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Abstract
In this paper we study statistical inference for certain inverse problems. We go
beyond mere estimation purposes and review and develop the construction of
confidence intervals and confidence bands in some inverse problems, including
deconvolution and the backward heat equation. Further, we discuss the
construction of certain hypothesis tests, in particular concerning the number of
local maxima of the unknown function. The methods are illustrated in a case
study, where we analyze the distribution of heliocentric escape velocities of
galaxies in the Centaurus galaxy cluster, and provide statistical evidence for its
bimodality.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Inverse problems have been studied intensively in the literature on numerical analysis and
mathematical physics in the last few decades. See for example [16, 31, 32] for comprehensive
treatments. For linear inverse problems, the function of interest f is related to another function
g by an operator equation g = Kf , where K : X → Y is a known linear operator between
Hilbert spaces X and Y , often an injective integral operator. Typically, the inverse of the
operator K is unbounded and the function g can only be observed with errors thus, the problem
of recovering f is ill-posed and regularization techniques are required.

There are different ways to model the observational error in the function g. In the
deterministic approach, one assumes that the observed function gδ satisfies ‖gδ − g‖ � δ for
some δ > 0. Thus, there is a deterministic upper bound to the observational error.

In contrast, in statistics, errors and observational uncertainties are modeled as influences
of random quantities. For example, an extension of the operator equation g = Kf to a
regression framework with an additive random error is g = Kf + ε for random noise ε. In
recent years, several inverse problems have been reinvestigated in such statistical frameworks,
including positron emission and x-ray tomography [9, 34], Wicksell’s problem [22], the heat
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equation [38] or problems related to satellite gradiometry [6]. Sometimes, inverse problems
also directly arise in statistical problems, such as error in variable models (cf [18, 33]) or
regression models with instrumental variables [24].

Apart from an arguably more accurate model of errors and random influences, the
statistical approach allows us to draw statistical inference about the unknown object f . For
example, one can construct regions in which f will be located with a certain (high) probability,
or one can conclude that with a (low) error probability, f will have at least two local maxima.
The aim of the present paper is therefore to take a look beyond mere estimation purposes and
rather to discuss statistical inference for certain inverse problems.

Since we shall investigate inverse problems from the point of view of nonparametric
curve estimation, in section 2 we briefly review the concept of nonparametric (contrasted
with parametric) estimation for two fundamental direct estimation problems, namely density
estimation and regression estimation. Section 3 deals with statistical inference in inverse
density estimation, where we focus on density deconvolution. Specifically, we discuss the
construction of asymptotic confidence intervals, uniform confidence bands, inference on the
number of modes and on the scale space surface for the target density f . Further, in section 4
we are concerned with statistical inference in some inverse regression models, namely a
statistical model for the backward heat equation and for a regression deconvolution model.
As a case study, in section 5 we analyze the heliocentric escape velocities of galaxies in the
Centaurus galaxy cluster. Finally, we conclude with a discussion in section 6.

2. Nonparametric curve estimation

Before turning to curve estimation in inverse problems, in this section we briefly discuss
two basic problems in direct nonparametric curve estimation, namely regression analysis and
density estimation. These will be extended to indirect problems in sections 3 and 4.

2.1. Nonparametric regression

In a regression problem, paired observations (Y,X) are available, and one is interested in
determining a proper relationship between these two variables. The variable X is thought of as
being a predictor for the other variable Y, which is called dependent variable or response. The
response Y ∈ R is univariate, but the predictor X ∈ R

d can be multivariate. For simplicity,
we here assume that d = 1, which is also called a simple regression problem.

For example, one might be interested in relating budget share with log real income, or log
income with age, or weight with height of a person.

In a linear regression model, one assumes that a sample (Yi, Xi), i = 1, . . . , n, is available,
which satisfies the relationship

Yi = β0 + β1Xi + εi,

where (β0, β1) are the unknown constant regression coefficients to be estimated, the εi are
independent, normally distributed random variables with equal variance σ 2. Thus, the assumed
underlying linear relationship cannot be observed precisely, but rather with a stochastic error
εi , the magnitude of which is controlled by the variance σ 2. The predictor variable Xi can
either be modeled as deterministic (fixed design) or as a random variable (random design). In
the latter case, it is then usually assumed to be independent of εi .

The linear regression model is an example of a parametric regression model, in which
the functional relationship between Yi and Xi is determined by a finite-dimensional parameter
((β0, β1) for linear regression). Other parametric regression models are polynomial regression
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models Yi = β0 + β1Xi + · · · + βpXi + εi , for fixed p � 1, or periodic models such as
Yi = β1 cos(β2Xi) + εi . Although parametric regression analysis is quite popular, there is a
substantial danger of reaching incorrect conclusions from an analysis based on a parametric
family which is not (at least approximately) of appropriate form.

Therefore, recent research in regression analysis has concentrated on estimating general
relationships of the form

Yi = θ(Xi) + εi, (1)

where θ is a smooth, but otherwise unspecified function. (1) is called a nonparametric
regression model, since θ , except for being smooth, is not further specified. There are a
variety of estimation methods for θ in (1), including local polynomial estimators [20] spline
regression [17] and series estimators [17].

Apart from mere estimation purposes, a major use of nonparametric estimates θ̂ is for
statistical inference. For example, by comparing a nonparametric estimate with a parametric
estimate, one can validate a parametric form for a regression model [26]. Further, statistical
inference allows us to construct confidence intervals for θ(x) based on θ̂ (x), i.e. intervals in
which the unknown function lies with a certain (typically 95%) probability [17], or even to
construct uniform confidence intervals for each x in a subset I ⊂ R, which are also called
confidence bands [46]. These objects are useful for descriptive purposes as well as for testing
statistical hypotheses on θ , e.g. testing whether θ is non-negative at a certain x or on an
interval I.

