∑
r=1

(
Γ0r

0 + 2
R∑
u=1

Γ0r
u

))
+ O

(
n−1

)
= n−1

(
1
4

(
Γ00

0 + 2

R∑
u=1

Γ00
u

)
+

R∑
r=0

R∑
r′=1

(
Γrr

′
0 + 2

R∑
u=1

Γrr
′

u

))
+ O

(
n−1

)
.

Write the above variance as n−1VnR. By construction of ηr, 0 ≤ r ≤ R− 1, we derive

nVar(η̂r) + O(1) = Vnr+1 + Vnr + 2Cnr,r+1,

where Vnr are defined analogously to VnR except replacing R by r < R and

Cnr,r+1 =

Γ00
0

4
+

1

2

R∑
u=1

Γ00
u +

r∑
u=0

r+1∑
u′=1

(
Γuu

′
0 + 2

R∑
q=1

Γuu
′

q

) .

Inserting the observed returns ∆iY as estimators of the noise increments ∆iε gives consistent

estimators of the variances. Sufficient conditions for a central limit theorem can easily be shown

here by applying, for example, Theorem 27.4 from Billingsley (1991).
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Table 1: Descriptive statistics of the estimated order of serial dependence R and estimated long-run
variance η of the noise process. R denotes the true order of dependence of the noise process. The settings
are: (i) R = 0, (ii) R = 1 with θε,1 = 0.5, and (iii) R = 2 with θε,1 = 0.5 and θε,2 = 0.3. R̂ and η̂ are
computed with (17b) and following the tests based on (21), using α = 0.05 and Q̃ = 15. BIAS(η̂) and
STD(η̂) are re-scaled by 103. Results based on M = 5000 Monte Carlo replications.

R ¯̂
R STD

(
R̂
)

BIAS(η̂) STD(η̂)

0 0.00 0.05 0.000 3.467
1 1.11 0.61 -0.026 3.186
2 2.37 1.34 -0.073 2.678

The statistic TnQ(Y ) serves as a test statistic for the significance of non-zero autocovariances

for certain lags. An accurate strategy to select the order of serial dependence R thus requires

computing the test statistics TnQ(Y ) for Q ≤ Q̃ = R̃ + 1 large enough and incorporating all

autocovariances until the first hypothesis of a zero autocovariance cannot be rejected for a given

significance level. Then, denoting the determined order by R̂, an estimate of the long-run noise

variance, η̂, is obtained according to (4*) based on the individual estimates η̂0, . . . , η̂R̂.

Finally, we study the precision of the procedure for estimating the long-run noise variance η

in simulations and the same setup as in Section 4 of the paper. As the estimation of the long-run

noise variance using the above procedure is unrelated to the problem dimension, we consider

the processes in (24a), (24b) and (25) with d = 1 to evaluate the aforementioned approach and

set n = 23, 400. Further, we employ microstructure noise processes based on different orders

of serial dependence R. Accordingly, we assume εi = ΘR(L)ui, ΘR(L) :=
∑R

r=0 θε,rL
r,

θε,0 = 1 , ui| {(X,σ)} ∼ N
(
0, η/ΘR(1)2), i = 1, . . . , n. We consider the following settings:

(i) R = 0, (ii) R = 1 with θε,1 = 0.5, and (iii) R = 2 with θε,1 = 0.5 and θε,2 = 0.3. Moreover,

we select a high noise level by setting ξ = 3, which can be considered as a “stress test” for the

proposed procedure. For M = 5000 replications, Table 1 shows means and standard deviations

for the estimates of R, as well as biases and standard deviations for the estimates of the long-run

noise variance η based on α = 0.05 and Q̃ = 15. We observe that the procedure slightly

over-estimates R, resulting in more conservative estimates of the order of serial dependence in

the noise process. Generally, we can conclude that the proposed approach provides a satisfactory

precision in a realistic scenario.

Spectral estimation under endogenous noise

Assumption A 1. Let Cov(εi,∆jX) be possible non-zero covariances for 1 ∨ (i−M) ≤ j ≤
(i+M)∧n, between the market microstructure noise and the efficient returns for someM <∞.
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The time-invariant quantity

%(ε,X) =

2M+1∑
i=1

Cov(εM+1,∆iX) (22)

measures the total long-run covariance between efficient returns and noise.

