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Testing for Image Symmetries—With Application
to Confocal Microscopy
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Abstract—Statistical tests are introduced for checking whether
an image function f(z,y) defined on the unit disc D = {(z,y) :
22 4 y* < 1} is invariant under certain symmetry transforma-
tions of D, given that discrete and noisy data are observed. In-
variance under reflections or under rotations by rational angles
is considered, as well as rotational invariance. These symmetry re-
lations can be naturally expressed as restrictions for the Zernike
moments of f(,y). Therefore, the test statistics are based on the
L, distance between Zernike series estimates of the image function
itself and its version obtained after applying the symmetry trans-
formation. The asymptotic distribution of the test statistics under
both the hypothesis of symmetry as well as under fixed alternatives
is derived. Furthermore, the quality of the asymptotic approxima-
tions via simulation studies is investigated. The usefulness of our
theory is verified by examining an important problem in confocal
microscopy, i.e., possible imprecise alignments in the optical path
of the microscope are investigated. For optical systems with rota-
tional symmetry, the theoretical point-spread function (PSF) is re-
flection symmetric with respect to two orthogonal axes, and rota-
tionally invariant if the detector plane matches the optical plane of
the microscope. The tests are used to investigate whether the re-
quired symmetries can indeed be detected in the empirical PSF.

Index Terms—Image symmetry, nanoscale bioimaging, non-
parametric estimation, point-spread function (PSF), symmetry
detection, Zernike moments.

I. INTRODUCTION

YMMETRY has been thoroughly studied in art, science,
S and real world for a long time [40], [9]. This fundamental
concept has been described and analyzed using various math-
ematical tools aiming at characterizing the symmetries of ob-
jects. Symmetry also plays an important role in image analysis
and understanding and finds direct applications in object recog-
nition, robotics, image animation, and image compression. Of
particular interest is how to test the hypothesis of basic types of
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symmetry present in an object based on its discrete and noisy
observations.

This paper formulates the statistical problem of detecting
image symmetry for two-dimensional objects, and develops
corresponding rigorous statistical testing procedures. Further-
more, we apply our symmetry detection methods to a problem
arising in confocal microscopy. From the optical properties
of the microscope, the so-called point-spread function (PSF)
can be computed and it is characterized by certain symmetry
relations such as reflection symmetry with respect to two
orthogonal axes. The PSF may even reveal rotational symmetry
if the optical system is rotationally symmetric and the detector
plane matches the optical plane of the microscope. A precise
knowledge of the PSF is essential in image recovery since the
observed image is obtained by convolution of the underlying
object with the PSF. However, due to imprecise alignment of
elements in the optical path of the microscope, the actual PSF
may possibly be asymmetric, and therefore, there is a need for
detecting symmetries in the observed PSF.

With this practical motivation in mind let us consider some
basic symmetry concepts for two-dimensional objects. Sym-
metry in two dimensions can be defined in terms of a com-
bination of two geometric transformations, namely, reflection
and rotation. In fact, a finite nonperiodic two-dimensional ob-
ject may exhibit only these two kinds of symmetries; see [9] for
a full account of the problem of classification and enumeration
of symmetric patterns. Hence, a planar object is said to be sym-
metric (with respect to the aforementioned transformations) if
its transformed version is the same as the original form.

In particular, an image shows rotational symmetry of order
d > 2 (d being an integer) if it is invariant under rotations
through an angle 27 /d and its integer multiples about the center
of mass of the object. The case d = 2 corresponds to the require-
ment that ro f(z,y) = f(z,y), where rof (z,y) = f(—z,—y)
is the image rotation through an angle 7. Yet another impor-
tant case of rotational symmetry is when d = oo, i.e., we have
circular symmetric image f(z,y) = g(v/2% + y?), for some
univariate function g( - ). On the other hand, an image reveals
reflectional symmetry if it is invariant to reflection with respect
to one or more lines called axes of symmetry. If there is only one
axis of symmetry and it aligns with the y-axis, the reflectional
symmetry is defined as follows: 7f(z,y) = f(z,y), where

Tf(z,y) = f(=z,y).

A. Symmetry in Image Processing

The problem of detecting and measuring object symmetries
has been tackled in the image processing and pattern analysis
literature since the original works of Atallah [3] and Friedberg
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[17]. Nevertheless, it should be emphasized that there has long
been an interest in characterizing the symmetries of objects in
biology, physics, and mathematics [40], [9]. Algorithms pro-
posed in the image analysis literature on automatic detection of
image symmetries can be classified with respect to their several
characteristics.

First, most of the algorithms can only cope with one type of
image symmetry and typically this is reflectional symmetry [3],
[10], [17], [25], [34], [43]. An attempt to detect both types of
symmetry has been made in [24] and [33]. A second impor-
tant characteristic of symmetry detection algorithms are the con-
strains that are made on the image model, e.g., whether an image
is a simple binary polyhedral object or just a collection of land-
mark points, or a general gray-level image function. Unfortu-
nately, most existing algorithms in the image analysis literature
use a continuous and noise-free image model and often make
a priori assumptions that the underlying image is symmetric,
whereas only a few are able to detect the symmetry type without
such advance information.

In particular, in [24], an algorithm for detecting both types of
symmetries is proposed that makes use of the continuous polar
representation f(p,6) of the input, noise-free image function
f(z,y). This representation is then used to define the so-called
angular correlation, which measures the correlation between im-
ages in the angular direction. It is shown that if f (p,0) is rota-
tionally symmetric of order d, then the angular correlation is a
periodic function whose fundamental period is 27 /d.

Regarding images with reflectional symmetry, it has been
proved that the tilt of the symmetry axis can be obtained from
the angular correlation between f (p,0) and its flipped version
f(p, —6). The implementation of the proposed method for dig-
ital images is carried out by computing the pseudopolar Fourier
transform. The accuracy of the algorithm is assessed via sim-
ulation examples. The Fourier domain approach to symmetry
detection is also presented in [32] and [10]. These detection
methods are based on the symmetry preservation property of
Fourier transform of symmetric images. A continuous and
noise-free image model is assumed. In the aforementioned
contributions, the a priori existence of a fixed-type symmetry
is required and detection procedures are based on a direct
evaluation of the given symmetry parameters, i.e., the tilt of
the symmetry axis (for reflectional symmetry) and the fraction
of cycles which induces symmetry (for rotational symmetry).
Hence, no rejection of symmetry with a given level of confi-
dence is possible.

An algorithm for detecting local reflectional symmetry based
on a local symmetry operator is demonstrated in [25]. Taking
into account all such local operators, a global reflectional sym-
metry is found by an optimization method utilizing genetic algo-
rithms. A continuous image model defined on a circular domain
is used. No discretization and noise effects are examined. Let
us also mention the contribution [44], where the importance of
symmetry detection is strongly stressed, and algorithms for the
detection of points of local symmetry in an image using phase
information are proposed.