2.2. Nonparametric density estimation

A similarly fundamental problem as the regression problem is the estimation of the
(probability) density function of a univariate random sample. More specifically, assume
that X1, . . . , Xn are independent random variables with common density f . In the parametric
approach, one assumes that f belongs to a certain parametric family of densities such as the
normal or the beta family, and then estimates the parameters of this family, e.g. by maximum
likelihood estimation. Again, the possible shapes of a parametric family of densities are quite
restricted, and therefore misspecifying the parametric family can lead to incorrect conclusions
about the shape of the density f . Therefore, recent research has concentrated on nonparametric
estimation of f , assuming smoothness but no parametric form.

The distribution of the Xi is determined both by their probability density f and by their
distribution function F, which are related by F(x) = ∫ x

−∞ f (t) dt , so that F ′ = f . Thus, the
nonparametric density estimation, i.e. estimation of the derivative f of F, may be considered
as a first example of an ill-posed inverse problem arising in statistics.

There are several nonparametric methods for density estimation, including kernel
estimates [44], estimates based on wavelets [45] or nearest-neighbor estimators [14]. Again,
such nonparametric estimates f̂ will allow statistical inference for the unknown density f , in
the form of confidence intervals [23] or confidence bands [4], as well as testing parametric
forms for f [4].

Nonparametric estimates (both of densities and of regression functions) typically involve
selection of an additional smoothing parameter. Although this may be seen as a disadvantage of
nonparametric estimation, it also allows for additional flexibility, in particular if the estimator
is investigated for distinct values of the smoothing parameter [10, 41]. In this way one can for
example investigate the number of modes (i.e. local maxima) of the unknown function f (or
θ in the regression context).

3



Inverse Problems 24 (2008) 034009 N Bissantz and H Holzmann

3. Indirect density estimation: deconvolution

3.1. Deconvolution density estimation

In contrast to direct nonparametric estimation of a density f , in indirect density estimation one
does not have observations distributed according to f , but rather to another density g which
is related to f by an equation g = Kf , where K is often an integral operator, but it can also
be a nonlinear operator with an unbounded inverse.

As an example, suppose that the density f of the random variables Xi is the density of
interest. However, only noisy versions Yi = Xi + εi of the Xi can be observed. Here, εi are
unobserved errors, distributed with a density ψ and independent of Xi . Hence, we have for
the density g of the Yi

g = f ∗ ψ.

Thus, K = Kψ is the convolution operator, and recovering f from observations Yi distributed
according to g is called the deconvolution problem. Evidently, identification and hence
estimation of f are only possible with some additional knowledge about ψ . The simplest, most
common assumption is that ψ is known [18]. Otherwise, additional or repeated observations
[11, 40] or strong shape restrictions on f and ψ are required.

Other problems which lead to indirect density estimation include Positron emission
tomography [9, 34] and quantum homodyne tomography [7]. Here, in order to illustrate
the main ideas and phenomena, we shall focus on density deconvolution with known error
density.

It is well known that the difficulty of recovering f in the deconvolution problem depends
sensitively on the smoothness of the error density ψ (and also on the smoothness of f itself).
Roughly speaking, the error density is called ordinary smooth if its Fourier transform |�ψ(t)|
decays at a polynomial rate as t → ∞, in which case the problem is mildly ill-posed, whereas
if |�ψ(t)| decays at an exponential rate as t → ∞, ψ is called supersmooth and the problem
is severely ill-posed. In terms of optimal rates of convergence of the mean square error as
well as the integrated mean square error, an ordinary-smooth error density in general leads to
polynomials rates, whereas a supersmooth error density typically leads to logarithmic rates
[18].

The arguably most popular estimator in the deconvolution problem is an estimator of
kernel type [18, 19, 43]. More precisely, under the assumption that �ψ(t) �= 0 for all
t ∈ R and that �K, the Fourier transform of the kernel K, has compact support, the kernel
deconvolution density estimator for f , given by

f̂ n(x;h) = 1

nh

n∑
k=1

K
(x − Yk

h
;h

)
, (2)

where

K(x;h) = 1

2π

∫
R

exp(−itx)
�K(t)

�ψ(t/h)
dt, (3)

is well defined. Here h > 0 is a smoothing parameter called bandwidth, and K(x;h) is called
the deconvolution kernel. The estimator in (2) can be derived by general spectral regularization
methods [6, 38]. Note that it satisfies the equation

ĝn(x;h) = (f̂ n(·;h) ∗ ψ)(x),

where ĝn(x;h) = (nh)−1 ∑
i K((x − Yi/h)) is the (direct) kernel estimator of g with

kernel K and bandwidth h. Thus, f̂ n can also be obtained in the particularly simple way
of applying K−1

ψ to a sufficiently smooth estimate of g.
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The estimation error of f̂ n is decomposed into a stochastic part and a deterministic part
(a systematic error) as follows:

f̂ n(x;h) − f (x) = (f̂ n(x;h) − Ef̂ n(x;h)) + (Ef̂ n(x;h) − f (x)). (4)

Since Ef̂ n(x;h) = Kh ∗ f (x), where Kh(x) = K(x/h)/h, the deterministic error (bias)
Ef̂ n(x;h) − f (x) does not depend on the error density ψ . In the following we shall discuss
statistical inference for f based on f̂ n, separately for ordinary smooth and supersmooth
error densities, concentrating on the stochastic part f̂ n(x;h) − Ef̂ n(x;h) in the error
decomposition (4).

3.2. The ordinary smooth case

As mentioned above, the error density ψ is called ordinary smooth if its Fourier transform
decays at a polynomial rate. In order to derive the asymptotic distribution of the deconvolution
kernel density estimator, we shall require the slightly more restrictive assumption,

�ψ(t)tβ → Cε, t → ∞, (5)

for some β � 0 and Cε ∈ C \ {0}. Note that this implies that �ψ(t)|t |β → C̄ε, t → −∞.
If (5) holds, the deconvolution kernel K(·, h) given in (3) has a simple asymptotic form. In
fact, from the dominated convergence theorem (cf [19]),

hβK(x;h) → K(x), h → 0,

where

K(u) = 1

2πCε

∫ ∞

0
exp(−iux)xβ�K(x) dx +

1

2πCε

∫ 0

−∞
exp(−iux)|x|β�K(x) dx.