From a conceptual point of view, the exogeneity of noise in Assumption 3 appears natural,

since it reflects the original motivation of the model with dominant microstructure noise that is

ancillary in terms of not providing any information about the volatility. If there was a significant

contribution in the εis depending on ∆iX or σti , this would lead to a different model in which

the information carried about volatility in the noise could play a role for statistical inference on

the volatility. A model with microstructure that is informative about volatility, however, appears

unrealistic. Still, endogeneities could occur as reported in Hansen and Lunde (2006) and should

be considered as misspecification. In the following, we shall prove that our estimators attain

exactly the same asymptotic properties under Assumption A 1 replacing exogenous noise in

Assumption 3 of the paper.

Unbiasedness of the estimator (12*) readily follows from the summation by parts decomposition

Sjk =

(
n∑
i=1

∆iXΦjk

( ti−1 + ti
2

)
−
n−1∑
i=1

εi ϕjk(ti)
ti+1 − ti−1

2

)(
1 + O(1)

)
with the identities ∫

Φjk(t)ϕuk(t) dt =
(1− cos(πj) cos(πu))2hn

π2(j2 − u2)
, (23)

which give 4hn/(π
2(j2 − u2)) whenever j is odd and u even, or the other way round. Impor-

tantly, the above integral vanishes in the case that j = u. Integral approximations of sums

similar as in the proof of Theorem 1 above then give E[S2
jk] is equal as in the case of exogenous

noise. Furthermore, Var(S2
jk) is invariant as well and the weights derived under exogenous

noise are still optimal. Nevertheless, the endogeneity manipulates the laws of the Sjks and we

need to consider possible covariances Cov(Sjk, Suk), at least for u and j with different parities,

for the asymptotic distribution of the overall estimator.

Under exogenous noise all spectral statistics (Sjk) were (approximately) uncorrelated by or-

thogonality relations of (Φjk)j≥1 and (ϕjk)j≥1 even on the same block k. Now, we reconsider

possible covariances under Assumption A 1. We derive that

h4
n

π4u2j2
Cov(S2

jk, S
2
uk) =
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Cov

(( n∑
i=1

∆iXΦjk

( ti−1 + ti
2

))2
− 2

n−1∑
i=1

∆iXΦjk

( ti−1 + ti
2

)
εi ϕjk(ti)

ti+1 − ti−1

2

+
( n−1∑
i=1

εi ϕjk(ti)
ti+1 − ti−1

2

)2
,

( n∑
i=1

∆iXΦuk

( ti−1 + ti
2

))2
− 2

n−1∑
i=1

∆iXΦuk

( ti−1 + ti
2

)
εi ϕuk(ti)

ti+1 − ti−1

2

+
( n−1∑
i=1

εi ϕuk(ti)
ti+1 − ti−1

2

)2
)

=
(
1 + O(1)

)(
Cov

(( n∑
i=1

∆iXΦjk

( ti−1 + ti
2

))2
,
( n−1∑
i=1

εi ϕuk(ti)
ti+1 − ti−1

2

)2)
+ Cov

(( n∑
i=1

∆iXΦuk

( ti−1 + ti
2

))2
,
( n−1∑
i=1

εi ϕjk(ti)
ti+1 − ti−1

2

)2)
+ 4Cov

( n−1∑
i=1

∆iXΦjk

( ti−1 + ti
2

)
εi ϕjk(ti)

ti+1 − ti−1

2
,

n−1∑
i=1

∆iXΦuk

( ti−1 + ti
2

)
εi ϕuk(ti)

ti+1 − ti−1

2

))

=
(%(ε,X))2

n

(
2
(∫

Φjk(t)ϕuk(t) dt
)2

+ 2
(∫

Φuk(t)ϕjk(t) dt
)2

+ 4

∫
Φjk(t)ϕuk(t) dt

∫
Φuk(t)ϕjk(t) dt

)(
1 + O(1)

)
=

(%(ε,X))2

n

16h2
n

π4

(
4(j2 − u2)2 − 4(j2 − u2)2

)(
1 + O(1)

)
.