In the seminal paper [3], the combinatorial approach for
finding all symmetry relations in an image consisting of n
objects such as circle, lines, and points is proposed. In [15],
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the symmetry problem is discussed for objects represented by
a set of labeled landmarks. Marola [34] considers reflectional
symmetry and aims at finding all axes of reflection symmetry
of a planar image, using maximization of a specifically defined
coefficient of symmetry. The algorithm is robust to mild noise,
but it is a priori assumed that the image has the required
symmetry. The author further stresses that it would be desirable
in the presence of noise to have methods to investigate whether
an image has certain symmetries in the first place. In [43], a
method for estimating the plane of reflection symmetry of three
dimensional objects is examined.

As for rotational symmetry, Kim and Kim [27] propose a
method for estimating the rotation angle, which is based on
Zernike moments. However, the authors do not study any con-
vergence aspects of the algorithms and confine their discussion
to noise-free images. Further, Friedberg [17] gives a method for
detecting the skewed axis of symmetry of bilaterally symmetric
objects. Finally, Pintsov [39] studies a related problem whether
two images only differ by some (symmetry) transformation.

B. Symmetry in Statistics

Though symmetry can be examined from different points of
view, in this paper, statistical aspects of spatial symmetry are
studied. Hence, we investigate a rarely (to our best knowledge)
studied problem of finding whether a digital version of the con-
tinuous image which is observed in the presence of noise ac-
tually has a certain type of (global) symmetries. Apparently,
even if symmetries are present, due to random noise, these can
only be observed approximately, and the question arises whether
the departure from symmetry is due to noise or actually due
to an asymmetric image. Hence, our goal is to construct rig-
orous statistical tests for testing rotational and reflection sym-
metries in a planar gray-level image. Before we discuss our de-
tection method more specifically, we also review parts of the
relevant statistics literature on symmetry testing. Questions of
symmetry are relevant in many statistical models. Such sym-
metry can simplify statistical inference, or it might be of in-
terest in itself. For example, in linear as well as in nonpara-
metric regression models, it is important to know whether the
error distribution is symmetrical around zero, since this can in-
crease the efficiency of estimation (cf., [6]) as well as the quality
of asymptotic approximations by the normal distribution (cf.,
[18, p. 229]). Therefore, in [16] and [14], tests for symmetry of
the error distribution in linear and nonparametric regression, re-
spectively, are proposed. Furthermore, nonparametric tests for
symmetry of an unknown regression function (cf., [30]), or of
an unknown density (cf., [1]) have also been proposed. In [2],
tests for symmetry about unknown parameters are constructed.

C. Outline of the Paper

However, there seem to be no methods available in the statis-
tics literature for testing symmetries of a nonparametric regres-
sion function relevant to the image analysis setting, i.e., when
one observes a noisy version of an image function recorded
on a regular square grid. In this paper, the image plane is de-
fined to be the unit disk, and we use a class of radial orthogonal
functions, often referred to as Zernike functions, to design our
testing procedures. Hence, we propose a systematic approach
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for testing image symmetries utilizing the Zernike coefficients
(Zernike moments), i.e., the Fourier coefficients of the expan-
sion of the image function into the Zernike functions. The pro-
posed test statistics are constructed by expressing the symmetry
condition in terms of restrictions on the Zernike moments [42].
The statistics take form of empirical counterpart of the Lo dis-
tance between the original image and its transformed version
obtained by a certain symmetry transformation. The established
limit theorems allow us to design rigorous methods for testing
symmetries of planar images observed in the presence of noise
over a grid of pixels. We derive the asymptotic distributions of
the test statistics both under the hypothesis of symmetry as well
as under fixed alternatives. The former result is used to construct
asymptotic level « tests for lack of symmetry, whereas the latter
result can be used to estimate the power of these tests, or to con-
struct tests for validating the symmetry of the image.

The tests are nonparametric as they do not need any prior
knowledge of the image shape and content. They are based
on the region-based orthogonal Zernike moment descriptors,
and therefore, in the case of rejecting the null hypothesis on
the image symmetry they can still be used as a reconstruction
method. This allows us to obtain a great deal of information
about the image even if it has been classified to be nonsymmet-
rical. This is a unique property of our testing method not shared
by the existing algorithms for detecting symmetry in gray-level
images.

Our theory models the performance of the detection proce-
dures on grids which become increasingly fine. Furthermore,
we extend our methodology to the case of testing joint symme-
tries, i.e., symmetry with respect to several transformations. We
verify the quality of the asymptotic approximations in extensive
simulation studies. It is shown that the tests perform well, both
in terms of keeping the nominal level under the hypothesis of
symmetry, as well as in terms of power under departures from
symmetry. Furthermore, we apply our methods to the problem
of testing symmetry of the PSF in confocal microscopy.

Details of the all technical proofs of the presented theorems
can be found in the accompanying technical report [4].

II. THE ZERNIKE ORTHOGONAL BASIS AND IMAGE
RECONSTRUCTION

The Zernike polynomials were introduced as an orthogonal
and rotationally invariant basis of polynomials on the disc in
order to model aberrations in optical systems [46]. Since then,
Zernike functions and their corresponding moments have been
found important in numerous applications ranging from pat-
tern recognition, shape analysis, optical engineering, medical
imaging to describing aberrations in the human eye [5], [23],
[28], [41]. In [31] and [32], the authors study how accurately an
image can be reconstructed from a finite number of Zernike mo-
ments, given that discrete observations without noise are avail-
able. Xin et al. [45] describe a high-precision algorithm for com-
puting Zernike moments. A survey of methods of moments in
image analysis is given in [35]. In [26], the statistical proper-
ties of an estimation procedure in positron emission tomography
based on the Zernike moments are investigated.
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A. Zernike Polynomials
The Zernike orthogonal polynomials are given by
Vog(,y) = Rpg(p) €?,  (x,y) €D ey

where p = /22 +y?, § = arctan(y/x), is the imaginary
unit, and R,,(p) is the radial Zernike polynomial given explic-
itly by

(r—lql)/2

Ryq(p) = (=D)l(p = )1pr=2

M+ lgh/2 =DM —lal)/2 = DY

I=0

The indices (p, q) have to satisfy

p>0, |q/<p, p—|q| even ()

We will call such pairs (p, ¢) admissible. The Zernike polyno-
mials satisfy the following orthogonality relation:

// Vog(2, )V (w,y) dedy = 7/ (p + 1)dppr d4qr
D

where * denotes complex conjugation and ¢, is the Kronecker
delta. This implies that

Voell> =7/ (0 + 1) = 1, &)

where || - || is the norm on Ly(D). In [8], the Zernike poly-
nomials are characterized as the unique orthogonal basis of
Ly(D) consisting of invariant polynomials of the general form
(1), which contain a polynomial for every admissible pair (p, q)
in (2), where p is the degree of R,,(p) and ¢ is the index of
angular dependence.

