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Summary. When a nonparametric mixture model is adopted to deal with the heterogeneity among indi-
vidual capture probabilities, the population size is nonidentifiable (Link, 2003, Biometrics 59, 1123–1130).
Holzmann, Munk, and Zucchini (2006, Biometrics 62, 934–936) discussed the conditions under which a
subfamily of mixing distributions is identifiable. Link (2006, Biometrics 92, 936–939) found that the non-
identifiability occurs across identifiable subfamilies. It is shown that there is a subfamily in which each
mixing distribution is determined by its mixture, and the population size admits estimable lower bounds
that can be used to construct lower confidence limits.
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1. Introduction
There is a huge literature on estimating population sizes be-
cause of its enormous applications. The heterogeneity among
individual capture probabilities usually should not be ig-
nored so that mixture models are necessary. The population
size can be nonidentifiable in a mixture model (Link, 2003).
Holzmann, Munk, and Zucchini (2006; hereafter HMZ) and
Link (2006) investigated the issue of nonidentifiability. As a
follow-up to these important studies, we will provide a deep
investigation on the nonidentifiability, determine what state-
ments are over-optimistic or over-pessimistic, and define in-
ferential tasks useful for the practical purpose.

Suppose that a population has N individuals. Let fx de-
note the number of individuals captured x times in a study of
T captures. These counts are modeled by binomial mixtures
when individual capture probabilities are assumed to follow
a mixing distribution. Although the binomial mixture model
is our focus, similar investigation can be done for some other
mixture models.

It is over-optimistic if one tries to estimate the population
size N nonparametrically, which unfortunately, is a common
practice in the literature. An exception is Link’s (2003) anal-
ysis, which established the issue of nonidentifiability. HMZ
provided the conditions under which a subfamily of mixing
distributions is identifiable. Link (2006) raised the issue of
nonidentifiability across subfamilies. There is a subfamily in
which each mixing distribution satisfies a condition slightly
stronger than that in HMZ and is determined by the trun-
cated mixture.

Let n =
∑T

x=1 fx denote the number of observed individu-
als. The problem of estimating the population size N can be
reduced to estimating the odds θ = E(f 0)/E(n) that an in-
dividual is unseen (Mao, 2007, 2008). A more pertinent issue

is when the odds θ are identifiable. The odds are nonidentifi-
able nonparametrically (Mao, 2007). There is a subfamily of
mixing distributions in which the odds are determined by the
truncated mixture.

Link (2006) concluded that “without strong assumptions, f 1,
f 2, . . . , fT tell us essentially nothing about f0,” which is over-
pessimistic. In fact, E(f 0) or equivalently θ admits estimable
lower bounds. A lower bound to θ leads to a lower bound to
the population size N. Lower confidence limits for these lower
bounds can be constructed and also serve as lower confidence
limits for N.

2. Results
Let X denote the number of captures of an individual in a
study of T captures, which is binomial given the capture prob-
ability p. If p is assumed to follow a mixing distribution G,
then

X ∼ πG(x) =

∫ (
T

x

)
px(1 − p)T−x dG(p), x = 0, 1, . . . , T.

Conditioning on n, (f 1, f 2, . . . , fT )′ is multinomial with prob-
abilities πc

G(x) = πG(x)/{1 − πG(0)}, x = 1, 2, . . . ,T (Link,
2003). Reformulate πc

G as a mixture hQ by reparameterizing
G (Mao and Lindsay, 2002), where

hQ(x) =

∫ (
T

x

)
px(1 − p)T−x

1 − (1 − p)T
dQ(p), x = 1, 2, . . . , T,

dQ(p) =
{1 − (1 − p)T } dG(p)∫
{1 − (1 − q)T } dG(q)

. (1)

Because (1) is invertible for p ∈ (0, 1] and Q and G have the
same support points, relevant statements in HMZ and Link
(2003, 2006) in terms of G will be cited here in terms of Q.
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Let A be the family of all mixing distributions Q over (0,
1]. The family A is nonidentifiable in the sense that there are
Q1 and Q2 in A with hQ1 = hQ2 but Q1 	= Q2 (Mao, 2007).
For example, if G = 3/4δ(1/4) + 1/4δ(3/4) in (1), then

Q = 35/52δ(1/4) + 17/52δ(3/4), (2)

hQ = (28, 18, 12, 7)′/65, (3)

where δ(p) is a distribution degenerate at p. If G = Beta(1/2,
1/3) in (1), then a mixture identical to hQ in (3) can be
produced (Link, 2006).