In fact, the leading term vanishes. If the term in parenthesis was not zero, the above term would

contribute to the asymptotic variance of the estimator, while the rate of convergence would

remain the same. Thus, the effect of endogenous noise on our estimator is asymptotically negli-

gible at first order. We study the finite-sample effect of endogenous noise in a simulation. For

simplicity, we repeat the one-dimensional simulation study from Altmeyer and Bibinger (2015).

Additionally to the setup with exogenous noise, we implement ‘extremely high’ endogenous

noise of the form

εi ∼
√

3/4 · Zi +
√

0.001 · n/4 ·∆iX, i = 1, . . . , n , ε0 ∼ Z0 .

Zi ∼ N(0, η2) are i.i.d. standard normal random variables with η = 0.01. Compared to the

results under exogenous noise, see Section 5 of Altmeyer and Bibinger (2015), the finite-sample

variance slightly increases by ca. 10%, while the estimator remains perfectly unbiased. This
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shows that endogeneity could slightly increase the finite-sample variance, but does not harm

the main properties of the estimator. Also, we expect the finite-sample effect not to be relevant

under a realistic magnitude of correlation between signal and noise.

2 Simulation Study

2.1 Setting

We consider a high-dimensional setting with d = 15. For 15 assets, we estimate a 120-

dimensional volatility matrix and the estimator utilizes weight matrices with 7260 entries. To

ensure parsimony in this framework, we assume that the efficient log-price process follows a

simple factor structure as employed, e.g., in Barndorff-Nielsen et al. (2011). We extend the latter

to incorporate both a flexible stochastic and a non-stochastic seasonal volatility component,

which is modeled by a Flexible Fourier Form as introduced by Gallant (1981). Correspondingly,

we assume the underlying process as given by

dX
(p)
t = µdt+ φ

(p)
t σ̃

(p)
t dV

(p)
t , dV

(p)
t := ρ̃ dWt +

√
1− ρ̃2 dB

(p)
t , (24a)

ln
(
φ

(p),2
t

)
= α

(p)
φ t+ β

(p)
φ t2 +

Q∑
q=1

[
γ

(p)
φ,q cos(2πqt) + δ

(p)
φ,q sin(2πqt)

]
, p = 1, . . . , d, (24b)

where Wt and B(p)
t are independent standard Brownian motions, while σ̃(p)

t , p = 1, . . . , d,

are the stochastic volatility components. Hence, the correlation between two processes is

d
[
X(p), X(q)

]
t
/
√
d
[
X(p)

]
t
d
[
X(q)

]
t

= ρ̃2, p 6= q, which is tantamount to an equicorrelation

structure. The stochastic volatility components σ̃(p)
t , p = 1, . . . , d, are assumed to follow the

two-factor model introduced by Chernov et al. (2003) as it allows for both volatility persistence

and pronounced volatility of volatility. Hence,

σ̃
(p)
t = s–exp

[
β0 + β1v

(p)
1,t + β2v

(p)
2,t

]
, p = 1, . . . , d, (25)

dv
(p)
1,t = α1v

(p)
1,t dt+dW

(p)
1,t , dv

(p)
2,t = α2v

(p)
2,t dt+

(
1 + βvv

(p)
2,t

)
dW

(p)
2,t ,

where W (p)
1,t and W (p)

2,t are independent standard Brownian motions with

d
[
W

(p)
1 , V (q)

]
t
/

√
d
[
W

(p)
1

]
t
d
[
V (q)

]
t

= ρ1δpq, (26)

d
[
W

(p)
2 , V (q)

]
t
/

√
d
[
W

(p)
2

]
t
d
[
V (q)

]
t

= ρ2δpq, p, q = 1, . . . , d,
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thereby allowing for leverage effects, and with the s–exp-function defined as in Appendix A of

Chernov et al. (2003). The latter ensures that a unique solution to (25) exists by splicing the

exponential function with appropriate growth conditions at an extremely high volatility level.