B. Function Approximation

Since the family {V,,(z,y)} for admissible (p,¢) forms a
complete and orthogonal system in Lo(D), we can expand a
function f € Ly(D) into the following orthogonal series:

f(z,y) = Z Z ”;1 Apg(f)Vpa(z,y) 4)

p=0g9=—p

where here and in all the following the summation is taken over
admissible pairs (p, q). The norming factor n, 1 arises due to
(3), and the Zernike coefficient A,,(f) is defined by

D)= [[ Fan) Ve de dy

Introducing the notation f(p7 0) = f(pcosb, psin ) for a func-
tion f € Ly(D), and by using polar coordinates, one obtains
1

Apg(f) = 27r/0 cq(p, ) Rpg(p)pdp (5)

where
27

cq(p, f) = L f(p,0)e="% dg.

271-'0

C. Image Reconstruction

The image observational model we will use in this paper is as
follows. Let f € L2(D) and suppose that we have data
(wiv y]) € D7

Zij = fwi,y;)+ei, 1<i,j<n (6)
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where the noise process {¢; ; } is an independent identically dis-
tributed (i.i.d.) random sequence with zero mean, finite variance
E 612 ;= o2, and finite fourth moment. We assume that the data
are observed on a symmetric square grid of edge width A, i.e.,
Ti—ri1 =yi—Yi1=Aandx; = —Tp_i11,Yi = —Yn_it1-
Note that n is of order 1/A. Note that along the boundary of
the disc, some lattice squares are included and some are ex-
cluded. When reconstructing f(z,y), this gives rise to an addi-
tional error, referred to as geometric error [38]. Throughout this
paper, the geometric error will be represented by the factor -,
which can be evaluated (see [38]) to be equal v = 285/208.
In the following, we will work with a discretized version of
the Zernike polynomials, since we observe the image function
f(z,y) inmodel (6) only on the discrete grid of points {(z;, y;),
i,7 = 1,...,n}. Consider the weights

Wy (T3, Y;) //

where I1;; = [z; — 5,7, + 5] x [y; — 5. y; + 5] denotes the
pixel centered at (z;, y;). Another, even simpler version of the
weights is

(z,y) dxdy @)

wPQ($i7yj) = A2‘/p*q(xi7yj)' ®)
The expansion (4) can be used to construct a truncated series es-
timator for f(x,y) in model (6). To this end estimate the Zernike
coefficient A,q(f) by

Apg = Z Wpq(Tis Yj) Zij ©)

(zi,y;)€D

where the weights are given by (7) or by (8). An estimate of the
image function f(z,y) is then given by

N P

fn(a,y) = (10)

where N is a smoothing parameter, which determines the
number of terms in the truncated series. The mean integrated
square error properties of fN($7 y) are discussed in [38]; for
general information on truncated series estimators, see, e.g.,
[20].

III. TESTING ROTATIONAL SYMMETRIES

In this section, we discuss how to test for rotational symme-
tries of f € Lo(D). We consider both d-fold rotations as well
as rotational invariance, the limit case d = oo.

A. d-Fold Rotations

Let us consider a rotation 4 by an angle of 27 /d for d € N.
Since

(raf)(p,8) = f(p,2r/d+6) an
from (5), it easily follows that
Apg(raf) = ™A, (f). (12)
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Now consider the hypothesis

H™ :ryf = f (13)
that the function f is invariant under the rotation r4. Expanding
both sides of (13) into a series with respect to the Zernike basis,
we see that (13) is equivalent to A, (rqf) = Ape(f) for all
admissible pairs (p, ¢). In view of (12), this is equivalent to
H':A,,(f)= ezmq/dqu(f) for all admissible pairs (p, q).
Therefore, a natural way to test the hypothesis H" is via the
statistic

27Tiq/d|2|A (14)

2
P(I|

1 n &
T]’{;‘:ZZ an_1|1—e

p=0g=—p

where the norming factor 1/4 is used for convenience. It is worth
noting that 7'\ represents the empirical version of the trun-
cated Lo distance between f(z,y) and its orthogonal projec-
tion rq f(x, y) onto all images being symmetric with respect to
d-fold rotations. Indeed, by Parseval’s formula, we have

o P
:Z Zn;lﬂ—

p=0g=—p

I1f = rafll® P2 | Apg ().

We will study explicitly two important special cases, d = 2, i.e.,
rotation by 7, and d = 4, rotation by 7 /2. In principle, one could
derive similar results for general rotations by the angle 27/d.
However, in this case, additional technical difficulties may arise
since the discrete grid points {(z;, y;)} need no longer be in-
variant under 74. To obtain an approximate invariance, one can
apply interpolation methods; see [45].

Since for d = 2 we have €™ = (—1)!4l, the terms in (14) for
even q (or equivalently, even p) vanish. Therefore, the statistic
in this case reads

T = (15)

N P
> Dy Al

p=0,p odd g=—p

The following theorem presents the asymptotic distribution of
the statistic 77 under the hypothesis H"* as well as under fixed
alternatives.

Theorem 1: Under the hypothesis H™ : rof = f,if A — 0,
N — oo such that AN7 — 0, we have that
(T -

o?A%(N)) 5 N(0,20%)  (16)

A2,/a(N)

L e .
where = denotes convergence in distribution, N (0, o) is the
normal law with mean zero and variance o2, and

N(N +2)/4

N even
ao(N) = { (N +1)(N +3)/4

N odd. an
Under a fixed alternative f # rof, suppose that f € C*(D)
for s > 2. If AN+l — o0 and N3/2A71 — 0, where
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v = 285/208 is the factor controlling the geometric error, we
have that

L(T% <1 = f1274) £ N, 02 — raf ).

A (18)

The proof of Theorem 1 can be found in the Appendix.

Remark 1: Note that different rates appear under the hypoth-
esis in (16) and under fixed alternatives in (18). This phenom-
enon is by now rather well known for nonparametric tests (cf.,
e.g., [14]). Here it occurs since T}{f is, under the hypothesis, a
quadratic statistic, but under a fixed alternative, an additional
linear term arises that dominates the asymptotics. There is ex-
tensive work on rate optimal testing in the statistic literature,
both against linear local alternatives as well as uniformly against
certain function classes of local alternatives (cf., [21] for a com-
prehensive discussion in the context of testing for the parametric
form of a regression function). We constructed the test statistic
in (14) not with such theoretical optimality questions in mind,
but with the aim of providing a simple and transparent test,
which also directly leads to estimators of the image, both in case
of symmetry and under the alternative of no symmetry.

Remark 2: Let us now discuss implementation issues related
to Theorem 1, which can be used to construct an asymptotic
level « test for the hypothesis H™. The hypothesis H" is re-
jected if

T > ui—aA*\/2a(N)6* + A%a(N)6>. (19)
Here u;_,, denotes the 1 — « quantile of the standard normal

distribution, and 62 is a nonparametric estimator of the variance
o2. For example, one can use a difference-based estimator like

1 1

A2 e R

" = _C(A) Z Z((Zm,] Zz+1,]) + (Z,L’] Zz,]+1) )
(zi,y;)€D

(20)

where the sum is taken over all (5’3i7yj) € D, where

(zit1,y;) € D and (z;,y;41) € D, and C(A) is the
number of terms in this restricted sum. One can show that if f
is Lipschitz continuous, then 62 — 02 = Op(A). In this case,
(16) continues to hold if o2 is replaced by the estimator 2, and
(19) is indeed an asymptotically valid level « test decision. For
detailed information on difference-based variance estimators in
higher dimensions, see [36].