A subfamily S ⊂ A is said to be identifiable if, given Q1

and Q2 in S, hQ1 = hQ2 implies that Q1 = Q2. HMZ considered
conditions under which a subfamily is identifiable. Link (2006)
found that there are two identifiable subfamilies S1 and S2

and two mixing distributions Q1 ∈ S1 and Q2 ∈ S2 such that
Q1 	= Q2 but hQ1 = hQ2 . The observation in Link (2006) in-
vites us to address whether there is a subfamily in which Q is
uniquely determined by its mixture hQ.

Let index (Q) represent the number of support points of Q
with a support point p = 1 counted as 1/2 (Lindsay, 1995, p.
48). For example, index (Q1) = 1.5 and index (Q2) = 2, where
Q1 = 0.2δ(0.5) + 0.8δ(1) and Q2 = 0.2δ(0.5) + 0.8δ(0.9).

Proposition 1: For Q ∈ U , hQ determines Q in the sense
that there is no other mixing distribution P such that hP = hQ,
where

U = {Q ∈ A : index(Q) � (T − 1)/2}. (4)

Proposition 1 is an application of Proposition 6 in Lind-
say (1995, p. 48). For Q ∈ (A− U), hQ is produced by many
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Figure 1. Given p, Q̂ = αδ(p) + (1 − α)δ(η) satisfies f̂x = fx for x = 1, 2, 3 with f̂0 varying over p. For example, given
p = 0.17, 0.19, 0.21, and 0.23 (dashed lines), f̂1 = 187, f̂2 = 56, f̂3 = 28, f̂0 = 297, 263, 234, and 209, respectively (solid dots).

mixing distributions. For example, Q ∈ (A− U) for Q in (2)
as index (Q) = 2 and T = 4 but (T − 1)/2 = 1.5.

From HMZ, the subfamily D is identifiable, where

D = {Q ∈ A : the number of support points of Q � T/2}.

(5)

Proposition 2: If T is odd, then U = D. If T is even, then

D − U = {Q ∈ A : index(Q) = T/2}. (6)

For an even T, HMZ’s condition is necessary for D to be
identifiable but not sufficient for Q to be determined by hQ .
For example, Q ∈ (D − U) for Q in (2).

Next we turn to the odds θ = E(f 0)/E(n). It depends on
Q as follows:

θ = θ(Q) =

∫
(1 − p)T

1 − (1 − p)T
dQ(p). (7)

The odds θ(Q) is nonparametrically nonidentifiable in the
sense that there are Q1 and Q2 in A with hQ1 = hQ2 but
θ(Q1) 	= θ(Q2) (Mao, 2007).

The nonidentifiability of θ(Q) implies that it is impossi-
ble to estimate θ(Q) unbiasedly and precisely. For example,
given a real application with f 1 = 187, f 2 = 56, and f 3 =
28 (Chao et al., 2001), Figure 1 presents f̂0, f̂1, f̂2, and f̂3,
where

f̂0 = nθ(Q̂), f̂x = nh
Q̂

(x), x = 1, 2, 3,

Q̂ = αδ(p) + (1 − α)δ(η), α ∈ (0, 1), 0 < p � η � 1.
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For each fixed p, both η and α are found by solving the equa-
tion system,

h
Q̂

(1) = f1/n

h
Q̂

(2) = f2/n

}
⇐⇒ α =

f1/n− hδ(η)(1)

hδ(p)(1) − hδ(η)(1)

=
f2/n− hδ(η)(2)

hδ(p)(2) − hδ(η)(2)
.