If (5) and some additional regularity conditions hold, for h → 0 and nh → ∞ one can
show that f̂ n(x;h)−Ef̂ n(x;h) is asymptotically normally distributed with variance of order
n−1/2h−(β+1/2). Specifically, if g(x) > 0,

√
nhβ+1/2(f̂ n(x;h) − Ef̂ n(x;h)) → N(0, g(x)κ),

κ =
∫

R

|t |2β |�K(t)|2 dt/|Cε |2.
(6)

From this we can construct asymptotic level-α confidence intervals for the smoothed version
Ef̂ n(x;h) = (Kh ∗ f )(x) of f

Cα(x) =
[
f̂ n(x;h) − q1−α/2(κg̃(x))1/2

√
nhβ+1/2

, f̂ n(x;h) +
q1−α/2(κg̃(x))1/2

√
nhβ+1/2

]
, (7)

which contains the true (Kh ∗ f )(x) with an asymptotic probability of 95%. Here, g̃(x) is a
consistent estimator for g, and qα is the α-quantile of the standard normal distribution.

In order to obtain a confidence interval for f (x), one has to deal with the bias
|Ef̂ n(x;h) − f (x)|. Roughly speaking, for j -times differentiable densities f , this bias
decays as hj . More precisely, if f satisfies a Sobolev condition of type∫

R

|�f (t)||t |j dt < ∞,

and if, as is assumed above, a flat-top kernel is used (cf [37]), then

|Ef̂ n(x) − f (x)| = 1

2π

∣∣∣∣
∫

R

exp(−itx)(1 − �K(ht))�f (t) dt

∣∣∣∣ = o(hj ), (8)
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uniformly in x. Therefore, in order to guarantee that (6) continues to hold if Ef̂ n(x;h) is
replaced by f (x), one needs that hj = O

(
1/(

√
nhβ+1/2)

)
, or equivalently,

h = O
(
n

− 1
2β+2j+1

)
. (9)

Note that due to the use of a flat-top kernel, the estimate for the bias in (8) is o(hj ), and
hence even for optimal estimation, the variance and the squared bias are not exactly balanced,
the variance dominates the squared bias. Hence, explicit undersmoothing (i.e. choosing the
bandwidth too small as compared to optimal estimation) is not required, and the bandwidth

may be chosen at the order of ∼ n
− 1

2β+2j+1 . In this case, (7) is also a valid asymptotic confidence
interval for f (x). We shall come back to the issue of bandwidth selection in section 3.4.

The confidence intervals Cα(x) in (7) are only valid asymptotically, i.e. for large sample
sizes n. In order to improve the finite sample performance, statisticians use a resampling
method called the bootstrap. The basic idea is to replace the unknown underlying population
by the sample, and resample from this given sample [3].

Thus, resampling n-times from the observations Y1, . . . , Yn we obtain an i.i.d. sample
Y ∗

1 , . . . , Y ∗
n with distribution Gn, the empirical distribution function of Y1, . . . , Yn. Denote by

E∗ the conditional expectation given Y1, . . . , Yn. The bootstrap estimator of f is given by

f̂ ∗
n(x;h) = 1

nh

n∑
k=1

K
(x − Y ∗

k

h
;h

)
.

Since E∗f̂ ∗
n(x;h) = f̂ n(x;h), we simulate the distribution of |Z∗

n(x)|, where

Z∗
n(x) = n1/2hβ+1/2

g̃(x)1/2
(f̂ ∗

n(x;h) − f̂ n(x;h)). (10)

Let q∗
1−α denote the (1 − α)-quantile of this simulated distribution. Then

C∗
α(x) =

[
f̂ n(x;h) − q∗

1−αg̃1/2(x)√
nhβ+1/2

, f̂ n(x;h) +
q∗

1−αg̃1/2(x)√
nhβ+1/2

]
(11)

is a level-α bootstrap confidence interval for Kh ∗ f (x) for general h, and for a bandwidth h
chosen according to (9) also for f (x) itself.

The confidence interval Cα(x) in (7) or the bootstrap confidence interval C∗
α(x) in (11)

can be constructed at each x in some interval I, and in this way one can obtain a pointwise
confidence band. However, this picture is misleading since the curve does not lie uniformly
within this band (with a certain error probability α), but only at each point x. In other words,
the probability that the true f will not lie in the band at some x ∈ I may be much higher
than α. Therefore, instead of pointwise confidence bands one is rather interested in uniform
confidence bands, which are designed to satisfy this uniformity property.

In fact, under some additional regularity conditions, in [5] it is shown that for an
undersmoothing bandwidth h (here, explicit undersmoothing is still required), if g > 0
uniformly on I, one has that

P(f̂ n(x;h) − bn(x, t)

� f (x) � f̂ n(x;h) + bn(x, t) for all x ∈ [0, 1]) → exp(−2 exp(−t)), (12)

where

bn(x, t) =
(

g̃n(x)κ

nh2β+1

)1/2 (
t

(2 log(1/h))1/2
+ dn

)
,

dn = (2 log(1/h))1/2 +
log

(
1

2π
C

1/2
K,2

)
(2 log(1/h))1/2

, CK,2 =
∫

R
x2β+1�2

K(x) dx∫
R

x2β�2
K(x) dx

.
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Thus, choosing tα such that exp(−2 exp(−tα)) = 1 − α, one obtains the following level-α
confidence band on I = [0, 1],

Cuni
α (I ) = {[f̂ n(x;h) − bn(x, tα), f̂ n(x;h) + bn(x, tα)], x ∈ I }.