The asymptotic distribution (18) of the test statistic 7,2 in
(15) under a fixed alternative can be used in various ways. One
is to estimate the power of the test. In fact, we have that for

B e (0,1)
P (ollf = rafllAui_p + If = r2f[?/4 < TR) = B.

Using the decision rule (19), we see that for the power 3, we get
asymptotically

1w [0A@—a/2a(N) +a(N)) |If —rof]|
p=1 q’( I —rafl 154 )
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where @ is the distribution function of the standard normal dis-
tribution. Observing that the first term in brackets tends to zero
and then estimating || f — 72 f|| by 24/T'3?, we get as an estimate
for the power (3

. NG
ﬂ_l_q)(_z&g '

Another use of (18) is to validate the symmetry of f under 7o
by testing the hypothesis

Hy:||f —rof|| >t against Ki:||f —rof]| <t

for some ¢ > 0. For further details on such testing problems, we
refer to [12].

Now let us consider testing for invariance under the rotation
74 by an angle 27 /d with d = 4. Here, the factor |1 — e274/4|?
in (14) becomes

4 q=2mod 4
|1—iq|2:{0 ¢=0mod4
2 qg=1,3mod 4.

Therefore, the statistic TJT\;‘ can be written as
1 N P N
Ty _ —11 4 |2 —11 4 |2
Ty = ) Z Z y, | Apql +Z Z ny, |Apg|”.
p=0,p odd g=—p p=0¢=2 mod 4

The asymptotic distribution of the statistic T is established in
the following theorem.

Theorem 2: Under the hypothesis H™ : ryf = f,if A — 0,
N — oo such that AN7 — 0, we have that

Ty — 02 A2(a(N)/2 + b(N))
A2\ /a(N)/4+ b(N)

£ N(0,20%)

where a(N) is given in (17), and b(IV) is equal to the number
of admissible (p, q) with ¢ = 2 mod 4 and p < N.

Under a fixed alternative f # r, f, suppose that f € C*(D)
for s > 2. If AN%*TL 5 o0 and N3/2A71 — 0, where
v = 285/208 is the geometric error factor, we have that

1

< (T = I =rafIP/4) 5 N©,0°|1f = raf ).

The proof of Theorem 2 is similar to that of Theorem 1 and is
therefore omitted; see [4] for details. It is worth noting that in
TJT\;‘ , more Zernike coefficients are needed than in TJT\? , which is
to be expected since H™ imposes more restrictions than H",
which have to be checked.

B. Testing Radiality

Next we wish to design a test for rotational invariance of
f(z,y), which means that f(p, 8) = g(p) is a function of the
radius p only. Expressed in terms of the Zernike polynomials, a
function f € L?(D) is rotationally invariant if and only if

qu(f) =0,

This is easily deduced from the definition of the Zernike coef-
ficients (5); see also [38]. The orthogonal projection Rot(f) of

for every g # 0. 21
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a function f € L%(D) onto the space of rotationally invariant
functions is, therefore, given by

oo

>

p=0, p even

Rot(f)(z,y) = .t Ap o (f)Vpo(2,y)

and the Lo distance between f and Rotg(f) is

> >

p=0g=—p,q#0

[If = Rot(f)II” =

ny | Ap (. (22)

Consider the hypothesis H™* that the image f is rotationally
invariant
H™": f = Rot(f).

Then, in order to test H°t, it is natural to consider the statistic
being the estimated and truncated version of (22)

p=1 q=—p,q#0

Tﬁ?t n;1|‘4pq|2~

The asymptotic distribution of T3 is presented in the following
theorem.

Theorem 3: Under the hypothesis H™" : f = Rot(Jf), if
A — 0, N — oo such that AN7 — 0, we have that

1

m (Tﬁ?t — O'2A2a(N>) £> N(O/ 204) (23)
where
[ (N?2+2N)/2 N even
o) = {(N+1)2/2 N odd.

Under a fixed alternative f # Rot(f), suppose that f € C*(D)
for s > 2. If AN+l — o0 and N3/2A71 — 0, where
~ = 285/208 is the geometric error factor, we have that

1
< If = Rot(f)]|) = N (0,402 = Rot(£)]).
(24)
For the proof of Theorem 3, see [4]. Testing procedures based
on Theorems 2 and 3 can now be implemented in a completely

analogous fashion as discussed in Remark 2.

(r3 -

C. General Rotations

In this section, we discussed tests for invariance under spe-
cific rotations, namely, d-fold rotations and rotational invari-
ance. However, these are essentially all possibilities for rota-
tional invariance in two dimensions. Let us consider general ra-
tional rotations by an angle of 2dy 7 /ds for dy,ds > 1 coprime.
Then, the condition of invariance of a function under the rotation
2dy 7 /d5 is equivalent to invariance under 27 /da, since both re-
flections generate the same finite groups of rotations. As for an
irrational rotation, say by 2z, x irrational, it is well known
that the orbit of any point on a circle of radius p is dense on
this circle. Hence, invariance under an irrational rotation is very
close to rotational invariance (for continuous image functions,
it is equivalent).
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IV. TESTING REFLECTION AND JOINT SYMMETRIES

A. Reflections

In this section, we examine the problem how to test that f €
L(D) in model (6) is symmetric with respect to certain reflec-
tions. First, let us consider the reflection 7 at the y-axis, defined

by 7f(x,y) = f(—z,y), (z,y) € D.In polar coordinates, this
is
(71)(p,0) = f(pcos(x = 9), psin(r — 6))
= f(p7 ™= 9)

Simple algebra shows that in (5), ¢,(p, 7f) = (=1)l%lc_,(p, f).
Since also R,q(p) = R, —_q(p), we get ci(p,7f) =
(=D)lele_y(p, f) and that R,,(p) = R, _,(p), therefore
in view of (5), we have

Apg(Tf) = (_1)|q|Ap,fq(f)- (25)

Now consider the hypothesis that the image f(z,y) is invariant
under 7, i.e.,

Tirf=f

which using (25) can be expressed in terms of Zernike coef-
ficients as A,,(f) = (=1)!4A, ,(f) for admissible (p, q).
Therefore, a natural test statistic is

N p
=3 nt|a

p=0g=—p

+(-1)lA, _,

The following theorem gives the asymptotic distribution of T’
under the hypothesis H™ as well as under fixed alternatives.

Theorem 4: Under the hypothesis H™ : 7f = f,if A — 0,
N — oo such that AN7 — 0, we have that

Tf — 0?A?(N +1)(N +2) £ N(0,80%)
A2\ /(N + 1)(N +2) ’ '

Under a fixed alternative 7f # f, suppose that f € C*(D) for
some s > 2. If AN25t1 5 0 and N3/2A7=1 — 0, where
v = 285/208 is the geometric error factor, we have that

S (T =17 = 7f17) £ N, 1602 = 7).
The proof of Theorem 4 can be found in [4]. Similar test sta-
tistics and asymptotic results can, in principle, be deduced for
reflections with respect to arbitrary axis through the origin. In
particular, for reflection with respect to the z-axis or one of the
diagonals, similar results hold true, since the design is also in-
variant under these reflections. Generally, however, one should
estimate the tilt angle of the reflection axis and include that in
our detection procedure; see [24] for the angular correlation ap-
proach for estimating the angle of reflection.