The drift term in (24a) is set to µ = 0.03. The seasonality component is normalized such

that
∫ 1

0 φ
(p),2
t dt = 1, p = 1, . . . , d, while to choose parameter values, we divide the 15 efficient

price processes into three groups. For series 1−5, parameters are set to the median estimates for

mid-quote revisions of the 10 most liquid constituents of the Nasdaq 100 in 2010-14. For series

6− 10 and 11− 15, medians of the 10 second and third most liquid Nasdaq 100 constituents

are considered, respectively. See Section 2 in the paper for a summary of the dataset. In this

context, we employ the estimation procedure by Andersen and Bollerslev (1997) estimating

the daily volatility component based on sub-sampled five-minute realized variances instead of

a parametric GARCH approach. To calibrate the spot (equi-)correlation between the efficient

price processes, we set ρ̃ =
√
ρemp, where ρemp = 0.312 is the cross-sectional median of the

(across-day averages of) realized correlations based on the Nasdaq data from our empirical

application. These are computed using the multivariate realized kernel by Barndorff-Nielsen

et al. (2011). For the stochastic volatility components (25), we follow Huang and Tauchen

(2005), setting β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.137e−2, α2 = −1.386, βv = 0.25,

ρ1 = ρ2 = −0.3. The multivariate process in (24a), (24b) and (25) is then simulated by a Euler

discretization scheme based on a 1/5-second grid assuming 23, 400 seconds per trading day.

We dilute the observations of the efficient log-price process by serially dependent microstruc-

ture noise with R = 1, i.e., ε(p)i = θεε
(p)
i−1 + u

(p)
i , u(p)

i |
{(
X(p), σ(p)

)}
∼ N

(
0, ηp/ (1 + θε)

2),
i = 1, . . . , np, p = 1, . . . , d. To ensure that the absolute noise level is in line with the variation

in the volatility process, we determine its long-run variance ηp by choosing the noise-to-signal

ratio per trade ξ2
p := npηp/

√∫ 1
0 φ

(p),4
t σ̃

(p),4
t dt, p = 1, . . . , d. The latter specification implies

endogenous noise as the long-run variance of the latter depends on the given volatility path of

the efficient price process. We set ξp, p = 1, . . . , d, to the deciles of the respective estimates

from the empirical study. See Table 2 for details. Here, ηp, p = 1, . . . , d, is estimated following

the procedure from Section 1.3, while the integrated quarticity is approximated by the squared

sub-sampled five-minute realized variance. We choose θε = 0.6, yielding a first-order autocor-

relation of η1 = 0.441, which is the median estimate for the underlying Nasdaq data. Finally,

asynchronicity effects are introduced by drawing the observation times t(p)i , i = 1, . . . , np,

from independent Poisson processes with intensities λp, p = 1, . . . , d. The latter are set to the

cross-sectional deciles of the (across-day) average number of mid-quote revisions per second in

the Nasdaq data with the exact values reported in Table 2.
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Table 2: Noise-to-signal ratios and observation intensities used in the simulation study. ξp denotes the

square root of the noise-to-signal ratio per trade, i.e., ξ2
p := npηp/

√∫ 1

0
φ

(p),4
t σ̃

(p),4
t dt, p = 1, . . . , d.

λp denotes the intensity of the Poisson process generating the observation times t(p)i , i = 1, . . . , np,
p = 1, . . . , d. Both ξp and λp represent the minimum and cross-sectional deciles of estimates based on
the Nasdaq data described in Section 2 of the paper. ηp, p = 1, . . . , d, is estimated by the procedure
from Section 1.3, while the integrated quarticity is approximated by the squared sub-sampled five-minute
realized variance. ηp, p = 1, . . . , d, is estimated as the average number of mid-quote revisions per
second.

p 1 2 3 4 5 6–10 11 12 13 14 15

ξp 0.381 0.485 0.692 0.938 1.181 1.585 1.907 1.992 2.143 2.305 2.495

λp 3.765 1.259 0.793 0.696 0.589 0.460 0.382 0.221 0.138 0.099 0.063

2.2 Additional Results

To examine whether ensuring positive semi-definite spot covariance matrix estimates yields an

improved finite sample performance, Table 3 reports simulation results analogous to Table 1

in the paper for the LMM estimator augmented by a truncation of negative eigenvalues of the

estimates at zero. Most importantly, finite sample precision improves, indeed, with MIFB being

somewhat lower than above for the corresponding optimal values of the input parameters. The

latter also imply that the number of blocks (on average) decreases to 69, while the spectral cutoff

increases to 22. Interestingly, for the (co-)variance estimates, the MIFB-optimal values of the

inputs now yield a performance that is closer to the one implied by MISEc- and MISEv-optimal

inputs than before.

