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Testing Parametric Assumptions on Band- or
Time-Limited Signals Under Noise

Nicolai Bissantz, Hajo Holzmann, and Axel Munk

Abstract—This paper considers the problem of testing para-
metric assumptions on signals from which only noisy obser-
vations = ( ) + are available, and where the signal
is assumed to be either band-limited or time-limited. To this
end, the signal is reconstructed by an estimator based on the
Whittaker–Shannon (WS) sampling theorem with oversampling.
As test statistic, the minimal 2 distance between the estimated
signal and the parametric model is used. To construct appropriate
tests, the asymptotic distribution of the test statistic is derived
both under the hypothesis of the validity of the parametric model
and under fixed local alternatives. As a byproduct, the asymptotic
distribution of the integrated square error of the estimator is
computed, which is of interest by itself, e.g., for the analysis of a
cross-validated bandwidth selector.

Index Terms—Asymptotic normality, band-limited signals,
goodness of fit, non-band-limited signals, oversampling, rate of
convergence, signal recovery, Whittaker–Shannon (WS) sampling
theorem.

I. INTRODUCTION

THE problem of reconstructing a nonparametric signal
from data which is corrupted by random noise, has

been investigated intensively in recent years both in statis-
tics [10]–[12]and in engineering [21], [31]. In a number of
applications in communication theory (e.g., [35]), the signal

is a function of time and assumed to be in the class of
band-limited signals, i.e., signals for which the Fourier trans-
form has compact support. Band-limited functions also appear
e.g., as point spread functions in optics or autocorrelation
functions in crystallography [20]. Throughout the following,
we define the Fourier transform of a signal as

, and write if the
support of the Fourier transform of is contained in .
From the Paley–Wiener theorem, band-limited signals extend to
entire functions on the complex plain, and thus can never have
compact support. It is well known that they can be recovered
from a countable number of samples, i.e., if and

, then

(1)
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Here and . The expansion
(1) is called the Whittaker–Shannon (WS) sampling theorem
or simply the cardinal expansion of ; convergence in (1) is
uniform on bounded intervals. We refer to [4], [16], [24], [25],
[38] for further information on the WS sampling theorem.

The aim of this paper is two-fold. First, we derive the distri-
butional limit of the integrated square error of an estimator of

, which was introduced by Pawlak and Stadtmüller [31] and
second, this will be used to check parametric assumptions on .
The simplest case is to test whether there is a signal at all, i.e.,

(see [34]). Following [31] we introduce the model

(2)

where we observe a finite number of ; . Here,
is an independent and identically distributed (i.i.d.) noise
process with , . We set . If the
signal is band-limited with and if , a
first natural possibility for estimating , based on the cardinal
expansion, is given as

Although this estimator is evidently asymptotically unbiased, its
asymptotic variance is equal to that of the original observation
since it interpolates noise, see [24] or [33]. In order to obtain a
consistent estimator, the method of oversampling can be used.
Recall that the cardinal series expansion with oversampling is
given by

(3)
where corresponds to the sampling rate. Convergence in
(3) is again uniform on bounded intervals. Based on the expan-
sion (3), the estimator of is given by

(4)

cf. [24], [31]–[33]. It can be shown for band-limited signals
that is pointwise consistent if and , i.e.,

. Moreover, under certain assumptions on the tail
behavior of , estimates on the mean integrated square error
(MISE)

MISE
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are derived in [30], [32]. It has been further shown there that for
band-limited signals in model (2), the rate of decay of the MISE
of the estimator is reasonably fast.

In this paper, the distributional limit of the integrated square
error (ISE) of the estimator

ISE

is investigated. This is a classical theme in the statistical litera-
ture, because the asymptotics of the ISE yields information on
the variability of cross-validation when used as an automatic
selector of the smoothing parameter . In fact, asymptotic nor-
mality of the ISE was first obtained for kernel density estimators
(see [2], [13]) and for kernel regression estimators in a random
design ([14], [23]). For a regression model on a compact in-
terval with fixed design, asymptotic normality of the ISE was
proved in [18] by arguing via a central limit theorem for martin-
gales. However, all these results cannot be applied to the model
(2). First, in regression models, theory for an unbounded time
domain has not been developed, and second, the sinc kernel

is not integrable. In fact, we show that
asymptotic normality of the ISE for in the signal recovery
model (2) can be obtained more easily and directly via central
limit theorems for quadratic forms, cf. [6], [26]. Many of our
computations have to be performed in the frequency domain,
which makes the analysis completely different from computa-
tions in the time domain as they occur for estimators based on
kernels of finite order in nonparametric regression models on a
compact interval. Those are essentially based on a Taylor ex-
pansion of the ISE and estimation of the remainder terms.