(26)

27)

B. Joint Symmetries

Now let us consider testing for joint symmetries, i.e., for sym-
metry with respect to several transformations. As an example,
consider invariance under the reflections at the z- and y-axis,
now denoted by 7, and 7,, respectively. Since 7,7, = 72 and
ToT, = T, the group generated by {7, 7, } is the same as that
generated by {7, r»}. Therefore, one can also test for invariance
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Reconstruction of f1 (top row) from data with n = 25, 0 = 0.2 (second row), n = 25, ¢ = 0.02 (third row), and n = 100, 0 = 0.2 (bottom row). The

plots in the second to bottom row, from left to right, show the estimate f ~ based on all Zernike polynomlals the residuals of this estimate, the estimate f N2 based

only on the polynomials with ¢ even, and the residuals of the latter estimate.

with respect to the reflection 7, and the rotation 7. In general, a
group generated by two reflections can always be generated by
a reflection and a rotation.

Since we already have test statistics for the hypotheses H ">
and H™, we could test the joint hypothesis H™»"> = H™AH™
via a multiple testing procedure (cf., [22] for background on
multiple testing). As an example, the Bonferroni procedure tests
both hypotheses H™ and H™ to the level /2. If at least one
is rejected at this level, the compound hypothesis H™" can be
rejected at a level of a.

However, it is also of interest to construct a test statistic that
directly tests the hypothesis H"v°"2, since such tests often out-
perform multiple testing procedures in terms of power. To this
end, let Lo(7,,r2) C Lo(D) be the subspace of functions in
L+ (D) invariant under 7, and 7. Then, the orthogonal projec-
tion w, ., of f € Ly(D) onto Lo(7,,72) is given by

- Yo

p even g=—p

7r7'y77'2(

Va2, ).

—DllA, _4(f)
)

The test statistic is now defined by estimating the distance || f —
77, r, f ||* Expressing this in terms of Zernike coefficients leads
to the test statistic

N P
> > AP

p=0,p odd qg=—p

= Dyl e

p=0,p even g=—p

Ty,T2 __
Ty =~ =

)[qH_lAP:—q

For this test statistic, we have the following result.

Theorem 5: Under the hypothesis H™»"2 : 7,f = f and
rof = f,if A — 0, N — oo such that AN” — 0, we have that

1

A2 /a

WAL

o2A%(N)) 5 N(0,20%)
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Fig. 2. Reconstruction of f2 (top row) from data with n = 25, 0 = 0.2 (second row), n = 25, = 0.02 (third row), and n = 100, 0 = 0.2 (bottom row). The
plots in the second to bottom row, from left to right, show the estimate f ~ based on all Zernike polynomials, the residuals of this estimate, the estimate f N2 based

only on the polynomials with ¢ even, and the residuals of the latter estimate.

where
(N + 2)2 NN +2) : N even
aN) =19 (v} 12 (N—lill)(N’+3)
3 + 1 N odd.

Under a fixed alternative f # rof or 7, f # f, suppose that
f € C3(D) for s > 2. 1f AN?**1 — oo and N¥/2A7"1 — 0,
where v = 285/208 is the geometric error factor, we have that

1

5 %7 = f ) £ N (0407 = A,

For the proof of Theorem 5, see [4].

V. SIMULATIONS

In this section, we discuss the results of a simulation study of
the proposed symmetry tests. We performed simulations with
two target functions, which are given in polar coordinates by

Note that fl is twofold rotati0n~a1 symmetric, [i.e., invariant
under 79; cf., (11)], whereas fo is not. In the subsequent
simulations, we use these two functions to demonstrate the
performance of the test for rotational symmetry under the
hypothesis H"™ and under the alternative hypothesis when H "™
does not hold. The test statistic 7\? defined in (15) is used here.

Figs. 1 and 2 show reconstructions of fl and fg and the corre-
sponding residuals, respectively, from estimation based on data
with n := A~! = 25,100 and with Gaussian noise of stan-
dard deviations ¢ = 0.02,0.2. We show both reconstructions
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Fig. 3. Simulated distribution (full curves) and asymptotic distribution (dashed curves) of the test statistic 7'x> under the null hypothesis for (from left to right)
n =250=0.2,n=250=0.02,andn = 100,0 = 0.2.
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TABLE I .
SMOOTHING PARAMETER N,. USED FOR THE ESTIMATOR fn (&, y) IN THE
SUBSEQUENT SIMULATIONS. S/N GIVES THE SIGNAL-TO-NOISE RATIO,

WHICH WE DEFINE AS THE RATIO BETWEEN THE PEAK VALUES OF
THE TEST FUNCTIONS f;, f> AND THE STANDARD DEVIATION o

n | o | S/N| Ny
25 0.2 5 7
25 0.06 | 16.7 8
25 0.02 50 10
50 0.2 5 8
50 0.06 | 16.7 12
100 0.2 5 12

where all Zernike polynomials with p < N are used, as well
as reconstructions assuming that H™ holds, i.e., where only
polynomials for ¢ even are used. In fact, under H"?, we have
Ape(f) = 0 for ¢ odd. Table I summarizes the smoothing pa-
rameters N used in these reconstructions (and in the subsequent
simulations with the same set of parameters 7, o). The param-
eter NV is chosen by the following data-driven method. In the
first step, we have estimated the variance o2 with a difference
estimator 62 of type (20). Then, we computed the estimator (10)
for the data with N = 1,2, ... and evaluated the statistic

> (Re(Zij — fn(wiy))))?

n(D) -1 (o aT3eD

where n(D) := 3, , ep 1. Finally, we chose the smoothing
parameter [V, as the smallest IV, such that DJQV < 62 We

Simulated distribution (full curves) and asymptotic distribution (dashed curves) of the test statistic T under the alternative hypothesis for (from left to
righty n = 25,0 = 0.2,,n = 25,0 = 0.02and n = 100,00 = 0.2.

validated this strategy by comparing N, to its Ly, L; and
Loo-optimal value for estimation of fl and fz, which we
can determine from the fact that in our simulations, the true
function underlying the data is known. It turns out that the L,
and L..-optimal smoothing parameters typically are within
an interval of +2 from the Ls-optimal smoothing parameter,
which is the same amount as the typical difference N, from the
Ls-optimal smoothing parameter. It is obvious from the figures
that, whereas the reconstructions of f; appear feasible for all
sets of parameters—both using all Zernike polynomials and
using only the subset with ¢ even—the reconstructions of fg
suffer severely if only twofold symmetric Zernike polynomials
are used.