It is clear that f̂x ≡ fx for x = 1, 2, 3, and f̂0 varies over p.
There is no upper bound to the odds θ(Q) in a neigh-

borhood of hQ (Mao and Lindsay, 2007). It makes sense to
consider lower bounds to θ(Q). There exist lower bounds to
θ(Q). For example, from the estimator n + (T − 1)f 2

1/(2Tf 2)
(Chao, 1989), (T − 1)h2

Q(1){2ThQ(2)} is a lower bound to
θ(Q) provided that Q 	= δ(1). Among various lower bounds,
the sharpest one is

φ(hQ) = inf{θ(P ) : hQ(x) = hP (x), x = 1, 2, . . . , T, ∀P ∈ A}.
(8)

A linear program can be used to calculate φ(hQ) numerically
(Mao, 2007).

To determine when φ(hQ) is achieved theoretically, define

K = {Q ∈ A : index(Q) � T/2}. (9)

Proposition 3: If Q ∈ K, then φ(hQ) = θ(Q) and
φ(hQ) < θ(Q) otherwise.

Proposition 3 is an application of Theorem 1 in Mao (2008).
If Q ∈ (A−K), then θ(Q) consists of an identifiable compo-
nent φ(hQ) and a nonidentifiable component θ(Q) − φ(hQ)
by writing

θ(Q) = φ(hQ) + {θ(Q) − φ(hQ)}. (10)

The mixture hQ tells nothing about θ(Q) − φ(hQ) for
Q ∈ (A−K). For example, φ(hQ) = 61/195 and θ(Q) =
61/195 = φ(hQ) for Q in (2), and for Q obtained from G =
Beta(1/2, 3/2), Q ∈ (A−K) and θ(Q) = 189/195 > φ(hQ).

A lower bound to θ(Q) yields a lower bound to the popu-
lation size N, e.g.,

Nφ = N{1 + φ(hQ)}/{1 + θ(Q)},

which can be estimated by n+ nφ(h
Q̂

). Lower confidence lim-

its for a lower bound to N can be constructed. They are also
lower confidence limits for N and useful in practice. For ex-
ample, say, n = 20,000 injection drug users (IDUs) in Los
Angeles were observed from a capture–recapture study. The
true size N of the IDU population is between 20,000 and the
size of the whole population of Los Angeles. It is helpful to
public health decision making if one concludes that there are
at least, say, 30,000 IDUs at the 95% confidence level.
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Appendix

Proof of Proposition 2. Let κ(Q) denote the number of sup-
port points of Q. When T is odd with T = 2m + 1, conclude
that D = U because, with index (Q) � κ(Q) � index (Q) +
1/2,

index(Q) � m =⇒ κ(Q) � m+ 1/2

⇐⇒ κ(Q) � m =⇒ index(Q) � m.

When T is even with T =2m,U ⊂ D because index (Q) � (T −
1)/2 = m − 1/2 implies that κ(Q) � index(Q) + 1/2 � m.
For any Q with κ(Q) � m − 1, index(Q) � κ(Q) � m − 1 <
m − 1/2 so that Q ∈ U . For any Q with κ(Q) = m, either
index(Q) = m − 1/2 so that Q ∈ U or index(Q) = m so that
Q ∈ (D − U). Conclude that D − U contains all Q with κ(Q)=
index (Q) = m.

The authors replied as follows:

The problem of nonidentifiability of the mixing distribu-
tion and hence of the population size in closed-population
capture–recapture experiments with heterogeneous individual
capture probabilities was observed and discussed in a semi-
nal paper by Link (2003). In Holzmann, Munk, and Zucchini
(2006; hereafter HMZ), we put this into the general context
of identifiability of finite mixtures and gave conditions under
which a parametric subfamily of mixing distributions is iden-
tifiable. In his response, Link (2006) gave examples to illus-
trate that identifiability does not extend across (identifiable)
parametric subfamilies. Thus, if one is not willing to assume
some specific parametric model for the mixing distribution
(perhaps based on some additional information), the results
in HMZ are not helpful any more. In the present article, Mao
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(2008b) gives conditions under which mixing distributions can
be identified within the family of all mixing distributions. For
such mixing distributions, the problems raised by Link (2003,
2006) cannot occur.

In Section 1 we clarify the distinction between the differ-
ent notions of identifiability (as defined in HMZ and in Mao,
2008b). In Section 2 this is linked to the notion of estimable
lower bounds to the population size, which has been pop-
ularized by Mao (2007, 2008a, 2008b) and Mao and Lindsay
(2007). In particular, we point out that under some additional
restrictions, these may also be estimated in certain parametric
models by (conditional) parametric maximum likelihood.