The paper is organized as follows. In Section II, we establish
asymptotic normality of the ISE of in case of band-limited
signal aswellas formoregeneral signals,whichhaveFourier
transforms that satisfy certain tail conditions. In Section III, we
develop statistical tests for checking whether a band-limited
signal in (2) belongs to a given parametric finite-dimensional
submodel. These tests are based on the -distance between
the estimator and the parametric submodel. The asymptotic
distribution of the test statistic is derived under both the null
hypothesis of the validity of the parametric submodel and under
fixed alternatives. This will be used to construct a test whether

follows a specific parametric form, similarly as in [7], [8], and
[15]. In Section IV, we give a corresponding result in the context
of regression on a compact interval. To this end, asymptotics of
the ISE for the kernel regression estimator with the well-known
sinc kernel for time-limited signals is exploited. It is shown
that the proposed method outperforms common estimators with
compactly supported kernels with respect to the asymptotic
relative efficiency ARE. A simulation study which investigates
the finite sample behavior of the proposed tests is presented in
Section V.

To conclude the introduction, let us point out that the esti-
mator (4) can also be regarded as a spectral cutoff estimator in
the direct regression model (2) (see [36]). Hence, this example
serves as a prototype of the asymptotics of the ISE for spectral
cutoff estimators, which naturally occur in inverse regression
problems.

All proofs are deferred to an Appendix.

II. ASYMPTOTIC NORMALITY OF THE ISE

Throughout this section, we assume that observations from
the model (2) are available. Straightforward computation yields

ISE MISE

(5)

First let us consider the quadratic term in (5). It turns out that it
is, in fact, independent of the signal .

Proposition 1: For any of finite energy in model
(2) we have that

(6)

If , , and in (4), then

As for the linear term in (5), since it contains the bias
as a factor, it should be asymptotically negligible as com-

pared with the quadratic term. In order to estimate the bias, we
need the following tail behavior of the signal :

There exist such that
(7)

This tail behavior is implied by certain smoothness assump-
tions on the Fourier transform of , see [32]. Note that, by
assumption (7), . Now let us describe the asymptotic dis-
tribution of the ISE. First we consider the case of a band-limited
signal.

Theorem 1: Suppose that satisfies (7) with some
. If and if and , then

ISE MISE

where denotes the normal law with mean and vari-
ance .

Remark 1: In [32], it is shown that for
, the optimal rate

MISE (8)

is obtained. However, the assumptions of Theorem 1 are not
satisfied for these . This phenomenon, frequently observed in
nonparametric regression, is due to the fact that for the optimal
rate for the MISE, the integrated bias and the integrated variance
have to decay equally fast. However, for the linear term in (5)
to be asymptotically negligible as compared with the quadratic



3798 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 11, NOVEMBER 2005

term, we need that the integrated bias decays at a faster rate than
the integrated variance. In our situation, choosing

for some arbitrarily small , the conditions of Theorem 1
are satisfied and from the estimates in [32], we obtain the rate

MISE

For large this is close to (8).
Now let us consider non-band-limited signals. Following the

method proposed in [30], [32], we let for the estimator
in (4), and impose additional assumptions on the tail behavior
of the Fourier transform of

The Fourier transform of satisfies

(9)

Then we can state the following theorem.

Theorem 2: Suppose that satisfies (7) and (9)
with , , and . If ,

, , , and ,
then

ISE MISE

Notice that Theorem 1 could be interpreted as limit version of
Theorem 2 for which and is constant.

III. TESTING FOR A PARAMETRIC FORM OF A

BAND-LIMITED SIGNAL

In this section, we develop a consistent test for a parametric
hypothesis in form of a model in the signal recovery model
(2). Whereas extensive literature exists on parametric signal
modeling (e.g., [22]), verification of the underlying parametric
hypothesis has been rarely adressed in the signal processing
literature, as was pointed out by a referee. To keep the presenta-
tion concise, in the following we will assume that is a linear
model, i.e., for some basis functions

, . Nonlinear models can be treated similarly, see
[27]. As a test statistic, we will use the (squared) -distance
of the estimator from the parametric submodel.