In the second part of our simulation study, we simulated the
distribution of the test statistic T\ for testing for twofold ro-
tational symmetry, both with data generated under the null hy-
pothesis and with data generated from f, for which H"2 does
not hold. Note that by linearity of the coefficient estimator (9),
it is not relevant which function is chosen to generate data under
H™, as long as the function is strictly twofold symmetric such
as fl .

Figs. 3 and 4 show simulated distributions of the test statistic
Ty givenin (15) for data generated from the functions fl (.e.,
under H"?) and f, (i.e., under the corresponding alternative),
respectively, from 1000 simulations each. Moreover, the dashed
curves show the distributions computed from the asymptotic
laws (16) and (18). The asymptotic mean and variance of the
distribution of T'3? are attained well for all sets of parameters
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TABLE II
EFFECTIVE FRACTION OF REJECTION OF THE NULL HYPOTHESIS H "2 IN
1000 SIMULATIONS OF THE TEST FOR TWOFOLD SYMMETRY DESCRIBED
IN THEOREM 1 FOR NOMINAL LEVELS 20%, 10%, AND 5%

True function n o 20% 10% 5%
fi 25 | 02 | 211% 103% 4.6%
fi 25 | 0.02 | 17.8% 8.0%  3.7%
fi 100 | 0.2 | 200% 10.7% 5.0%
f2 25 | 02 | 100% 100%  100%
fo 25 | 0.02 | 100%  100%  100%
fo 100 | 0.2 | 100% 100%  100%

f12,0.05 25 | 0.2 | 92.8% 86.6% 77.5%
f12,0.05 25 | 0.06 | 100%  100%  100%
f12,0.05 50 | 0.2 | 100% 100%  100%
f12,0.01 25 | 0.2 | 21.7% 10.2%  4.6%
fi2,0.01 25 | 0.06 | 65.4% 51.7% 38.2%
fi2,0.01 25 | 0.02 | 100% 100%  100%
fi2,0.01 50 | 0.2 | 25.8% 21.5% 12.2%
f12,0.01 50 | 0.06 | 98.0% 95.8% 88.3%
fi2,0.01 100 | 0.2 | 100% 100%  100%
f12,0.001 25 0.02 | 19.5% 8.8% 4.4%
f12,0.001 50 | 0.2 | 201% 10.5%  4.5%
f12,0.001 50 | 0.06 | 23.0% 11.1%  3.6%
fi2,0.001 100 | 0.2 | 100% 100%  100%

in the case of the simulations under H"2. Under the alterna-
tive (i.e., with data based on fg), the asymptotic variance is also
well reproduced. For the expectation, which asymptotically is
|l f2 — raf2]|?/4, there is an offset of order 5%, which is due to
the fact that for the finite sample sizes considered here, there are
still nonneglible remainder terms contributing to the distribution
of T . In the final part of the simulation study, we have studied
the performance of the test for data generated from fi Ge.,
under H"?) and under a number of different alternatives based
on fg. In particular, we have considered linear combinations of
f1 and f> to determine the sensitivity of the test to violations of
twofold rotational symmetry. To this end, we have considered
functions f~12,n = (1- n)fl + nfz for k = 0.05, 0.01, and
0.001. The critical values for the tests are determined from the
simulated distribution of the test statistic based on fl shown in
Fig. 3. Table II gives the results from 1000 simulations each. The
test appears to perform very well in the detection of asymmetry
with respect to twofold rotational symmetry. First, the test keeps
its nominal level well under the hypothesis H™ in the simu-
lgtions with fl. Second, a contribution of 1% of the function
f2, which is not twofold rotationally symmetric can be detected
well if either at least the design size parameter n = 100, or if the
signal-to-noise ratio is at least ~17 (cf., Table I). Note from the
simulations with f1270_001 thaMt a contribution of 0.1% by the not
twofold symmetric function f5 can be detected only if n = 100,
but not for smaller sample size, even for signal-to-noise ratio 50.

VI. TESTING FOR SYMMETRY OF THE
POINT-SPREAD-FUNCTION IN CONFOCAL MICROSCOPY

In this section, we apply the test for twofold rotational
symmetry to a problem related to assessing the quality of
images from fluorescence nanoscale microscopy. Typically,
for confocal fluorescence microscopic imaging, one observes
count data representing observed image intensities on a two-
(or three-dimensional), equidistant grid of design points in the
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unit square. Here, we consider the two-dimensional case, where
the observations are

Zij = (KO0)(wi,y;) + €ij
with

(KO0)(z,y) = g+ 6(x,y)
= / g(.Z‘ — t17y - t2)0(t1,t2) dtldtQ
R2

and where “x” represents the convolution of the “true” image
§ € L? with the so-called point-spread- function (PSF) g €
L? of the microscope. Moreover, the standard model for the
distribution of the photon count data Z; ; is that Z; ; is Poisson
with the mean (K6)(z;,y;), all independent.

The PSF represents the image of a point source observed by
the microscope and describes the blurring effect of the imaging
process. It may be computed from the optical properties of the
microscope, but the true (empirical) PSF can significantly de-
viate from its theoretic shape, e.g., due to imprecise alignment of
elements in the optical path of the microscope, which frequently
yields a nonsymmetric PSF. Other frequent reasons for such
asymmetries are inhomogeneities caused in the sample prepa-
ration, such as that the sample/mounting medium covership is
not plane.

For confocal fluorescence microscopy, the convolution with
the PSF amounts to a smoothing of the original image of the
object, where typical smoothing scales are of order ~100 nm,
which often is of similar order as the size of (sub-)structures
of interest in the target object. It is hence important to adjust
(i.e., deconvolve) the observed image to recover the image of the
target object. Hence, an exact knowledge of the PSF is evidently
essential. One can, in principle, use the theoretically computed
PSF. However, due to the miscellaneous reasons that can cause
an asymmetric PSFs, it is important to test whether this is em-
pirically justified. For a rotationally symmetric optical system,
the corresponding PSF would be rotationally symmetric if the
elements in the optical path and the detector plane were posi-
tioned perfectly well. On the other hand, reflection symmetry
with respect to two orthogonal axes holds if, e.g., the detector
plane is not in perfect agreement with the focal plane of the mi-
croscope (see [37] and [29]). However, since these axes are, in
general, not known, it is difficult to apply a test for reflection
symmetry to an image of the PSF in practice, but we can in-
stead test for twofold rotational symmetry, which is an imme-
diate consequence of the expected reflection symmetry. If the
image is not twofold rotation symmetric, it can also not be re-
flection symmetric with respect to (w.r.t.) two orthogonal axes.

We propose to test for an asymmetry in the empirical PSF by
applying the test for twofold rotation symmetry as follows. A
standard method to observe the PSF in confocal microscopy is
to include in an empty part of the imaged object slide or in a
separate image a nanosized bead, which is a highly symmetric
sphere of known size with a hard boundary, e.g., 50-, 100-, or
200-nm diameter, i.e., comparable in size to the full width at
half maximum of the PSF. Hence, any asymmetry in the image
of the bead indicates an imperfect alignment of the microscope
optics.
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Fig. 5. Images beadl and bead2 acquired during to observation runs of HeLa cervix carcinoma cells with a Leica TCS laser scanning fluorescence microscope.

