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Integrated Square Error Asymptotics
for Supersmooth Deconvolution
HAJO HOLZMANN and LEIF BOYSEN

Institut für Mathematische Stochastik, University of Göttingen

ABSTRACT. We derive the asymptotic distribution of the integrated square error of a deconvolu-
tion kernel density estimator in supersmooth deconvolution problems. Surprisingly, in contrast to
direct density estimation as well as ordinary smooth deconvolution density estimation, the asymp-
totic distribution is no longer a normal distribution but is given by a normalized chi-squared distri-
bution with 2 d.f. A simulation study shows that the speed of convergence to the asymptotic law is
reasonably fast.
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1. Introduction

Let X1, . . ., Xn be independent and identically distributed (i.i.d.) real-valued observations with
density g. The kernel estimator ĝn of g with kernel K and bandwidth h > 0, introduced by
Rosenblatt (1956) and Parzen (1962), is given by

ĝn(x)= 1
n

n∑
k =1

Kh(x −Xk),

where Kh(x)=K (x/h)/h and K is a function integrating to one. Properties of ĝn are very well
developed. In particular, for n →∞ and h → 0, under some additional assumptions one has
asymptotic normality both for the pointwise error

√
nh
(
ĝn(x)−Kh ∗g(x)

) L→N
(

0, g(x)
∫

R

K 2(t) dt
)

, (1)

as well as for the integrated square error (cf. Bickel & Rosenblatt, 1973; Hall, 1984a)

n
√

h
∫

R

(
ĝn(x)−Kh ∗g(x)

)2
dx −

∫
K 2(t) dt/h1/2 L→N

(
0, �2

)
, (2)

where

�2 =
∫

R

(K ∗K )2(x) dx
∫

R

g2(x) dx.

In (1) and (2) we use Kh ∗g(x)=E ĝn(x) instead of g(x) so as to avoid consideration of terms
involving the bias Kh ∗g −g. However (1) and (2) continue to hold true with Kh ∗g replaced
by g, if for example, the bias is corrected by undersmoothing (cf. Bickel & Rosenblatt, 1973).

Often, the observations Xi are only noisy versions of the random variables Zi of interest,
i.e. Xi =Zi + εi , where εi and Zi are independent, the errors εi have known density � and
the Zi have density f . Note that g = f ∗�. Estimating f from the observations Xi is therefore
called the deconvolution problem.

To fix the notation, the Fourier transform of f is given by �f (t)=∫
R

f (x) eitx dx. Under
the assumption ��(t) /=0 for all t ∈R, a standard estimator of f is the kernel deconvolution
density estimator
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f̂ n(x)= 1
2�

∫
R

e−itx�K (ht)
�̂n(t)
��(t)

dt.

Here K is a kernel function such that �K has compact support, h > 0 is a smoothing para-
meter called bandwidth and �̂n(t)=1/n

∑
k eitXk is the empirical characteristic function of

X1, . . ., Xn. For f̂n(x) we have that

Ef̂n =Kh ∗ f ,

i.e. the bias is equal to that of an ordinary kernel estimator and hence does not depend on the
error structure �. Kernel deconvolution type estimators have been studied by many authors,
we mention Carroll & Hall (1988), Stefanski & Carroll (1990), Zhang (1990), Fan (1991a, b)
and van Es & Uh (2004, 2005).

It turns out that the deconvolution problem depends sensitively on the Fourier transform
�� of the error density �. If

��(t)∼C�t−�, t →∞,

for some �> 0 and C� ∈ C, the error density is called ordinary smooth. In this case the
optimal rate of convergence for estimating f is of polynomial order, and is achieved by f̂ n.
Further, for f̂ n one has asymptotic normality both of the pointwise error (cf. Fan, 1991b) as
well as of the integrated square error (Piterbarg & Penskaya, 1993; Holzmann et al., 2006),
in analogy to the statements (1) and (2).

In this paper, we suppose that the error distribution is supersmooth. More precisely, we
assume that

��(t)∼C�|t|�0 e−|t|�/�, |t|→∞, (3)

for �> 1, �> 0 and �0, C� ∈R, and that ��(t) /=0 for all t. Note that (3) includes the particu-
larly important case of a normal error distribution, which is very popular among practitioners
and is often used in parametric deconvolution and errors in variables models (see, e.g. Bic-
kel & Ritov, 1987). However, it excludes the Cauchy and all other distributions for which
the tail of the characteristic function decreases more slowly than |t|�0 e−|t|/�, �0 ∈R, �> 0, in
particular the t-distribution (cf. Kotz & Nadarajah, 2004).