-based methods for model tests in regression have been
frequently employed in the statistics literature. In a random de-
sign regression model, the (weighted) -distance of a nonpara-
metric kernel estimator of the signal and a smoothed version of
a parametric estimate was used in [15] to test the validity of
a parametric model. Also, in a random design, the (weighted)

-norm of the signal and its derivatives was estimated in [17]
by integrating the corresponding coefficients of a local polyno-
mial estimator. In case of a regression model with fixed design
on a compact interval, a test statistic can be based on the dif-
ference of a nonparametric kernel-based estimator and a para-
metric estimator for the variance (cf. [7], where the asymptotic
distribution of the test statistic under both the hypothesis of

a linear model and under fixed alternatives is derived). Typi-
cally in this context, it is assumed that the signal is sufficiently
smooth, i.e., it has continuous derivatives for some .

In this section, we obtain an analogous result in the signal re-
covery model (2) on the whole real line under stronger smooth-
ness assumptions. In fact, we restrict ourselves to band-limited
signals, and our arguments are based extensively on the cardinal
series expansion with oversampling (3). In the general case, the
error in the expansion (3) has to be estimated. For simplicity, we
start by considering a simple hypothesis . By cen-
tering the data we may assume that .
In this case, our test statistic is

(10)
Observe that can be evaluated directly using (6) without
performing a numerical integration. The next theorem gives the
asymptotic behavior of .

Theorem 3: Under the hypothesis , if and
, then

(11)
Under the alternative , suppose that satisfies
(7) with . If , , and ,
then

where denotes the -norm.

Remark 2: Note that different rates appear under the hypoth-
esis and under alternatives in Theorem 3, respectively. A sim-
ilar phenomenon was observed in [7] in the context of nonpara-
metric regression on a compact interval. In that model, the non-
parametric rate occurs under the hypothesis, where is a
bandwidth that satisfies , and the parametric rate
under a fixed alternative. Further, in Theorem 3 under an alter-
native, we get the same rate as was obtained in [33] in a central
limit theorem for the pointwise error. Thus, in our model the

rate corresponds to the parametric rate in [7].

Remark 3: In general, the variance will be unknown and
thus has to be estimated (cf. Theorem 3). To this end, the fol-
lowing simple difference-based estimator can be used (for a de-
tailed discussion of such estimators on a compact interval and
their mean-square error (MSE)-properties cf. [9])

(12)

It can be shown that in model (2)

(13)

Observe that (13) implies that . There-
fore, Theorems 3 and 4 remain true if we replace by
in (11).
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If we wish to test whether the signal in model (2) lies in
some finite-dimensional subspace of , following the
method proposed in [8], we can use the test statistic

Choosing any orthonormal basis of , this can be
expressed as

Notice that can still be evaluated directly without numerical
integration. Let .

Theorem 4: Let be a finite-dimensional subspace of
such that every satisfies (7) with . If

in model (2), also satisfies (7) with and
and , then is asymptotically

unbiased for and

(14)

if , and

(15)

if .

The proof is a rather straightforward extension of the proof
of Theorem 3 and will be omitted.

Remark 4: The limit distribution (14) under the hypothesis
allows now to check the model by means of testing the hy-
pothesis

versus (16)

at a controlled error rate before analyzing the data via the
model . To this end, in (12) has to be used as an estimator
for in (14) and is rejected if

where denotes the upper quantile of the standard
normal distribution. Note, that this yields a consistent test
by (13).

Finally, the asymptotic normality in (15) can be used for two
different purposes, testing hypotheses of the type

versus

and the construction of confidence intervals for . We will not
pursue this issue further and refer to [8].

IV. TESTS FOR TIME-LIMITED SIGNALS

In this section, we extend our method to testing assumptions
on time-limited signals, as they appear, e.g., in the detection of
acoustically evoked potentials by electroencephalogram (EEG)
measurements [19]. This is the classical context of nonpara-
metric regression on a compact interval. Suppose that the signal

has support . Assume now that noisy
data of the following form are available:

(17)

In this situation, we can use the estimator (4) with . No-
tice that except for the normalization, this estimator corresponds
toakernel regressionestimatorwithkernel
and inverse bandwidth . This kernel is sometimes referred
to as the sinc-kernel. Note that, in contrast to the setting in Sec-
tion III, the signal cannot be band-limited, except if
(see [24], [38]). In the following, we obtain similar results for
time-limited signals as in Sections II and III for the band-limited
case. However, additional significant technical difficulties occur,
which are due to the fact that the integrals involved are no longer
taken over the whole real line. Thus, the Fourier isometry cannot
be applied to integrals over sinc and indicator functions, as in
Sections II and III. This complicates proofs significantly and
we will only sketch the main steps in the Appendix. A com-
prehensive proof can be found in [3]. The next theorem gives
uniform pointwise convergence of the MSE of the estimator.