While the above setting may represent “regular” trading day days, we additionally consider

an augmented framework to proxy “unusual” days as analyzed in Section 5.3 in the paper. For

that purpose, we extend the process in (24a), (24b) and (25) to allow for volatility (co-)jumps in

a parsimonious way, modifying the first factor of the stochastic volatility components (25) to

dv
(p)
1,t = α1v

(p)
1,t dt+ dW

(p)
1,t + I(p)

t∗ J
(p), p = 1, . . . , d, (27)

where I(p)
t∗ is an indicator, taking the value one if the p-th stochastic volatility component

jumps at one certain time t∗. For each component, we simulate such a jump with probability

qJ = 0.75, while the jump sizes J (p) satisfy for all p, J (p) ∼ Exp(β1/ ln(5)). We set t∗ = 0.6,

corresponding to around 1:30 pm, while the expected jump size implies an (expected) five-fold

increase in volatility due to the jump compared to the prevailing level. The latter is motivated

by the empirical findings in Section 5.3 in the paper. Table 4 provides the simulation results

for the modified process based on the LMM spot covariance matrix estimator with truncation

of negative eigenvalues. Despite the considerable (expected) size of the jumps, finite sample

precision suffers only a little compared to Table 3 as MIFB implied by the optimal input values
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Table 3: Performance of LMM spot covariance matrix estimator with truncation of negative eigenvalues
depending on θh, θJ and θK . Positve semi-definiteness of spot covariance matrix estimates is ensured by
truncation of negative eigenvalues at zero. See caption of Table 1 in the paper for further definitions.

Full Covariance Matrix

θh θJ θK RMIFB % PSD

Opt 0.175 7.000 2.000 23.995 100.000
0.175 1.000 2.000 37.655 100.000
0.175 10.000 2.000 24.006 100.000
0.175 7.000 1.200 24.701 100.000
0.175 7.000 4.800 26.099 100.000
0.025 7.000 2.000 37.911 100.000
0.250 7.000 2.000 24.657 100.000

Covariances

θh θJ θK RMISEc

Opt 0.150 9.000 2.000 23.881
Opt* 0.175 7.000 2.000 23.935

Variances

θh θJ θK RMISEv

Opt 0.225 5.000 1.600 16.854
Opt* 0.175 7.000 2.000 17.584

increases by only around 1.3 percentage points. The optimal input values themselves remain

almost unchanged with only the spectral cutoff reducing to 19. These findings suggests that the

LMM estimator is able to retrieve spot covariance matrix paths in a setting with considerable

volatility (co-)jumps.
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Table 4: Performance of LMM spot covariance matrix estimator with truncation of negative eigenvalues
depending on θh, θJ and θK in setting with volatility (co-)jumps. Positve semi-definiteness of spot
covariance matrix estimates is ensured by truncation of negative eigenvalues at zero. The simulated
process is given by (24a), (24b) and with (25) modified according to (27). See caption of Table 1 in the
paper for further definitions.

Full Covariance Matrix

θh θJ θK RMIFB % PSD

Opt 0.175 6.000 2.000 25.211 100.000
0.175 1.000 2.000 36.301 100.000
0.175 10.000 2.000 25.238 100.000
0.175 6.000 1.200 25.689 100.000
0.175 6.000 4.800 27.545 100.000
0.025 6.000 2.000 41.122 100.000
0.250 6.000 2.000 26.116 100.000

Covariances

θh θJ θK RMISEc

Opt 0.150 7.000 2.000 24.824
Opt* 0.175 6.000 2.000 24.907

Variances

θh θJ θK RMISEv

Opt 0.250 4.000 1.600 19.132
Opt* 0.175 6.000 2.000 19.985
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3 Summary Statistics for Quote Data

Table 5: Summary statistics for Nasdaq quote data. n: avg. # of observations. ∆t: avg. duration in
seconds between observations. %(|∆Y |>0): % of observations associated with price changes. ∆t(|∆Y |>0):
avg. duration in seconds between price changes.