The optimal rate of convergence for estimating f in supersmooth deconvolution problems,
which is once more achieved by f̂ n, is only logarithmic (cf. Fan, 1991a). Recently, van Es &
Uh (2004, 2005) obtained the asymptotic distribution of the pointwise error with an explicit
rate for the variance. They showed that as n→∞ and h→0, under assumption 2 of section
2 (for �=0, A=1) and EX 2

1 <∞,

√
n

h�+�0−1 e1/(�h�)
(f̂ n(x)−Kh ∗ f (x)) L→N

(
0,

�2

2�2�2C2
�

)
. (4)

Although the asymptotic distribution remains normal, when comparing (4) with (1), van
Es & Uh (2005) noticed two differences. First, as was to be expected, the normalization now
reflects the super smoothness of the deconvolution problem. Secondly, in contrast to (1) and
also to the ordinary smooth deconvolution problem, the asymptotic variance in (4) does no
longer depend on f and x, but only depends on the error density � through �, �0, � and C�.

In this paper, we study the asymptotic distribution of the integrated square error

Tn =
∫

R

(f̂n −Kh ∗ f )2(x) dx
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in supersmooth deconvolution problems (3). This has applications to constructing goodness-
of-fit tests for the density f (cf. Bickel & Rosenblatt, 1973) or to assessing the variability of
cross-validation when used as an automatic selector for the bandwidth (cf. Hall, 1984b).

As was already indicated by the asymptotics of the pointwise error, the situation will be
substantially different from the none-noisy case as well as from the ordinary smooth case. In
fact, it turns out that the limit distribution of Tn is no longer normal, but equal to a nor-
malized chi-squared distribution with 2 d.f. This result is derived in section 2. It disproves
a claim by Butucea (2004) who asserted asymptotic normality for Tn for general �> 0. Our
proof relies on the limit theory for degenerate U -statistics with fixed kernel as well as on an
approximation technique for triangular arrays of degenerate U -statistics, which might be of
some independent interest.

In section 3, we conduct a small simulation experiment, in which we examine the speed of
convergence to the asymptotic law. It turns out that the asymptotic approximation is quite
reasonable even for small sample sizes.

Finally, let us remark that the deconvolution problem can be studied within the general
framework of statistical inverse problems (cf. Mair & Ruymgaart, 1996). Therefore, it is tempt-
ing to conjecture that the integrated square error of regularized inverse estimators in other
severely ill-posed inverse problems, e.g. the heat equation, may also not be asymptotically
normally distributed.

2. Integrated square error asymptotics

To derive the asymptotic distribution of Tn, we need the following assumptions.

Assumption 1
The density f is square-integrable. Further, EX 2

1 <∞.

Assumption 2
The Fourier transform �K of the kernel K is real-valued, symmetric and supported on [−1, 1].
Moreover �K (0)=1 and there exist A > 0, �≥0 such that

�K (1− t)=At� +o(t�), t ↘0. (5)

Examples for kernel functions satisfying assumption 2 are the sinc kernel K (x)= sin(x)/(�x),
for which A=1 and �=0, and the kernel with Fourier transform �K (t)= (1− t2)3 used in Fan
(1992), for which �=3 and A=8.

For simplicity, let us first consider the case of normal deconvolution, where the character-
istic function of the error variable is given by

��(t)= e−t2 /2.

Theorem 1
Under the assumptions 1 and 2, for n →∞ and h → 0 we have for the integrated square error
in the normal deconvolution problem that

n21+2��
h1+4� exp(1/h2)A2�(2�+1)

Tn
L→ (Y 2

1 +Y 2
2 )

2
, (6)

where Y1 and Y2 are independent standard normal random variables and L→ denotes convergence
in distribution.
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There are several striking differences when comparing (6) with (2), the case of direct den-
sity estimation. The rates once more reflect the supersmoothness of the normal deconvolution
problem. Further, the rate of the standard deviation of Tn is equal to that of its expectation,
and in fact from the proof it follows that their quotient tends to 1. Therefore, when stan-
dardizing Tn, we do not get a negative drift term as in (2) but asymptotically just subtract
one. This directly implies that the asymptotic distribution of the standardized version of the
non-negative random variables Tn, being asymptotically bounded from below by −1, cannot
be normal. This being established, it is quite intuitive that the asymptotic law should be chi-
squared. Note that in (6) we do not centre Tn and therefore get an asymptotic expectation
of 1.