Theorem 5: Suppose that in model (17), the signal satisfies
(9) with . If for , , then uniformly
on

where

Remark 5: Assumption (9) on the tails of the Fourier trans-
form of implies continuity of on the whole real line, in
particular we have . This allows to show
uniform convergence of our estimator on . Without such
a condition kernel regression estimators without boundary cor-
rection converge to at the boundary points, and not to
the signal [10].

Remark 6: The sinc-kernel estimator achieves the same rates
that can be shown to be optimal in closely related classes of
functions. For example, let be an -function which satisfies
(9) for , an integer. Then, according to
Theorem 5, the pointwise MSE of the sinc-kernel estimator is

. The class of signals for which (9) holds with
(see [5]) is closely related to the class defined in

[12] if some additional regularity assumptions on the th deriva-
tive of are made. For the class , the rate of convergence of
the linear minimax risk is known to be ([12, pp.
84–88]). Moreover, for the class of -periodic functions with
tail conditions on the Fourier coefficients similar to (9) it is
known ([29]) that is the minimax rate again.
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Fig. 1. Left: Logarithm of the simulated MISE between true signal and estimated signal versus � . Right: Test signal (solid curve) versus estimator based on n =
100 (dotted curve) and n = 1000 (dashed curve). The dots show the set of artificial data with n = 1000. Note that all three curves are visually indistinguishable.

The next result describes the asymptotic distribution of the
ISE for kernel regression with the sinc-kernel for time-limited
signals, in an analogous way to Theorem 3. Consider the statistic

where and

Theorem 6: Under the hypothesis , if
, and as , , then

(18)

Under the alternative, suppose that satisfies (9) with
. If , , and

as , , then

Remark 7: The potential power of our test based on the
statistic with the Fourier estimate kernel, is indicated by
the consideration of local alternatives. To this end, consider the
case . Similarly as in [7], we obtain for the limiting
variance under local alternatives of the type
the value as in (18). The result in [7] closely resembles
(18) if the smoothing parameter of the nonparametric esti-
mator in [7] is replaced by the multiplicative inverse of our
smoothing parameter . However, the regression model in [7]
is , for design
points . This differs slightly from our set-
ting, both in the number of design points ( instead of )
and the size of the support of the design density ( instead
of ). A close inspection of our proofs shows that if our
regression model is changed into equally spaced observations
on , the variance of (18) becomes .

The asymptotic variance in [7, eq. (2.13)] depends on the
kernel used for the nonparametric variance estimator. In the nu-
merical simulations in [7], the Epanechnikov kernel is used. For

this kernel . Furthermore, for the Gauss kernel
, and for the sinc kernel as discussed in this paper
, thus, the variance for our test based on the sinc

kernel is formally recovered by [7, eq. (2.13)]. However, note
that for the Gauss kernel and the sinc kernel the assumption
of a compactly supported kernel does not hold, so the results
in [7] cannot be applied to these kernels. Hence, our result ex-
tends the theory by sampling-based methods to the sinc kernel
which outperforms tests based on the kernels mentioned above.
In particular, the asymptotic relative efficiency of the test based
on the sinc kernel is as compared to the test based on
the Epanechnikov kernel, and if the Gauss kernel is
used. Note, that asymptotically this corresponds to the ratio of
sample sizes required to achieve the same power, i.e., use of the
sinc kernel reduces the required sample size compared to the
Epanechnikov kernel by a relative amount of and to the
Gauss kernel by , respectively.

V. SIMULATION RESULTS

In this section, we investigate the finite-sample behavior of
the tests presented in Section III, which are based on asymptotic
theory. In Section V-A, we comment on the selection of the
parameters , which occur in the estimator . Furthermore,
in Section V-B, we present simulations of the distribution of

for finite sample size, both under the hypothesis and
under the alternative of a particular nonzero band-limited signal.