Fig. 5 shows two images of 200-nm beads that have been ac-
quired in two separate observational runs of fluorescently la-
beled living HeLa cells acquired with a confocal laser scanning
microscope (Leica TCS). HeLa cells are a cervix cancer cell line
and the object was labeled with the fluorescent dye Alexa 576
(red). The pixel size in both images is 21.3 x 21.3 nm?. We use
subimages of the full microscopic images that actually show the
beads. This yields n = 11 for the design points. Here we have
defined the design points such that the origin (0, 0) of the coor-
dinates coincides with the center-of-mass of the images of the
beads. The signal-to-noise ratio of the images is S/N = 20 and
S/N = 14 for beadl and bead2, respectively. For a more de-
tailed discussion of the HeLa cell data, we refer the reader to [7].

In the first step, we choose the regularization parameter N,
as described in Section V. Since the data are Poisson distributed
and hence heteroscedastic, direct application of the difference
estimator 62 is difficult. We therefore crosschecked N,. by vi-
sual inspection, which confirmed the validity of the choice N,. =
6 and N,. = 4 for beadl and bead2, respectively. In the second
step, we determine critical values for the test in the two sce-
narios (different both by 42 and N,.) from simulated distribu-
tions of the test statistic with T3 as in (15). Finally, applying
the test for H™ to the images produced the following results.
For bead1, the null hypothesis H" was rejected even at the 5%
level, whereas for bead2, it was not rejected, not even at the 20%
level. This indicates that, whereas the data from the second ob-
servation run, where the image of bead2 was acquired, may well
be deconvolved with the theoretical PSF, this is probably not a
good strategy for the data from the first run. A possibility in
this case is the estimation of the empirical PSF from the image
of the bead; however, this requires significant additional effort
since the deconvolution is very sensitive, e.g., to noise in the
PSF. Finally, we mention that we have also tested both images
for rotational invariance, which requires in particular a perfect
alignment of the optical system, and of the detector with the
focal plane, in addition to homogeneity of the prepared sample
(e.g., of the mounting medium covership on the object slide).
This (stronger) null hypothesis is rejected both for beatl and
bead2 even at the 5% level.

VII. CONCLUDING REMARKS

In this paper, we have considered the problem of testing for
certain, prespecified symmetries in an image. However, one
might also be interested in testing for reflection symmetry with
respect to some unknown axis. In order to construct such a
test, the first step consists in estimating the (possible) angle

of the axis of reflection symmetry, and then as a second step,
inserting this estimator into the test statistic. Equivalently, we
can realign the coordinate axis, so that the axis of symmetry is
still the y-axis, and consequently, the statistic Ty, can be used
without any change.

If the angle of reflection symmetry under the hypothesis of ac-
tual symmetry is estimated at a parametric rate O(A), then we
conjecture that the asymptotic distribution under the hypothesis
H7™ remains unchanged. Indeed, the rate under the hypothesis
in (26) is nonparametric, and if the angle is estimated at a faster
rate, then this should not alter any asymptotic results. Such phe-
nomena are known for related testing problems in the statistical
literature when testing the parametric form of a regression func-
tion; see, e.g., [13]. Thus, the problem is to construct estimators
for the reflection angle and prove that they have the required
fast rate of convergence. Although, as described in the introduc-
tion, there are methods for estimation the angle of reflectional
symmetry, they have not been studied so far from the theoretical
point of view required for our nonparametric testing procedures.
This interesting topic is beyond the scope of this paper and will
be examined elsewhere.

Thus far, we have studied the problem of symmetry within
a single image. The related two-sample problem is testing for
equality of two images (such as left and right hands) up to
symmetry transformation, where the images are observed with
noise. For this problem, estimation of the symmetry transforma-
tion would also be required as a first step, before plugging it into
a test statistic.

APPENDIX

Before proving our theorems, we need some auxiliary results.
The first result gives a discretization error of the orthogonality
property of the Zernike functions. The proof of this important
result can be found in [4].

Lemma 1: Let for some admissible pairs (p, ¢) and (p', ¢’)

Z w;q@”i-/yj)wp’q'(iﬂuyj)
(zi,y;)€D

I(A) =
where wpq(z;,y;) is defined either in (7) or in (8). Then, we

have for some ¢y, co > 0 that

I(A) = A?ny8, 84qr + 1 AT
+eo(Vp + lal + VP + DAY (28)

where « can be selected as o = 77/208 = 0,37019...
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The following lemma describes the discretization error of
Parseval’s formula when the true Zernike moment A, ( f) is es-
timated by A,,.

Lemma 2: Let f € C°(D)—the class of functions having
s continuous partial derivatives. Let A, be the estimate of the
Zernike coefficient defined in (9) and let

N
Sx =33 s |Edy,P.

p=0|q|<p

Then, we have
Sny = [IfII>+0 (NA3/2 + N3/2A7 4 N—(25+1))

with v = 285/208.

Proof of Theorem 1: For admissible (p, ¢) with odd ¢, we
have for the weights in both (7) and (8) that wy,(z;,v;) =
(=1)!wpg (€n—is1,Yn—j1+1). This is evident for (8). As for
(7), first note that the rotate —II;; of the pixel II;; is again a
pixel, namely, the pixel II,,_; 41 n—j+1. Now use the fact that
Wpq(2i,Yj) = Apq(1m,;) and (12), where 1y, ; is the indicator
function of the set IT; ;. Then, it follows that for admissible (p, q)
with odd p

Apg = Y wpg(wi ;) (f(wi,y)) + i)
(%:,y;)€D

where

f(a;y) = (f(:v,y) - f(—il?, _y))/2'

Set

M) = 9 Moy wpg (i, ) Wy (zk, 1)
(p,q)

where here and for the rest of the proof all sums involving
(p, q)’s are taken over admissible pairs with 0 < p < N and
odd p. We obtain

>

(zi,y;):(zk,y1)€ED

+2 F(@is ;) examesy, e
(xhyj)’(xk:yl)GD
+ > F (@i, y;) F(@r, yo)msy, e
(zivyj)v(zka’!ll)eD
= S1,8 + SN + S3.N.

€5 €k, 1M (ig), (k1)

(29)

First, assume that the hypothesis H" is true. Then, we have that
S, n = S3,n = 0, and we have to study S; . Note that for the
vectors vpg = (Wpq(Zi, Yj))(xs,y,)en- from (28), it follows that

T,% _ 2
Vpg Uprgr = A Np0p 1 bg.qr

FO(A2(pM2 + (g2 + % + | 1M?) (30)
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where the constant in O( ) is independent of p, ¢, p’¢q’. The ma-
trix of coefficients M = (i) (k1)) (i), (k,))ep can be written
as

M = Enqupq.

(»»9)

€19

Then, using (30), we have for the expectation
ES Ny = a2 trM

2 -1
=0 E n, tr pqqu)

(»,9)

— 52 Z n;l(AQ
(»,9)

= 02A2%a(N) + O(AY2NT/?)

ny + O(AY2(pl/2 + |qY/?))