Before giving the proof of theorem 1, it might be helpful to present an outline of its main
steps. In the first step, we compute the asymptotic expectation and variance of Tn and show
that it can be written asymptotically in form of degenerate U -statistics based on a triangu-
lar array of random variables. Here, we extend arguments used in van Es & Uh (2005). In
the second step we show that these degenerate U -statistics are asymptotically equivalent to
U -statistics based on a sequence of i.i.d. observations. Finally, an application of the limit
theory for degenerate U -statistics finishes the proof.

Proof of theorem 1
Using Parseval’s equation we compute

Tn = 1
2�

∫
R

|�K (ht)|2 et2 |�̂n(t)−�g(t)|2 dt

= 1
2�n2

n∑
k =1

∫
R

|�K (ht)|2 et2 | eiXk t −�g(t)|2 dt

+ 1
�n2

∑
1≤j < k≤n

�
(∫

R

|�K (ht)|2 et2 (
eiXk t −�g(t)

)(
eiXj t −�g(t)

)
dt
)

=S1 +S2. (7)

First consider S1. We have

ES1 = 1
2�n

∫
R

|�K (ht)|2 et2
(1−|�g(t)|2) dt

= 1
2�nh

∫ 1

−1
|�K (u)|2 eu2 /h2

du − 1
2�n

∫
R

|�K (ht)|2|�f (t)|2 dt

= 1
�nh

∫ 1

0
|�K (u)|2 eu2 /h2

du +O
(

1
n

)
,

as �f ∈ L2 by assumption 1. Note that from assumption 2, the kernel function satisfies
�2

K (1− t)=A2t2� +o(t2�) as t ↘0. From lemma 5 in van Es & Uh (2005), it follows that∫ 1

0
|�K (u)|2 eu2 /h2

du ∼A2h2+4� exp(1/h2)
�(2�+1)

21+2�
(8)

and ∫ 1

0
(1−u)|�K (u)|2 eu2 /h2

du ∼A2h4+4� exp(1/h2)
�(2+2�)

22+2�
, (9)

where �(s) denotes the Gamma function. From (8), we get that

ES1 ∼ A2h1+4� exp(1/h2)�(2�+1)
21+2��n

. (10)
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The variance of S1 can be bounded by

var S1 ≤ 1
4�2n4

n∑
k =1

E
(∫

R

|�K (ht)|2 et2 |eiXk t −�g(t)|2 dt
)2

≤C
h2+8� e2/h2

n3

for some C > 0, by bounding |eiXk t −�g(t)|2 ≤4 and using (8). Therefore

S1 =ES1 +OP

(
h1+4�e1/h2

n−3/2
)
. (11)

Next consider a term in the second sum S2. Using �(�g)(−t)=�(�g)(t) and �(�g)(−t)=
−�(�g)(t), we compute

�
(∫

R

|�K (ht)|2 et2
(eiXk t −�g(t))(eiXj t −�g(t)) dt

)

=
∫

R

|�K (ht)|2 et2 (
(cos(tXk)−�(�g)(t))(cos(tXj)−�(�g)(t))

+ (sin(tXk)−�(�g)(t))(sin(tXj)−�(�g)(t))
)

dt

= 2
h

∫ 1

0
|�K (u)|2 eu2 /h2

((
cos
(

uXk

h

)
−�(�g)

(
u
h

))(
cos
(

uXj

h

)
−�(�g)

(
u
h

))

+
(

sin
(

uXk

h

)
−�(�g)

(
u
h

))(
sin
(

uXj

h

)
−�(�g)

(
u
h

)))
du.