Let us make some remarks concerning the uniform band Cuni
α (I ). First, (12) and hence

the construction of Cuni
α (I ) can easily be transfered to any compact interval I on which

g > 0. Second, the uniform confidence band is wider than the pointwise band by a factor of
(log(1/h))1/2. Thus, the additional cost of uniformity is quite low at a first glance. However,
the convergence in (12) is rather slow (much slower than in (6)), and bootstrapping is highly
recommended. For constructing bootstrap confidence bands, one bootstraps the distribution
of supx∈I |Y ∗

n (x)|, where Y ∗
n (x) is defined in (10). If q

∗,unif
1−α denotes its (1 − α)-quantile, then

a bootstrap confidence band is given by

C∗,unif
α (x) =

{[
f̂ n(x;h) − q

∗,unif
1−α g̃1/2(x)√

nhβ+1/2
, f̂ n(x;h) +

q
∗,unif
1−α g̃1/2(x)√

nhβ+1/2

]
, x ∈ I

}
. (13)

3.3. Normally distributed errors

In the supersmooth case, the error density has a Fourier transform with exponentially
decreasing tails. Apart from logarithmic rates of convergence, supersmooth errors can also lead
to a distinct asymptotic behavior [28, 43]. Here we discuss the results for centered normally
distributed errors, which have characteristic function �ψ(t) = e−|t |2σ 2

, σ 2 > 0. When using
the sinc kernel with characteristic function �K(t) = 1[−1,1](t), in [43] the following asymptotic
behavior for h → 0 and nh → ∞ is obtained:√

n

h eσ 2/h2 (f̂ n(x;h) − Ef̂ n(x;h)) → N

(
0,

1

8π2σ 4

)
. (14)

Thus, the form of the asymptotic variance changes, in contrast to (6) it does no longer depend
on g or x at all. The asymptotics in (14) could be used for constructing asymptotic confidence
intervals similarly as in (7), but with proper changes according to the form of the asymptotic
variance, in particular, the estimate of g(x) is not needed. However, this is not recommended
since convergence in (14) is quite slow, one should instead use bootstrap confidence intervals.
Another sensitive problem is the choice of the bandwidth in the supersmooth case, since this
falls into the so-called bias-dominating case [8]. This means that for optimal estimation, the
bandwidth is chosen in such a way that the squared bias dominates the variance. However,
for the construction of confidence intervals one requires bandwidth which leads to variance
domination, but still to consistent estimation. This is still possible theoretically, but the
construction of an adequate data-driven bandwidth choice is a hard, yet unsolved problem.
Concerning uniform confidence bands, no asymptotic results are available for supersmooth
deconvolution. Of course, one can simply bootstrap a supremum-type statistic, but no
theoretical justification is available here. Thus, there are still several open problems for
statistical inference for supersmooth deconvolution.

3.4. Bandwidth selection and scale space theory

Use of the estimator f̂ n in (2) requires choosing the smoothing parameter h. There are several
data-driven procedures for this purpose, see [12] for an overview. However, most of these
methods tend to smooth the estimator too much (oversmoothing). In contrast, for the statistical
inference in sections 3.2 and 3.3, we need a bandwidth h for which the variance dominates the
squared bias (i.e. the variance decreases at a slower rate than the bias). Actual undersmoothing
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in practice (i.e. choosing the bandwidth too small, so that the variance strongly dominates the
squared bias) results in poor performance of f̂ n; thus, one should tend not to oversmooth in
applications.

As indicated in section 2.2, the need to choose a bandwidth is often seen as a disadvantage
when applying nonparametric estimators. However, it also allows for additional flexibility,
and varying the bandwidth can also be used for statistical inference, e.g. for testing for the
number of modes of f̂ n. In fact, for most error densities the estimator (2) is also well defined if
the normal kernel is used for ‖ instead of a kernel with compactly supported Fourier transform
(exceptions are normal errors). In this case, the number of modes of f̂ n is a monotonically
decreasing, right-continuous function of h [2, 41]. Therefore, there are certain minimal
bandwidths (called critical bandwidths) for which the estimator just has j and not yet j + 1
modes. This observation can be used to construct a statistical test for the hypothesis that
f has at most j modes for some fixed j [2]. Since the test is an extension of the classical
Silverman test [41] to deconvolution problems, we call it ‘Silverman test for deconvolution’.
Investigating the estimator for different critical bandwidths is also a useful descriptive tool.

In [10], direct nonparametric kernel density estimation is discussed from the point of
view of scale space theory from computer vision, and these ideas can also be extended to
deconvolution density estimation. For (compact) intervals I ⊂ R and H ⊂ (0,∞), call

{f̂ n(x;h), x ∈ I, h ∈ H },
the empirical scale space surface and {Ef̂ n(x;h), x ∈ I, h ∈ H } the theoretical scale space
surface. The monotonicity of the number of modes of f̂ n(x;h) is called causality in the scale
space literature [35]. Intuitively, causality means that at coarser scales (i.e. for larger h), no
additional features (i.e. modes) occur. For the deconvolution kernel density estimator, the
scale space surface (if I = R) also satisfies the causality property. Further, following [10]
one can also show convergence in distribution of the scale space surface if the bandwidth is
bounded away from zero.

4. Inverse regression models

4.1. Inverse regression: estimators and example

In an indirect regression model, independent observations (zk, Yk), k = 1, . . . , n, satisfying

Yk = (Kθ)(zk) + εk (15)

are available. Here the zk are design points, the εk s are i.i.d. errors with Eεk = 0, Eε2
k =

σ 2 < ∞, and K is a compact injective operator between L2-spaces L2(µ1) and L2(µ2). The
aim is not to estimate the regression function m(z) = Kθ(z) of Yi given zi , but rather the
function θ , therefore, we speak of indirect regression. We shall assume that the zi are fixed (i.e.
non-random) design points. Since K is assumed to be compact, we can consider its singular
value decomposition: there exist orthonormal bases (φk) of L2(µ1) and (ψk) of L2(µ2), and
singular values λk > 0, such that Kφk = λkψk and K∗ψk = λkφk . Here K∗ denotes the
adjoint operator of K.