(32)

where tr denotes the trace of a square matrix, and a(N), the
number of terms in the sum Z<p Q) with odd p, is given by (17).
Next decompose

2
Sin= Y €M)
(wi,y]-)ED
+ D
(wi,y;)# (=) €ED
=511.8+S12.N-

€i,5€k, 1T (35),(kl)

First, note that

ESion =FESionS118n =0, ES n=FESi1n

as given in (32). Using the fact that |wp, (7, y)| < A2, we can
estimate the variance of S1 1 v as follows:

D DRD DR

(Pl »q1 ) (1’2 (I2)

2 2
|wP1<I1 ($i7 y])| |wP242 (112 y])|

Var511N<E 611 o?

x>
(zi,y;)€ED

— O(ASNY). (33)

Now let us evaluate the variance of S 2 n. Let D denote the
diagonal matrix consisting of the diagonal elements of M. Then

Var Sy o x = 20*tr(M — D)?
= 20*(trM? — trD?)

= 20*trM? + O(A°N®) (34)

where we used (33) in the last step. Furthermore

d. D mln

(Pl,th) (1’2,(12)

-1, -1
d. D mln

(Pl,th) (1’2,(12)

2
X <A Np0p1,p2 041,40

2
+0 (A5/2 (p}/2+|q1|1/2+p§/2+IQ2I1/2)))

trM? = 2

p1 qlvp:)a‘IZ
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_ Z A4—l— Z n;lAQ/QO(pl/Q + |q|1/2)
(»,9) (p.a)
+ Z Z n,

(p1,91) (P2,92)

= a(N)A* + O(A*2N"/2) + O(APNT).

_IAO O(p1 + |a1| + p2 + |a2])

Using this, (34), and AN5 — 0, we get

Var Syo.n5 ~ 20 Ata(N). (35)

This is of higher order than the variance of Sy 1 n, therefore
S1,2,n dominates the asymptotics. To evaluate its asymptotic
distribution, we use [11, Th. 5.2]. To check condition 1) of that
theorem, we compute

|2

I DI IR
Zvyj)eD
(zr,y1)ED
— E E -1.-1 PTAY N gy
_(z'rr;a)XGD Ny Mgy Wprar (i Y5)Wpy g, (T, )
i Y3

(P1,91)(P2,92)
*
X Z wp1q1 (xkvyl)wpzlh(xkayl)
(zx,y1)ED

= O(A°NY) = o(A*N?).

Then, condition 2) of [11, Th. 5.2] will be automatically satisfied
[one could choose for K(A) = N in condition 2)], since the ¢; ;
are i.i.d. In order to check condition 3), we have to bound the
spectral value of the matrix M defined in (31). First, note that

MP= 30 3 v (050 Unaan) Ve,
(P1,91) (P2,92)
Applying (30) yields
M? = A2M + A5/? Z Z Ny, npz Uplqlvp;;z

(r1,91) (P2,92)

O(Vp1 + Va1 + VP2 + V)

where the summation is taken over (p1,q1) # (p2,q2). Let A
be an eigenvalue of the symmetric matrix M corresponding to
the unit length eigenvector «. Noting that M2y = \?u, we have
from (36) that

A2y = A2\ + AP/? Z Z n;llnljzlvp]ql v;;@
(p1,91) (P2,92)

O(Vpr +Var + vp2 + V@2)-

Subtracting and taking the norm gives

(36)

A2 — AZ)

= A5/20< Z Z ’I’L np> ||UP1¢11 p2q> ’ H

(p1,q1) (P2,92)

><(\/p_1+\/q_1+\/p_2+\/q_2)>. 37)

From (30)

lopqll® = np A% + O(AY2(/p + V/]a]))
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Thus

“”Pwn PWI2H

< ||vp1q1|| ||vp2qz||
- 0<,/—np1np>A + g, ( ey |q1/4|) A4
+ iy ( 1/4 ‘q1/4D AY/4

o ) G ) )

Using this bound in (37), after some tedious but straightforward
algebra, we obtain the formula

/\()\—AZ) — A5/2O(A2N11/2 +A9/4N25/4+A5/2N7)
_ O(A9/2N11/2+A19/4N25/4+A5N7). (38)

By solving the quadratic equation, we get that
Al = A + O(AYANT/4).

Since we have already shown that Var S; y = O(A*N?), con-
dition 3) of [11] is evaluated as follows:

AL 1

VVarSixy N

Since AN7 — 0, and all estimates are uniform over the eigen-
values of M, this finishes the proof of the first part of Theorem
1.

Now let us consider the case of an alternative hypothesis, i.e.,
f # rof. Let us start with the nonstochastic term S3 y in (29).
By virtue of Lemma 2 with f(z, y) replaced by f(z, y), we have

+ O(A1/4N7/4).

Sov = IF=raf[2/4+0 (NAY2 4 N¥2A7 4 N=Co1D).

(39
Next let us evaluate the variance of S» n. Note first that
2
Var Sy v =40” ) > Flakw)ma, o
(zi,y;)€ED \(zr,y1)ED

By expanding the formula in brackets and recalling the defini-
tion of the matrix M, we obtain that

Var Sy x = do* fTM? f (40)

where the vector f is defined by f = (f(2i,9;))(x:,4,)en- The
proof of the first part of the theorem [see formula (38)] reveals
that

M2 — AQM + O(AQ/QNII/Q).
This and (40) give

Var SQ,N = 40‘2A2fTMfT+ ]?TfO(Ag/QNH/Z),
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Observing that fT M f = S3 n and using (39), we obtain

Var Sy, n = a*A%||f — o f* + | fIPO(AYZNY2)
+O(NA7/2 +N3/2A’y+2 +A2N7(25+1))'

Hence, Var Sy n is of order A2, and So,n dominates the
quadratic term S5 n. Furthermore, the remainder terms in (39)
are negligible, even after dividing by the standard deviation A.
Finally, we check Lyapounov’s condition. We will show that
4
E€iy Y (ap y)eD ‘Z(mi,yj)eD f(@iyyi)m), e
(Var SQ’N)2

41)
The interior sum in the denominator can be evaluated as follows
(cf., [38]):

o Fl@iyi)meg,m

(mi,yj)GD
= Z w;q(xk"/ yl)n;l Z f(xt/ yj)wpq($i7 yj)
(P9 (zi,y;)€D
= > wh(wr y)n, (A (f) + O(AY)). 42)
(»»9)

From the proof of Lemma 3 in [38]
()] = O :
" (lgl+ D(p+1)yv/p—lal +1

Using this, we estimate the numerator in (41) by

4
Yoo > Flany)manm

(zk,y1)ED |(x:,y;)ED

= O((Nlog(N))*AS + ABT+6N12)

and since Var S y is of order A2, (41)is O((N log(N))*A? +
A®Y+2N12) which tends to zero since N*/2A7=" — 0. This
finishes the proof of the theorem. O
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