Let

S2,1 = 2
�n2h

∑
1≤j < k≤n

∫ 1

0
|�K (u)|2 eu2 /h2

×
[(

cos
(

uXk

h

)
−�(�g

)(u
h

))(
cos
(

uXj

h

)
−�(�g

)(u
h

))]
du,

S̃2,1 = 2
�n2h

∫ 1

0
|�K (u)|2 eu2 /h2

du

×
∑

1≤j < k≤n

[(
cos
(

Xk

h

)
−�(�g

)(1
h

))(
cos
(

Xj

h

)
−�(�g

)(1
h

))]
,

(12)

and

S2,2 = 2
�n2h

∑
1≤j < k≤n

∫ 1

0
|�K (u)|2 eu2 /h2

×
[(

sin
(

uXk

h

)
−�(�g

)(u
h

))(
sin
(

uXj

h

)
−�(�g

)(u
h

))]
du,

S̃2,2 = 2
�n2h

∫ 1

0
|�K (u)|2 eu2 /h2

du

×
∑

1≤j < k≤n

[(
sin
(

Xk

h

)
−�(�g

)(1
h

))(
sin
(

Xj

h

)
−�(�g

)(1
h

))]
.

(13)

We will show that

S2, i − S̃2, i =OP(h2+4� e1/h2
n−1), i =1, 2. (14)
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Consider (14) for i =2, the case i =1 is similar. We have

sin
(

uXk

h

)
− sin

(
Xk

h

)
=2 cos

(
(u +1)Xk/(2h)

)
sin
(

(u −1)Xk

(2h)

)
,

therefore for u ∈ [0, 1], using | sin x|≤ |x|,∣∣∣∣sin
(

uXk

h

)
− sin

(
Xk

h

)∣∣∣∣≤ (1−u)|Xk |/h,

and ∣∣∣∣sin
(

uXk

h

)
sin
(

uXj

h

)
− sin

(
Xk

h

)
sin
(

Xj

h

)∣∣∣∣≤ (1−u)
(|Xk |+ |Xj |)

h
. (15)

Using |�f (t)|≤1, we estimate for 0≤u ≤1,∣∣∣∣�(�g)2

(
1
h

)
−�(�g)2

(u
h

)
−�(�g)

(
1
h

)(
sin
(

Xk

h

)
+ sin

(
Xj

h

))

+�(�g)
(u

h

)(
sin
(

uXk

h

)
+ sin

(
uXj

h

))∣∣∣∣
≤3

∣∣∣∣��

(u
h

)∣∣∣∣+3|��

(
1
h

)∣∣∣∣≤6 exp
( −u2

(2h2)

)
. (16)

Now E(S2,2 − S̃2,2)=0 and using (15) and (16),

var(S2,2 − S̃2,2)≤ C
n4h2

∑
1≤j 
=k≤n

E(|Xk |+ |Xj |)2

h2

(∫ 1

0
(1−u)|�K (u)|2, eu2 /h2

du
)2

+ C ′

n2h2

(∫ 1

0
|�K (u)|2 eu2 /(2h2) du

)2

=O
(

h4+8�

n2
e2/h2

)
+O

(
h2+8�

n2
e1/h2

)
=O

(
h4+8�

n2
e2/h2

)

for some C, C ′ > 0, using (8) and (9). This proves (14).
From (11) and (14),

Tn =ES1 +OP

(
h1+4� e1/h2

n−3/2
)

+ S̃2,1 + S̃2,2 +OP

(
h2+4� e1/h2

n−1
)
, (17)

where ES1 satisfies (10).
In the second part we study the asymptotics of S̃2, i , i =1, 2. First note that the factor∫ 1

0 |�K (u)|2 eu2 /h2
du satisfies (8). Further, from van Es & Uh (2005), proof of lemma 6, we

have that Xk/h mod 2�
L→Uk , h→0 for each fixed k ≥1, where Uk is uniform on (0, 2�). Let

us show that in S̃2, i , i =1, 2, we can asymptotically replace Xk/h by Uk .

Lemma 1
Let (Uk,n)k≥1 be i.i.d. random variables (r.v.s) for each n≥1, and let (Uk)k≥1 be i.i.d. r.v.s such

that U1,n
L→U1 as n→∞. Then on a joint probability space � there exist r.v.s (Vk,n), (Vk), such

that (Vk,n)k≥1 are i.i.d. for each n ≥ 1, (Vk)k≥1 are i.i.d., Uk,n
L=Vk,n, Uk

L=Vk, and Vk,n → Vk

a.s. as n→∞ for each k.