√
η̂∗: (106×) avg. of square root of long-run noise

variance estimate for quote revisions based on Q̃ = 50 according to the procedure outlined in Section 1.3.
ξ̂∗: avg. noise-to-signal ratio per observation, where ξ̂2∗ = nη̂∗/RVss5m with RVss5m denoting the sub-
sampled five-minute realized variance. R̂∗: avg. estimate of order of serial dependence in the noise
process.

Symbol n ∆t %(|∆Y |>0) ∆t(|∆Y |>0)

√
η̂ ξ̂ R̂

AAPL 184792.224 0.180 51.864 0.344 0.004 0.582 12.246
MSFT 444262.806 0.063 0.913 7.499 0.116 0.835 3.015
GOOG 62548.169 0.451 53.530 0.870 0.038 1.364 11.407
CSCO 295700.063 0.092 0.748 13.845 0.070 0.463 1.727
ORCL 326370.371 0.088 1.670 5.711 0.217 1.222 4.056
INTC 352591.320 0.078 0.818 10.344 0.054 0.442 1.921
QCOM 338279.341 0.082 4.925 1.952 0.280 2.425 8.880
AMGN 142855.142 0.232 14.910 1.863 0.193 2.170 6.364
TEVA 117498.898 0.286 9.559 3.275 0.183 2.116 5.133
GILD 192972.910 0.145 7.927 2.453 0.268 2.219 7.099
AMZN 102312.847 0.326 49.525 0.655 0.052 0.983 11.744
EBAY 283542.140 0.097 4.103 2.941 0.392 1.992 6.707
NWSA 201062.913 0.156 1.385 11.859 0.253 0.894 1.950
DTV 165357.795 0.188 7.270 2.988 0.226 1.920 4.745
CELG 82505.222 0.359 27.136 1.458 0.178 1.869 6.823
INFY 65839.135 0.555 26.248 2.318 0.137 2.495 4.880
YHOO 253667.347 0.132 1.268 12.627 0.181 0.688 2.770
COST 77445.868 0.390 23.667 1.807 0.121 2.392 6.311
SPLS 139319.424 0.198 1.406 16.492 0.113 0.507 1.516
SBUX 180134.971 0.157 7.213 2.769 0.295 1.992 6.460
ADP 115795.086 0.272 8.680 3.660 0.148 2.175 3.906
ESRX 138732.103 0.232 13.287 1.869 0.172 1.792 5.784
ADBE 169761.579 0.165 5.233 4.020 0.199 1.377 3.686
FSLR 78021.596 0.411 33.772 1.407 0.731 1.895 8.253
BIIB 53285.482 0.562 39.584 1.515 0.160 2.007 4.916
SYMC 154504.801 0.180 1.436 13.961 0.137 0.696 1.677
JNPR 168600.474 0.194 5.513 5.147 0.271 1.141 3.399
BRCM 250452.381 0.114 4.366 3.398 0.412 1.980 6.123
AMAT 156708.366 0.173 0.905 21.231 0.082 0.381 0.943
CMCSA 270851.740 0.104 1.823 6.515 0.179 1.033 3.327

Avg. 185525.750 0.222 13.689 5.560 0.195 1.468 5.259
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4 Summary Statistics for Inputs

Table 6: Summary statistics of number of blocks, spectral cut-off and length of smoothing window for
LMM estimator. No. of blocks dh−1

n e, spectral cut-off Jn and length of smoothing window Kn (in
blocks) are chosen as described in Section 3.4 of the paper, using the input parameters that are optimal in
the simulation study of Section 4 of the paper: θh = 0.175, θJ = 7 and θK = 2.

Sample Input q0.05 Mean q0.95 Std.