Example 1 (The heat equation). Suppose that the state u(x, t) of a system at a spatial point
x at time t is governed by the heat equation

∂u

∂t
= ∂2u

∂2x
, 0 � x � 1, 0 � t � T ,

with boundary and initial conditions

u(0, t) = u(1, t) = 0, u(x, 0) = θ(x), 0 � t � T , (16)
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and suppose that we have noisy observations of the form Yk = u(zk, T0) + εk . The aim is to
recover the initial condition θ , which is related to u(z, T0) by

u(x, T0) = (
KT0θ

)
(x) =

∞∑
k=1

exp(−k2π2T0)〈θ, φk〉φk(x),

where φk(x) = √
2 sin(kπx), k � 1, and 〈θ, φk〉 = ∫ 1

0 θ(x)φk(x) dx (cf [32], p 267).
Evidently, the operator KT0 is self-adjoint with eigenfunctions φk and eigenvalues λk =
exp(−k2π2T0).

In the following we discuss construction of estimators for real-valued basis functions φj and
ψj . We first construct estimators for the Fourier coefficients bk = 〈Kθ,ψk〉, assuming that
the design points are approximately uniform w.r.t. the measure µ2, as follows:

b̂j,n = 1

n

n∑
k=1

ψj(zk)Yk.

A truncated Fourier series estimator of θ is then given by

θ̂n(x;M) =
M∑

j=1

b̂j,n

λj

φj (x) =
n∑

k=1

Ykwk,n(x), wk,n(x) = 1

n

M∑
j=1

ψj(zk)φj (x)

λj

, (17)

where M = M(n) is a regularization parameter, namely the truncation parameter in the series
estimator. The estimator θ̂n(x;M) is the spectral cut-off estimator as suggested, e.g., in [38].
Note that it makes explicit use of the basis functions φk and ψk . Other estimators, e.g. based
on iterative regularization methods, which do not require knowledge of these functions, are
discussed in [6].

In contrast to the kernel deconvolution density estimator, for the estimator (17) in indirect
regression, no results on asymptotic normality and the construction of confidence intervals are
available, since these are harder to derive for series estimators (such as (17)) than for kernel
estimators (such as (2)).

Here we present some new results on asymptotic normality of θ̂n(x;M) in (17), specifically
for the examples introduced above. To this end, we consider the decomposition of the
estimation error into a stochastic and a deterministic part

θ̂n(x;M) − θ(x) = (θ̂n(x;M) − Eθ̂n(x;M)) + (Eθ̂n(x;M) − θ(x)).

In the following section we will derive confidence intervals for Eθ̂n(x;M). These can be used
to construct confidence intervals for the regression function θ itself after additional estimation
of the bias.

4.2. Variance and asymptotic normality

In order to check asymptotic normality of the estimator (17), we use the following theorem
which is lemma 3.1 in [17].

Theorem 1. Suppose that in model (15), the weights wk,n(x) of the estimator θ̂n(x;M) in (17)
satisfy

max1�k�n |wk,n(x)|( ∑n
j=1 w2

j,n(x)
)1/2 → 0. (18)

Then
(
σ 2 ∑n

j=1 w2
j,n(x)

)−1/2
(θ̂n(x;M) − Eθ̂n(x;M)) → N(0, 1).

The denominator in (18) is proportional to the variance of θ̂n(x;M). In order to derive lower
bounds on the variance (required to check (18)), we shall use the following assumption.

9
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Assumption 1 (Orthogonal design). Suppose that

1

n

n∑
k=1

ψi(zk)ψj (zk) = δi,j , i, j = 1, . . . , n. (19)

Let us mention that approximate orthogonality of the design is sufficient for the following
results. In the case of an orthogonal design, the variance can be easily evaluated as follows.
Under assumption 1 we have for the variance that

Var θ̂n(x;M) = σ 2

n

M∑
j=1

φ2
j (x)

λ2
j

.

Example 1 (continued). In example 1, an orthogonal design is given by the uniform design
zk = (k − 1/2)/n, k = 1, . . . , n. In this case we get for the variance that

Var θ̂n(x;M) = 2σ 2

n

M∑
j=1

exp(2j 2π2T0) sin2(jπx).

Note that at the boundary x = 0 or x = 1, the estimator (17) satisfies the boundary condition
(16): θ̂ (x) = 0 for x = 0, 1. Therefore, in the following we restrict ourselves to x ∈ (0, 1).

To bound the order of the variance from below, we have to control the trigonometric function
sin2(x). To this end we prove that there exists κ = κ(x) such that, if sin2(jπx) < κ(x)

for some index j , then sin2((j + 1)πx) � κ(x). In fact, choose l = l(x) ∈ N with
0 < 1/l < x < 1 − 1/l < 1 and set κ(x) := sin2(1/(2l)) > 0. Suppose that j is
such that (jx) ∈ B1/(2l), where

B1/(2l) :=
{
x : (x mod 1) ∈

[
0,

1

2l

)
∪

(
1 − 1

2l
, 1

]}
,

so that sin2(jπx) < κ(x). Then, since 1/l < x < 1 − 1/l, we have that (j + 1)x /∈ B1/(2l),
and sin2((j + 1)πx) � κ(x), which proves our claim. Using this we estimate

Var θ̂n(x;M) = 2σ 2

n

M∑
j=1

exp(2j 2π2T0) sin2(jπx) � σ 2κ(x)

n

M−1∑
j=1

exp(2j 2π2T0),

since exp(2j 2π2T0) is monotonically increasing in j . The order of the variance is now bounded
from below as follows:

M∑
j=1

exp(2j 2π2T0) � M

∫ 1

0
exp(2M2u2π2T0) du ∼ M

4M2π2T0
exp(2M2π2T0),

where in the last step we used lemma 5 in [43]. Therefore, for x ∈ (0, 1) and some c(x) > 0,

Var θ̂n(x;M) � c(x)
exp(2(M − 1)2π2T0)

n(M − 1)
.

On the other hand, the weights wk,n(x) can be bounded as follows:

|wk,n(x)| � C
exp((M + 1)2π2T0)

n(M + 1)
,

by arguing as above. Therefore,

max1�k�n |wk,n(x)|( ∑n
j=1 w2

j,n(x)
)1/2 = O

(
exp(4Mπ2T0)

(nM)1/2

)
,

10
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which tends to zero if we choose M → ∞ such that M � (log n)/(8π2T0). Thus, under these
conditions, theorem 1 applies.