Proof. From Skorohod’s theorem (cf. Billingsley, 1995, theorem 25.6, p. 333), there exists

a probability space �0 and random variables V1,n, V1, such that V1,n
L=U1,n, V1

L=U1 , and
V1,n →V1 a.s. Now take the product �=�N

0 and construct Vk,n and Vk as V1,n, V1, but only
depending on the kth coordinate in �, to obtain the result.
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Lemma 2
Let (Uk,n), (Vk,n), (Uk), (Vk), be as in lemma 1. Suppose that fn, l , fl , l =1, . . ., p, n≥1 are con-
tinuous functions for some p ≥ 1, such that |fn, l |, |fl | ≤ C for some C > 0 and that fn, l → fl

uniformly as n → ∞. Further, assume that for Wk,n, l = fn, l (Uk,n), Wk, l = fl (Uk) we have that
EWk,n, l =EWk, l =0. Set W ′

k,n, l = fn, l (Vk,n), W ′
k, l = fl (Vk). Then

∑
1≤j < k≤n

p∑
l =1

Wk,n, lWj,n, l
L=
∑

1≤j < k≤n

p∑
l =1

W ′
k,n, lW

′
j,n, l , n≥1,

and

E

(
2
n

∑
1≤j < k≤n

p∑
l =1

(W ′
k,n, lW

′
j,n, l −W ′

k, lW
′
j, l )

)2

→0, n→∞.

In consequence,

2
n

∑
1≤j < k≤n

p∑
l =1

Wk,n, lWj,n, l and
2
n

∑
1≤j < k≤n

p∑
l =1

Wk, lWj, l

will have the same limiting distribution.

Proof. The first statement follows directly from the properties of the (Vk,n), as given in
lemma 1. For the second statement, for simplicity, we will only consider the case p=1 and
drop the l-index from the notation. However, the proof of the general case is completely anal-
ogous. Since the functions fn, f are continuous and as fn → f uniformly, we have for W ′

k,n and
W ′

k that W ′
k,n →W ′

k a.s., n→∞. As fn and f are uniformly bounded, we also get that

E(W ′
k,n −W ′

k)2 →0, n→∞,

for each k ≥ 1. Furthermore, from the properties of the Vk,n and Vk and from the assump-
tions, we have that EW ′

k,n =EW ′
k =0 and that

E(W ′
k,n −W ′

k)2 =E(W ′
1,n −W ′

1)2.

Now

W ′
k,nW ′

j,n −W ′
kW ′

j = (W ′
j,n −W ′

j )W ′
k,n + (W ′

k,n −W ′
k)W ′

j

and ( ∑
1≤j < k≤n

(W ′
k,nW ′

j,n −W ′
kW ′

j )

)2

≤2

( ∑
1≤j < k≤n

(W ′
j,n −W ′

j )W ′
k,n

)2

+2

( ∑
1≤j < k≤n

(W ′
k,n −W ′

k)W ′
j

)2

. (18)

Further

E

(
2
n

∑
1≤j < k≤n

(W ′
j,n −W ′

j )W ′
k,n

)2

= 4
n2

∑
1≤j < k≤n

E(W ′
j,n −W ′

j )2EW ′2
k,n

≤ 4
n2

n(n−1)
2

E(W ′
1,n −W ′

1)2EW ′2
1,n →0, n→∞.

The second term in (18) is dealt with similarly. This proves the lemma.
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Proof of theorem 1 continued
We apply lemma 2 with Uk,n =Xk/h mod 2�, fn,1(x)= cos x − �(�g(1/h)), fn,1(x)= sin x −
�(�g(1/h)), f1(x)= cos x, f2(x)= sin x and uniformly distributed Uks. Thus we end up by anal-
ysing the asymptotic distribution of

2
n

∑
1≤j < k≤n

(cos Uj cos Uk + sin Uj sin Uk).

As E cos Uj =E sin Uj =0, this is a degenerate U -statistic with kernel a(x, y)= cos x cos y +
sin x sin y. From the limit theory for degenerate U -statistics (cf. Denker, 1985, proposition
2.2.1, p. 74),

2
n

∑
1≤j < k≤n

(cos Uj cos Uk + sin Uj sin Uk)
L→
∑
k≥1

�k(Y 2
k −1),

where the Yk are i.i.d. standard normal, and the �k are the eigenvalues of the integral oper-
ator

(Af )(x)=
∫ 1

0

(
cos(2�x) cos(2�y)+ sin(2�x) sin(2�y)

)
f (y) dy, x ∈ [0, 1].