A. Choosing the Parameters

In order to compute the estimator , the parameters and
have to be chosen. These need to be fixed prior to application of
the estimator to a given set of observations. In this subsection,
we consider noisy data of the form (2), where the signal is the
band-limited function

where

and determine suitable values for and . As sample size we
consider and , and the errors

are taken as i.i.d. normally distributed with zero mean and
variance .

First, we chose , which is the smallest value such
that . Now let us consider how to choose , which
depends on . The left plot in Fig. 1 presents the simulated
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Fig. 2. (Theoretical) asymptotic normal density of M̂ (solid curve) versus simulated density for sample size n = 100 (dashed curve) and n = 1000 (dotted
curve). The left plot shows the distribution under the hypothesis f = 0, the right plot under the alternative if the test signal f is present in the data.

MISE for estimation of from 20 sets of artificial data
with for a range of different values of . We choose

, subsequently writing for the value of for sam-
ples with . The very good quality of recovery of the
signal in these simulations is shown in the right plot of Fig. 1,
where typical estimates based on for and

are shown. Since depends on , we scale for
simulations with as , in accor-
dance with the conditions in Theorems 2 and 3.

B. Finite Sample Behavior of

In this subsection, simulations of the distribution of for fi-
nite sample size are reported. First, we consider pure noise, i.e.,
generated from the signal . In the left plot in Fig. 2, the the-
oretical asymptotic normal distribution together with simulated
finite sample distributions of for (dashed curve)

(dotted curve) is displayed. The approximation of the
asymptotic normal distribution is not too satisfactory even for
the already rather large sample size . This parallels
findings for related test statistics (see [8], [27]). Here, bootstrap
approximations or second-order corrections can be used to im-
prove (see, e.g., [27]). Under the alternative , as shown in the
right plot in Fig. 2, the approximation by the theoretical asymp-
totic distribution is rather accurate already at a moderate sample
size .

VI. CONCLUDING REMARKS AND POSSIBLE EXTENSIONS

In this paper, tests for parametric assumptions on band- and
time-limited signals which are observed under noise have been
constructed. As a test statistic, the -distance of an estimator
based on the WS sampling theorem with oversampling to the
parametric model is used. The asymptotic distribution of the test
statistic is derived both under the hypothesis of the validity of
the parametric model and under fixed alternatives. This allows
in particular to test whether the signal is close in the dis-
tance to the parametric model, at a controlled error rate. The
asymptotics are valid under certain rates and ,
however, it is not immediately clear how to choose the param-
eters for some fixed sample size. In Section V some sugges-
tions are given, but it would be interesting to investigate fully
data-driven methods like cross-validation. As pointed out by a

reviewer, it might also be interesting to investigate whether the
theory could be established for a fixed sampling rate . Sim-
ulations of the finite sample behavior of the test indicate that
while under the alternative, the approximation by the normal
limit law is rather accurate already for moderate sample sizes,
this is not the case under the hypothesis. It would be of interest
to improve the approximation under the hypothesis by some re-
sampling procedure.

There are several possible extensions of the methodology pro-
posed in this paper. An important one is the comparison of sig-
nals under various input conditions. In this case, independently

different samples

are observed and it is to be tested whether . This
can be based on the pairwise comparison between all samples
(cf. [28]). For , e.g., the observations will simply
be used in the statistic in (10).

For further investigations it might be of interest to weaken the
assumptions on the tail behavior of the signal. Based on this,
tests for signals which are neither band- nor time-limited could
be constructed in a similar fashion. As an example, consider the
problem to decide whether an exponentially damped sinusoidal
model holds ([1], [22], or [37]), where

(19)

Here and are unknown (complex) numbers, such that
. Note that this implies integrability of the signals

. Further, is assumed to be fixed. In our terminology this
would be a parametric model with parameters , ; the are
linear parameters, the nonlinear.

It would also be of interest to consider a more general depen-
dent noise process. Finally, let us stress that all signals consid-
ered in this paper are of finite energy (i.e., in ). However,
several frequently encountered signals like cosine functions do
not satisfy this requirement, and a theory that covers such sig-
nals would be of much practical interest, as well.



3802 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 11, NOVEMBER 2005

APPENDIX

Recall that the Fourier transform of a signal is
given by

so that the inverse transform is given by

Hence, the Fourier transform of the estimator in (4) is
given by

(20)

A. Proof of Proposition 1

From Parseval’s equation and (20)

(21)

where and ,
, , which proves (6).