An asymptotic level-α confidence interval for Eθ̂n(x;M) is now given as follows:

Cα(x) = [θ̂n(x;M) − σ̂ Snq1−α/2, θ̂n(x;M) + σ̂ Snq1−α/2], x ∈ (0, 1), (20)

where σ̂ 2 is an estimator of the error variance σ 2 (e.g. of difference type as in [13]),
S2

n = 2/n
∑M

j=1 exp(2j 2π2T0) sin2(jπx), and q1−α/2 the (1 − α/2)-quantile of the standard
normal distribution.

4.3. Estimation of the bias

In order to construct confidence intervals for θ itself, we have to deal with the bias, which for
fixed design consists of an additional discretization bias. In fact, we can decompose it into a
discretization bias and a truncation bias as follows:

Eθ̂n(x;M) − θ(x) =
M∑

j=1

n−1 ∑n
i=1 ψj(zi)(Kθ)(zi) − bj

λj

φj (x) +
∞∑

j=M+1

ajφj (x),

where bj = 〈Kθ,ψj 〉 and aj = 〈θ, φj 〉. For estimating the truncation bias, one needs
smoothness assumptions on θ (or equivalently a source condition on θ ). Typically, one
assumes that the function θ is contained in a smoothness class of type

�α =
⎧⎨
⎩f ∈ L2(µ1) : f (x) =

∑
j�1

cjφj (x), cj � C1j
−(1+α)

⎫⎬
⎭

for some α > 0 (cf [38]). If in addition, the functions φj are uniformly bounded by some
C2 > 0, we can estimate the truncation bias by∣∣∣∣∣∣

∞∑
j=M+1

ajφj (x)

∣∣∣∣∣∣ � C1C2M
−α

α
. (21)

The discretization bias is more difficult to handle in general, and requires assumptions on the
design, in particular that averaging w.r.t. the design points is close to integration w.r.t. µ2. In
our examples one can establish a uniform estimate of the form∣∣∣∣∣n−1

n∑
k=1

ψj(zk)(Kθ)(zk) − bj

∣∣∣∣∣ � An−1 (22)

for some constant A > 0, independent of j . From (21) and (22) it follows that

|Eθ̂n(x;M) − θ(x)| � A

n

M∑
j=1

λ−1
j +

C

α
M−α.

Example 1 (continued). Arguing as in [17], pp 106–107, (22) is satisfied if θ ∈ �α for
α > 1/2. In this case,

|Eθ̂n(x;M) − θ(x)| � C

(
exp((M + 1)2π2T0)

n(M + 1)
+ M−α

)
.

Under the above assumption on M, the first term is negligible as compared to the standard
deviation. However, for the second term M−α , a more specific choice of the smoothing
parameter is required to achieve domination of the standard deviation. In fact, if we let
M − 1 = (

√
2T0π)−1(log n)1/2, then we get for the bias a rate of (log n)−α/2, whereas for the

variance we get a rate of (log n)−1/4, which is slower since we assume that α > 1/2. For such
an M, the confidence interval (20) is also a valid asymptotic confidence interval for θ .

11
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4.4. Deconvolution

Suppose that θ, ϕ ∈ L2[0, 1] are periodic functions, and consider the convolution model

Yi = (Kϕθ)(zk) + εi, (Kϕθ)(z) = ϕ ∗ θ(z).

On the space L2
C

[0, 1] of complex-valued square-integrable functions, the operator K is a
normal operator for real-valued ϕ ∈ L2[0, 1] with eigenfunctions φj (x) = exp(2π ijx), j ∈ Z,
and eigenvalues

λj =
∫ 1

0
ϕ(t) e−2π ij t dt, j ∈ Z.

Here, the basis functions are evidently complex-valued, and the estimator needs some minor
modifications as follows:

θ̂n(x;M) =
M∑

j=−M

b̂j,n

λj

φj (x), where b̂j,n = 1

n

n∑
k=1

Ykφj (zk),

and ¯ denotes complex conjugation. Since b̂j,n = b̂−j,n and λj = λ−j , the estimator θ̂n is
real-valued. Its properties are developed along the lines for real-valued basis functions. For
example, the orthogonality property (19) now reads

1

n

n∑
k=1

φi(zk)φj (zk) = δi,j , i, j = 1, . . . , n,

and is satisfied for the uniform design. In this case the variance of θ̂ (x;M) is given by

Var θ̂n(x;M) = σ 2

n

M∑
j=−M

|φj (x)|2
|λj |2 = σ 2

n

⎛
⎝ 1

|λ0|2 + 2
M∑

j=1

1

|λj |2

⎞
⎠ ,

since |φj (x)|2 = 1. Its order depends on the decay of the coefficients λj . Both for polynomial
decay and for exponential decay one can prove asymptotic normality as in (18), and use this
to construct confidence intervals for Eθ̂n(x;M). After estimating the bias Eθ̂n(x;M)− θ(x),
these yield confidence intervals for the regression function θ itself. The bias is dealt with
similarly to as in example 1, and we hence omit the explicit derivation.

5. Case study—analyzing the deep structure of the Centaurus galaxy cluster

5.1. Observational data

In this section we show how to apply some of our methods in a case study. The problem
we consider is estimation of the density of heliocentric escape velocities of galaxies in the
Centaurus galaxy cluster. To this end we (re-)analyze a dataset of heliocentric velocities in
or close to the Centaurus cluster [15], which is an ensemble of many individual galaxies.
In particular, we aim to provide statistically significant evidence for the multimodality of
the escape velocity distribution in the cluster. Based on the original dataset (we shall use a
slightly extended version provided by R J Lucey) bimodality of the distribution of heliocentric
velocities in the Centaurus galaxy cluster was discussed. From the velocity distribution one
can estimate the deep (distance) structure of galaxies from a distribution of escape velocities.
Such results are of fundamental importance for verifying cosmic evolution models by testing
their predictions on the structure of the universe on different scales.