These are 1/2, corresponding to the eigenfunctions cos(2�y) and sin(2�y), and 0, correspond-
ing to the eigenfunctions 1, cos(2�ny) and sin(2�ny), n≥2. Combining this result with (17),
(8) and (10) yields the theorem.

Remark 1. Hall’s (1984a) result (2) is based on a central limit theorem for degenerate
U -statistics with variable kernels. Also for the integrated square error (ISE) in normal de-
convolution density estimation, one starts with a variable-kernel U -statistic. However, the
proof of theorem 1 shows that in this case the statistic asymptotically behaves like a U -sta-
tistic with fixed kernel. Therefore, in contrast to Hall (1984a), we get a non-normal limit law.

In fact, often one studies the statistic

ISE(f̂n) =
∫

R

(
f̂n(x)− f (x)

)2
dx

=Tn +2
∫

R

(
f̂n(x)−Kh ∗ f (x)

)(
Kh ∗ f (x)− f (x)

)
dx

+
∫

R

(
Kh ∗ f (x)− f (x)

)2
dx. (19)

If one corrects the bias terms Kh ∗ f − f by undersmoothing (cf. Bickel & Rosenblatt, 1973),
one can ensure that Tn dominates the asymptotics in (19). Otherwise, the second term in the
expansion (19) might not be negligible. For the case of direct density estimation, for certain
choices of kernels Hall (1984a) gives a complete treatment for which choices of bandwidth
the distinct terms in (19) dominate the asymptotics of ISE(ĝn).

However, in deconvolution density estimation one typically uses different kernels, namely
kernels with a compactly supported Fourier transform. For example, for the sinc kernel
K (x)= sin(x)/(�x), for which �K (t)=1[−1,1](t), one can easily show that the second term in
the expansion (19) vanishes identically. Further, Tn and not ISE(f̂ n) is of particular interest
when constructing tests for the simple hypothesis H : f = f0 for the density f , and theorem 1
can be used to this end. For a detailed discussion of such indirect testing procedures in the
ordinary smooth case cf. Holzmann et al. (2006).

Theorem 1 can be generalized to cover the supersmooth error structures (3).
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Theorem 2
Under the assumptions 1 and 2, for n →∞ and h → 0 we have for the integrated square error
in the supersmooth deconvolution problem (3) that

(2�)1+2��C2
� n

A2�1+2�h�−1+2��+2�0 exp(2/�h�)�(2�+1)
Tn

L→ (Y 2
1 +Y 2

2 )
2

, (20)

where Y1 and Y2 are independent standard normal random variables.

Proof of theorem 2. The proof is similar to that of theorem 1, with some additional technical
details. Therefore we only present the main steps, in order to clarify where the condition �> 1
on the tail behaviour (3) of the characteristic function of the error density � is needed. A
complete proof can be found in Holzmann & Boysen (2006).

Splitting Tn as in (7) (with |��(t)|−2 in place of exp(t2)), one shows that

ES1 ∼C�,A,�
h2��+�+2�0−1

n
exp
(

2
h��

)
, C�,A,� = �(2�+1)A2

�C2
�

( �
2�

)2�+1
, (21)

and that

S1 =ES1 +OP

(
h2��+�+2�0−1 exp

(
2

h��

)
n−3/2

)
. (22)

Define S2, i , i =1, 2, analogously as in (12) and (13), but replace the integrals in S̃2, i , i =1, 2,
by
∫ 1

ε
for some fixed 0 < ε< 1. Then one shows that

S2, i − S̃2, i =OP

(
h2��+2(�−1)+2�0 exp

(
2

h��

)
n−1

)
, i =1, 2, (23)

and that the norming factor of the S̃2, i , i =1, 2, satisfies∫ 1

ε

|�K (u)|2|��(u/h)|−2 du ∼C�,A,�h2��+�+2�0 exp
(

2
h��

)
. (24)

From (21), (22) and (23),

n
C�,A,�h2��+�+2�0−1

exp
(

− 2
h��

)
Tn

=1+o(1)+OP
(
n−1/2

)+OP
(
h�−1

)
+ n

C�,A,�h2��+�+2�0−1
exp
(

− 2
h��

)(
S̃2,1 + S̃2,2

)
. (25)

Therefore, in order that the remainder terms in (25) vanish, it is essential that �> 1. Using
(24) the terms in (25) involving S̃2, i , i =1, 2, are now dealt with exactly as in the proof of
theorem 1.