The expectation of the quadratic form in (21) is given by

(22)

and, thus, we can write

Evidently

and

(23)

Moreover

(24)

In order to compute the asymptotic variance of , in a first step,
we replace the sums in (24) by integrals and in a second step we
estimate the approximation error. For the first sum this gives

(25)

Since and

(26)

For the second sum we obtain

(27)

The approximation errors are estimated in Lemma 1. Collecting
terms from (23)–(29) gives

Taking into account the factor in (21) yields the proposition.

The following lemma provides the missing estimates of the
approximation errors used in the above proof.

Lemma 1: We have

(28)
and

(29)

Proof: For , we apply Lemma 4 in [33] to the func-
tion with and obtain

(30)

Thus,
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where and we used (30)
in the last step with . Moreover, we get the expressions
at the bottom of the page. In the next lemma, we estimate the
linear part in (5).

Lemma 2: In the band-limited case, suppose that
satisfies (7) for some . If in the estimator (4)
and if and , then

In the non-band-limited case, suppose that satisfies
(7) and (9) with and . If , ,

, , and , then

Proof: From the Cauchy–Schwarz inequality

where

and

From (22)

Furthermore, from the estimates of the integrated bias in [32]
(Theorem 2 for the band-limited and Theorem 3 for the non-
band-limited case) we get

B. Proofs of Theorems 1 and 2

From Lemma 2, it follows that the linear part in (5) is
. Furthermore, from (23), the diagonal part

of the quadratic form in (23) is

as well. Moreover, in both cases from the assumptions, it fol-
lows that , and Proposition 1 applies. Thus,
it remains to prove asymptotic normality of . To this end we
apply [6, Theorem 5.2]. By a straightforward calculation

(31)

therefore, Assumptions 1) and 2) of [6, Theorem 5.2] are satis-
fied with . Next we use the fact that the spectral
radius of a symmetric matrix is bounded from above by
any matrix operator norm. Therefore,

(32)

which yields Assumption 3) in [6]. This concludes the proof of
Theorems 1 and 2.

C. Proof of Theorem 3

Notice that for , the estimator is unbiased. The
assumptions of Proposition 1 are satisfied, moreover, both terms
in (31) and (32) tend to zero, and [6, Theorem 5.2] applies again.
Now let us consider the case of . Similarly as in the proof
of Proposition 1

(33)

where is as before and . We have

(34)
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From the sampling theorem (3) and the tail behavior of , we
get uniformly in

(35)

Therefore,

(36)

where we used [32, Lemma 4] in the last step. Next, we decom-
pose the quadratic form into

From (23)

Setting , , and
with , where denotes the

Kronecker symbol, we decompose as follows:

(37)

Evidently

From Proposition 1, . We have

Using (35) once again we get

From (33), (34), (36), and the above estimates on and

therefore it will suffice to show asymptotic normality of
. To this end, we apply Lyapounov’s theorem. From

(35) together with a straightforward calculation

Remark 8: Note that under the hypothesis, the term
in (30) vanishes. Thus, the quadratic term determines
the asymptotics and a result like [6, Theorem 5.2] for random
quadratic forms has to be applied. In contrast, under the
alternative, the linear term dominates the asymptotics.
Therefore, it is no longer possible to use the above mentioned
result, instead one simply may apply Lyapunov’s central limit
theorem.

D. Proof of Theorem 5

The proof follows mostly along the lines of the [33, proof
of Theorem 1], which deals with the band-limited case. Their
estimates are based on a lemma (Lemma 4) which only applies
to band-limited signals, and which therefore cannot be used in
our setting. Instead, we invoke [32, Lemma 3]. However, the
details are rather cumbersome and can be found in [3].

E. Proof of Theorem 6

The expectation of is given by

Tedious but straightforward computations yield that

and that

The variance of is computed as in the proofs of Proposition
1 and Theorem 3. If , the dominating term in the variance
is , otherwise it is ,
where

Technical difficulties arise since the entries of can no longer
be calculated explicitely by Fourier transformation, because we
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integrate over a finite interval. Therefore, we have to determine
the asymptotic behavior of sums over the squares of
integrals of type

To this end, we show that

and hence,

Thus, the tails are negligible. Finally, asymptotic normality
under the hypothesis follows again from [6, Theorem 5.2],
while under the alternative the Lyapounov central limit theorem
is applied.
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