At our disposal are 274 measurements of heliocentric velocities in the Centaurus cluster
([15], where our data are a slightly revised version of table 11 provided by J R Lucey,

12
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personal communication). The distance of the galaxies included in the data from the cluster
center at 12h 46m 56deg0.3,−40deg56′49′′ (1950.0) is � 6.9deg. In the following sections
we show evidence for a bimodality of the distribution in the ‘region of interest’ given by
≈ 2000 km s−1 � d � 5500 km s−1. This selection of the ‘region of interest’ is suggested
by the known escape velocity (and hence distance) of the galaxies in the Centaurus cluster.
We will comment further on the selection of the ‘region of interest’ from the methodological
point of view below. In section 5.2 we discuss statistical modeling of the data, which includes
choosing the distribution of the noise. This is a difficult and important step in any data
analysis, as statistical significance in general depends somewhat on the distribution of the
noise, in particular on its approximate variance. Then, in section 5.3, we estimate the density
and provide associated bootstrap confidence bands to assess the error level of the estimate.
Finally, in section 5.4, we use the Silverman test for deconvolution to assess the modality
structure of the density of escape velocities.

5.2. Statistical modeling of the data

The first important step in the application of statistical methodology in general is the
formulation of a statistical model for the data. This consists of a model equation which
links the quantity of interest, here f , to the observations, and in the definition of a model for
the distribution of the random noise. Here, we choose the density deconvolution model, i.e. we
assume that the observations Yi are given by Yi = Xi + εi (cf section 3), where Xi are the true
heliocentric escape velocities of the observed galaxies, which are random realizations from
the density of interest f , and εi are i.i.d. noise terms with density ψ . In practical applications,
it is in general a difficult task to determine the noise density ψ with high precision, since the
noise is a complex combination of many sources of error, which includes calibration errors in
the evaluation of the observed data and random measurement errors. If the density of the noise
is unimodal, popular models for the density of the noise are Gaussian and double-exponential
(Laplace) densities. Many theoretical results, such as our asymptotic confidence bands for
deconvolution data, do not hold for supersmooth noise densities, as e.g. the Gaussian case.
However, in [39] it is shown that misspecifying a supersmooth noise density as ordinary
smooth is much less critical from the point of view of the risk of the estimator than vice versa.
Hence, in practical applications where the density of the noise can only be approximately
estimated but is expected to have a simple unimodal structure we suggest using a Laplace
density with an estimated variance for the deconvolution methodology rather than a Gaussian
density. Here we use a Laplace distribution with standard deviation 100 km s −1 [36].

5.3. Estimating the density of heliocentric velocities and its associated confidence bands

The second step of our analysis consists in assessing the shape of the unknown density f . To
this end, we compute an estimate and its associated confidence bands according to equations (2)
and (13), respectively. Here, the bandwidth for the estimator f̂ n(x;h) is determined by a
simple data-driven bandwidth selector which aims at minimizing the L∞-distance between
the estimates f̂ and f . This bandwidth estimator was shown to perform well in simulation
studies w.r.t. the coverage probabilities and area of the resulting confidence bands [5]. The
‘region of interest’ for which the confidence bands hold is (2000, 5500) km s−1. For some
details on the necessity of the selection of such a region we refer to section 5.4. In practical
applications with sample sizes of order several hundred, Bissantz et al [5] have shown that
bootstrap confidence bands are significantly more reliable than their asymptotic counterparts.
Hence, we determine bootstrap confidence bands, where ≈ 100 bootstrap simulations turned
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Figure 1. Estimator (thick line) and bootstrap confidence bands with a nominal coverage
probability of 90% for the estimation of the density of heliocentric radial velocities czH = c�λ/λ

(km s −1) in the Centaurus cluster of galaxies from 274 observations.

out to be sufficient in simulation studies. Figure 1 shows the resulting estimator and confidence
bands with a nominal coverage of 90%. From the additional information on the (uniform)
precision of the estimator it is now possible to derive further properties of the galaxy cluster,
such as its total mass and other properties of the dynamical structure. However, whereas this
information is of large importance on its own (and in a number of cases the major interest in the
study of a galaxy cluster), from the figure we can only conclude that there is some indication
for bimodality, but unimodality cannot be excluded due to the large width of the confidence
bands. A more sophisticated analysis of the modality structure of the data is thus required and
will be provided by the Silverman test for deconvolution in the following section.

5.4. Statistical evidence for multimodality in the escape velocity distribution: applying
Silverman’s test for deconvolution

The graphical assessment of the density of escape velocities discussed in the preceding section
provided some indications for multimodality, but did not allow us to exclude a unimodal
density. Therefore, we use Silverman’s test for deconvolution (cf section 3.4) in this final part
of our case study to provide statistical significance of multimodality of the density. Indeed,
Silverman’s test allows us to test and, given the p-value is small enough, to reject the hypothesis
of unimodality of f .

The ‘region of interest’ for Silverman’s test was defined to be vh ∈ (2000, 5500) km s−1,
similarly as for the confidence bands. Such a restriction is not only suggested by (crude)
previous knowledge of the escape velocities in the Centaurus cluster, but also necessary for
proper performance of the statistical methods for deconvolution. Neither the confidence bands
nor the Silverman test perform reasonably well if zero (or very close to zero) regions of
the density are included in the region of interest. Similar problems exist for direct density
estimation (cf [25]).

We now turn to the results of applying the Silverman test for deconvolution to the escape
velocities. Figure 2 shows the critical densities for one, two and three modes. The first
and second modes appear at approximately the same locations where the confidence bands
indicated the existence of modes. This provides additional evidence for the existence of these
modes (but still does not show their existence in a statistically significant way). In more detail,
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Figure 2. Estimates of the density of heliocentric escape velocities czH = c�λ/λ (km s −1) in
the Centaurus cluster of galaxies corresponding to the critical bandwidth for one mode (solid line),
two modes (dashed line) and three modes (dotted lines). See the text for details.

the first and second modes, which are the major ones, are located at ≈ 3.1 × 103 km s−1 and
4.5 × 103 km s−1. This compares well with the results of Lucey et al [36], who obtained
3041 km s−1 and 4570 km s−1, respectively, from a maximum likelihood fit of a mixture of
two normal densities to the data.