Remark 2. Van Es & Uh (2004) considered the asymptotic distribution of f̂n(x) in a decon-
volution problem where the error density follows a symmetric stable distribution, i.e. where

��(t)= e−|t|�/�, �> 0, 0 <�≤2.

They showed asymptotic normality for all 1/3 <�≤2, but observed three different cases. For
1/3 <�< 1, the asymptotic variance still depends on the density of the observations g(x) at
x, as in the direct density estimation context and in the ordinary smooth case. For �=1,
the asymptotic variance depends in a global way on g, and for 1 <�≤2, it only depends on
g through the error density �, but not on f or x. Thus, the asymptotics change drastically
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within the supersmooth error class, and not between ordinary smooth and supersmooth error
distributions. We conjecture that a similar phenomenon occurs for the integrated square error
as well, and that possibly Tn is asymptotically normal for �< 1 (but not for �=1).

3. Simulations

To examine the speed of convergence and quality of approximation by the asymptotic law
given in theorem 1 we conduct a small simulation experiment. We compute the statistic by its
expression (7) in the Fourier domain, thus avoiding the inverse Fourier transform required to
calculate f̂n. We perform 105 simulations for different values of n and h using the sinc kernel,
and for f we choose the Laplace density and for � the normal density. Other choices of the
kernel and of f lead to similar results.

For visualization we use P − P plots, which show for each � in [0, 1] the probability that
Tn ≤Q�, where Q� is the �-quantile of the asymptotic distribution. Figure 1 displays the result
for fixed sample size n=50 and different values of the bandwidth parameter h. In Fig. 2, for
different sample sizes n we selected the bandwidth h=h(n) such that the variance of Tn (as
well as that of f̂n(x)) asymptotically disappears. Figure 3 visualizes the results by plotting a
kernel estimate of the density of Tn as well as the density of the asymptotic distribution.

The plots show that the speed of convergence strongly depends on the choice of band-
width h. In particular, taking a sample size of n=50 and a small h already leads to very
good results. This reflects the decomposition of the statistic Tn given in (17). In fact, we see
that the asymptotic behaviour of the an,hTn is determined by an,h(S̃2,1 + S̃2,2), where an,h is the
normalization factor from theorem 1, and the remainder terms are of the order OP(h) and
OP(n−1/2). If one selects h in a way appropriate to estimate f , the approximation is less good

h = 0.7
0

0
1

0
1

0
1

1 0 1 0 1
h = 0.4 h = 0.1

Fig. 1. P −P plots comparing the empirical distribution of Tn to the asymptotic distribution for differ-
ent bandwidths h, using the sample size n=50, the sinc kernel, f (x)=1/2 exp(−|x|) and standard normal
error.

n = 102 n = 103 n = 104
0

0
1

0
1

0
1

1 0 1 0 1

Fig. 2. P −P plots comparing the empirical distribution of Tn to the asymptotic distribution for differ-
ent samples sizes n, using h= (log(n))−1/2, the sinc kernel, f (x)=1/2 exp(−|x|) and standard normal
error.
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n ∈ {102, 104},     h = [log(n)]−1/2 n = 50,      h ∈ {0.1, 0.7}

1 2 3 4 5 0 1 2 3 4 5

Fig. 3. Kernel density estimate for Tn. The grey line shows the asymptotic density. The solid line cor-
responds to n=104 and h=0.1, respectively, and the dashed line to n=102 and h=0.7 respectively.
Close to zero a boundary kernel is used.

but still remains reasonable. This is especially true for �∈ [0.9, 1], the region of main interest
for testing.

We also conduct simulations for two cases to which theorem 2 does not apply directly,
in order to see whether it could be further extended. First, we use as error distribution the
symmetric stable distribution with characteristic function ��(t)= exp(−|t|3/2), for which the
moment restriction EX 2

1 <∞ of assumption 1 is not satisfied. The asymptotic distribution
(20) seems to apply in this case as well. Further, we consider a t-distributed error with 5 d.f.,
for which

��(t)=
(

1+ |
√

5t|+ 5
3

t2

)
exp
(
−

√
5|t|
)

.

For this error we do not have �> 1 in (3). Simulations indicate that neither the asymptotic
chi-squared-distribution nor an asymptotic normal law applies for Tn in this case.
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