05/10 dh−1
n e 21.000 27.230 35.000 4.849

– Jn 43.000 47.957 53.000 3.223
04/14 Kn 5.000 5.946 7.000 0.702

05/10 dh−1
n e 22.000 28.566 37.000 5.443

– Jn 44.000 48.864 54.000 3.350
04/11 Kn 5.000 6.136 7.500 0.754

05/11 dh−1
n e 22.000 28.299 37.000 5.678

– Jn 44.000 48.660 54.000 3.573
04/12 Kn 5.000 6.100 7.500 0.822

05/12 dh−1
n e 20.000 24.509 31.000 3.181

– Jn 42.000 45.954 51.000 2.557
04/13 Kn 5.000 5.544 6.500 0.495

05/13 dh−1
n e 23.000 27.273 32.000 2.972

– Jn 45.000 48.180 52.000 2.189
04/14 Kn 5.500 5.966 6.500 0.457
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5 Intraday Behavior of Spot (Co-)Variances Year-by-Year
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Figure 1: Cross-sectional deciles of across-day averages of spot covariances. Spot estimates are first
averaged across days for each asset pair. Subsequently, cross-sectional sample deciles of the across-day
averages are computed. Solid horizontal line corresponds to the cross-sectional median of the across-day
averages of integrated covariance estimates. These are based on the LMM estimator of the integrated
(open-to-close) covariance matrix by Bibinger et al. (2014) accounting for serially dependent noise
and using the same input parameter configuration as the spot estimators. “Unusual days” discussed in
Section 5.3 of the paper as well as days with scheduled FOMC announcements are removed. Covariances
are annualized.
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Figure 2: Cross-sectional deciles of across-day averages of spot correlations. Spot estimates are first
averaged across days for each asset pair. Subsequently, cross-sectional sample deciles of the across-day
averages are computed. Solid horizontal line corresponds to the cross-sectional median of the across-day
averages of integrated correlation estimates. These are based on the LMM estimator of the integrated
(open-to-close) covariance matrix by Bibinger et al. (2014) accounting for serially dependent noise
and using the same input parameter configuration as the spot estimators. “Unusual days” discussed in
Section 5.3 of the paper as well as days with scheduled FOMC announcements are removed.
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Figure 3: Cross-sectional deciles of across-day averages of spot volatilities. Spot estimates are first
averaged across days for each asset. Subsequently, cross-sectional sample deciles of the across-day
averages are computed. Solid horizontal line corresponds to the cross-sectional median of the across-day
averages of integrated volatility estimates. These are based on the LMM estimator of the integrated
(open-to-close) covariance matrix by Bibinger et al. (2014) accounting for serially dependent noise
and using the same input parameter configuration as the spot estimators. “Unusual days” discussed in
Section 5.3 of the paper as well as days with scheduled FOMC announcements are removed. Volatilities
are annualized.
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Figure 4: Cross-sectional deciles of across-day standard deviations of spot covariances. First, sample
standard deviations of spot estimates are computed across days for each asset pair. Subsequently, cross-
sectional sample deciles of the across-day standard deviations are computed. “Unusual days” discussed in
Section 5.3 of the paper as well as days with scheduled FOMC announcements are removed. Covariances
are annualized.
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Figure 5: Cross-sectional deciles of across-day standard deviations of spot correlations. First, sample
standard deviations of spot estimates are computed across days for each asset pair. Subsequently, cross-
sectional sample deciles of the across-day standard deviations are computed. “Unusual days” discussed
in Section 5.3 of the paper as well as days with scheduled FOMC announcements are removed.
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Figure 6: Cross-sectional deciles of across-day standard deviations of spot volatilities. First, sample
standard deviations of spot estimates are computed across days for each asset. Subsequently, cross-
sectional sample deciles of the across-day standard deviations are computed. “Unusual days” discussed in
Section 5.3 of the paper as well as days with scheduled FOMC announcements are removed. Volatilities
are annualized.
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6 Sample Autocorrelation Functions of Spot Estimates