In order to evaluate statistical significance for the existence of more than one mode we
performed the Silverman test for deconvolution to test the unimodality null hypothesis against
a multimodal alternative, where we used the calibrated version of the test with a level of 5%
(cf [2]). The calibration constant λ5% was simulated based on a normal test density. It turns
out that the null hypothesis is rejected, and we conclude that the distribution of velocities in the
Centaurus cluster is (at least) bimodal. We remark that Lucey et al [36] already used several
tests for normality (the Lilliefors test, Shapiro–Wilk test, and tests for skewness and kurtosis)
to show non-normality of the distribution, which however, is not a suitable method to reject
unimodality of the data.

In recent years large, in part automated observation systems have provided additional,
more precise observations of escape velocities toward the Centaurus clusters. These datasets
support the conclusions derived from the data used in our application (cf e.g. [42]). In our case
study, we nevertheless used the dataset of Dickens et al [15] since it resembles well the data
quality in many practical applications, for example our recent analysis of the young massive
cluster luminosity function in the Antennae galaxies [1].

6. Discussion

Inverse problems are omnipresent in scientific data analysis. In this paper we discussed
inverse problems from a statistical point of view, which apart from estimation purposes allows
us to draw statistical inference, e.g. the construction of confidence intervals or hypothesis tests,
about the unknown objects. Here we took the point of view of nonparametric curve estimation,
but other inference techniques such as Bayesian methods can be used in this context as well
[30]. While for nonparametric estimation, also in the context of inverse problems, the concept
of adaptivity has been thoroughly investigated, for statistical inference such as confidence
bands it has been shown recently that adaptivity sometimes cannot be achieved [21].
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Our main examples were deconvolution problems. However, many other operators K
exist, which are of similar practical importance in applications from physics, image analysis,
etc. These are technically more difficult to handle and an extension of our results is the aim
of some of our current research. Moreover, sometimes, apart from the measurements error
in g there is an observational error in the operator K as well. Estimation in such situations
has been studied very recently [27], but further statistical inference methods still have to be
developed.
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[5] Bissantz N, Dümbgen L, Holzmann H and Munk A 2007 Nonparametric confidence bands in deconvolution

density estimation J. R. Stat. Soc. Ser. B. 69 483–506
[6] Bissantz N, Hohage T, Munk A and Ruymgaart F 2007 Convergence rates of general regularization methods

for statistical inverse problems SIAM J. Numer. Anal. 45 2610–36
[7] Butucea C, Guta M and Artiles L 2007 Minimax and adaptive estimation of the Wigner function in quantum

homodyne tomography with noisy data Ann. Stat. at press
[8] Butucea C and Tsybakov A B 2007 Sharp optimality for density deconvolution with dominating bias Theory of

Probability and its Applications at press
[9] Cavalier L 2000 Efficient estimation of a density in a problem of tomography Ann. Stat. 28 630–47

[10] Chaudhuri P and Marron J S 2000 Scale space view of curve estimation Ann. Stat. 28 408–28
[11] Delaigle A, Hall P and Meister A 2007 On deconvolution with repeated measurements Ann. Stat. at press
[12] Delaigle A and Gijbels I 2004 Practical bandwidth selection in deconvolution kernel density estimation Comput.

Stat. Data Anal. 45 249–67
[13] Dette H, Munk A and Wagner T 1998 Estimating the variance in nonparametric regression—what is a reasonable

choice? J. R. Stat. Soc. Ser. B 60 751–64
[14] Devroye L and Lugosi G 2001 Combinatorial Methods in Density Estimation (Berlin: Springer)
[15] Dickens R J, Currie M J and Lucey R J 1986 The Centaurus cluster of galaxies: I. The data Mon. Not. R. Astron.

Soc. 220 679–711
[16] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)
[17] Eubank R L 1999 Nonparametric Regression and Spline Smoothing 2nd edn (New York: Dekker)
[18] Fan J 1991 On the optimal rates of convergence for nonparametric deconvolution problems Ann. Stat.

19 1257–72
[19] Fan J 1991 Asymptotic normality for deconvolution kernel density estimators Sankhya Ser. A 53 97–110
[20] Fan J and Gijbels I 1996 Local Polynomial Modelling and Its Applications (London: Chapman and Hall)
[21] Genovese C R and Wasserman L 2007 Adaptive confidence bands Ann. Stat. at press
[22] Groeneboom P and Jongbloed G 1995 Isotonic estimation and rates of convergence in Wicksell’s problem Ann.

Stat. 23 1518–42
[23] Hall P 1992 Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability

density Ann. Stat.. 20 675–94
[24] Hall P and Horowitz J L 2005 Nonparametric methods for inference in the presence of instrumental variables

Ann. Stat. 33 2904–29
[25] Hall P and York M 2001 On the calibration of Silverman’s test for multimodality Stat. Sin. 11 515–36

16

http://dx.doi.org/10.1111/j.1365-2966.2007.11629.x
http://dx.doi.org/10.1214/aos/1176345637
http://dx.doi.org/10.1214/aos/1176342558
http://dx.doi.org/10.1111/j.1467-9868.2007.599.x
http://dx.doi.org/10.1137/060651884
http://dx.doi.org/10.1214/aos/1016218233
http://dx.doi.org/10.1214/aos/1016218224
http://dx.doi.org/10.1016/S0167-9473(02)00329-8
http://dx.doi.org/10.1111/1467-9868.00152
http://dx.doi.org/10.1214/aos/1176348248
http://dx.doi.org/10.1214/aos/1176324310
http://dx.doi.org/10.1214/aos/1176348651
http://dx.doi.org/10.1214/009053605000000714


Inverse Problems 24 (2008) 034009 N Bissantz and H Holzmann
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