Figure 7 reports the (averaged) autocorrelation functions (ACFs) of spot covariances, correlations

and volatilities with the figures being constructed such that one lag corresponds to approximately

five minutes. We observe that all (co-)variability measures are strongly serially correlated across

short time intervals with first-order autocorrelations being around 0.95. Nevertheless, the

ACFs decay relatively fast within a day. This is most extreme for spot volatilities, where the

ACF declines from 0.95 at the 5 minute lag to below 0.1 after approximately 3.5 hours. The

noticeable seasonality pattern in the ACFs for covariances and volatilities underlines distinct

daily autocorrelations, which considerably exceed the intradaily autocorrelations at slightly

smaller lags. For correlations, this pattern is less pronounced. Here, long-term autocorrelations

stabilize around 0.25 and decay very slowly.
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Figure 7: Avg. ACFs of spot covariance, correlation and volatility estimates with one lag representing
approximately five minutes. ACFs with corresponding confidence intervals are first computed for each
asset or asset pair and subsequently averaged across all assets or pairs. Dashed lines correspond to
cross-sectional averages of point-wise 95% confidence intervals (±1.96/

√
n).
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7 Another Unusual Day

We analyze intraday risk on 12/27/12 using the adaptive one-sided version of the estimator (12*)

as outlined in the first paragraph of Section 5.3 of the paper. On this day, at approximately

10:00 am the U.S. senate majority leader stated that a resolution of the U.S. “fiscal cliff” (i.e.,

budgetary deficits reaching the legal upper bound) before January 1, 2013, was unlikely due to

lack of cooperation by Republicans.3 As shown in Figure 8, this caused prices to fall. Around

2:20 pm, a news release reported that the House of Representatives would convene on the

following Sunday in an attempt to end the “fiscal cliff” crisis. This, in turn pushed the market

significantly upwards. Figure 9 shows that, after the announcement of this positive news,

covariances rise significantly and more than triple (on average). Similarly, volatilities increase,

as well, but on average only moderately. Consequently, the positive “fiscal cliff news” lead

to a significant increase in spot correlations that lasted until the end of the trading day. The

estimated spot covariance, correlation and volatility paths for AAPL and AMZN in Figure 10

demonstrate that analogous patterns can be observed for a particular asset pair.

Figure 8: QQQ transaction prices (12/27/12). (1): Senate Majority Leader states that resolution to “fiscal
cliff” crisis before January 1, 2013, unlikely. (2): News that the House of Representatives will convene
on the following Sunday in an attempt to end the “fiscal cliff” crisis.

3See http://money.msn.com/now/post.aspx?post=73878f29-4fdb-45c5-baf6-0f83f40-
b821c&_p=986b65a2-3eea-479c-a4a0-ba9d3988b0e0.
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Figure 9: Cross-sectional deciles of spot covariances, correlations and volatilities (12/27/12). Solid
horizontal line corresponds to the cross-sectional median of integrated covariance, correlation and
volatility estimates. These are based on the LMM estimator of the integrated (open-to-close) covariance
matrix by Bibinger et al. (2014) accounting for serially dependent noise and using the same input
parameter configuration as the spot estimators. Covariances and volatilities are annualized.
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Figure 10: Spot covariances, correlations and volatilities for AAPL and AMZN (04/23/13). In left
plot, black lines (and left y-axis) represent correlations, grey lines (and right y-axis) covariances. In
right plot, black lines are for AMZN, grey lines for AAPL. Dashed lines correspond to approximate
pointwise 95% confidence intervals according to Corollary 1 in the paper. Horizontal lines correspond
to the cross-sectional median of integrated covariance, correlation and volatility estimates. These are
based on the LMM estimator of the integrated (open-to-close) covariance matrix by Bibinger et al. (2014)
accounting for serially dependent noise and using the same input parameter configuration as the spot
estimators. Covariances and volatilities are annualized.

8 Code

The web supplement contains the MATLAB code developed for this paper in the archive

Code.zip. The text file README.txt details the scripts required to obtain the main results

of the paper as well as the order in which they should be executed.

Note that we cannot share the message and order book data used for the empirical analysis

as it is proprietary. A LOBSTER subscription can be obtained at https://lobsterdata.

com/.
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