1. Notions of Identifiability
We briefly recall the statistical model considered in HMZ and
in Mao (2008b). Let X denote the number of captures of an
individual in T captures. Then

X ∼ πG(x) =

∫ (
T

x

)
px(1 − p)T−x dG(x), x = 0, . . . , T,

where G is a mixing distribution on (0, 1]. Let fx be the
number of individuals observed at exactly x times, and let
n =

∑
x
fx be the total number of observed individuals. Con-

ditional on n, the observations (f 1, . . . , fT ) are multinomial
with probabilities πc

G(x) = πG(x)/(1 − πG(0)), x = 1, . . . ,T .
Let A denote the family of all mixing distributions on

(0, 1]. In HMZ, we introduced the notion of identifiability
of a subfamily S ⊂ A from the observations fx as follows. If
πc
G = πc

H forG,H ∈ S, then G = H. This notion of identifiabil-
ity corresponds to the classical notion introduced by Teicher
(1963) for ordinary (nontruncated) binomial mixtures. It is
what is needed to make, together with additional regular-
ity conditions such as compactness of the parameter space,
the standard maximum likelihood estimation theory work (cf.
e.g., Leroux, 1992). This means that if the true G0 ∈ S, it can
be consistently estimated by maximum likelihood, and hence
also πG0(0). An important example is the family of finite mix-
tures Sfin with at most T/2 support points.

However, as already indicated in HMZ and explicitly
pointed out by Link (2006), identifiability in this notion does
not extend across families. Indeed, Link constructs examples
of identifiable families S1 and S2, for which there are G ∈ S1

and H ∈ S2 with πc
G = πc

H . Thus, based on the data one can-
not distinguish between the mixing distributions G and H.
This problem is serious because the quantity of interest, the
proportion of unobserved individuals, πG(0) and πH (0), can
differ significantly. Therefore, if there are no proper reasons
(based on additional information and not on the observations
fx) to choose a specific family of mixing distributions S, this
direct parametric approach may be unsatisfactory.

Of course, a similar problem in principle also occurs for
ordinary binomial mixtures. In order to overcome it, Lindsay
and Roeder (1993) and Lindsay (1995) gave a stronger condi-
tion than identifiability in a subfamily, and in the present
article, Mao (2008b) (see also Mao, Colwell, and Chang,
2005) extends it to the truncated binomial mixtures arising in
capture-recapture studies. Call a mixing distribution G ∈ A
strongly identifiable if πc

G cannot be reproduced by any other
mixing distribution H ∈ A: If πc

G = πc
H for any H ∈ A, then

G = H. Using results by Lindsay and Roeder (1993), Mao

(2008b) describes the family U of strongly identifiable mix-
ing distributions as follows. For G ∈ A let #G be the number
of support points, and let indexG be the number of support
points, where a support point at 1 is only counted as 1/2.
Then U is the set of all G with indexG ≤ (T − 1)/2. Evidently,
the family U is identifiable, but more is true, the problem with
other subfamilies with elements giving rise to the same mixing
distributions cannot occur. For odd T,U is simply the family
Sfin of identifiable mixtures with at most T/2 support points,
for even T the family U does not contain all finite mixtures
with #G ≤ T/2, and is thus smaller then Sfin.

2. Identifiability and Estimable Lower Bounds
In a series of papers, Mao (2007, 2008a) and Mao and Lind-
say (2007) discussed the construction and estimation of lower
bounds to the odds and hence to the population size. Due
to the rather obvious problem of possible subjects that may
be very hard to capture, this seems to be a very appeal-
ing and practically relevant approach. In the present arti-
cle, Mao (2008b) introduces a parametric family K for which
these lower bounds are achieved. Here we show that (a)
K is identifiable, (b) it generates all possible conditional
mixtures πc

G.
To start, for the population size N one has N = EGn/

(1 − πG(0)) = En(1 + πG(0)/(1 − πG(0))), thus, in order to
obtain lower bounds for N one needs to find lower bounds for
the odds θ(G) = πG(0)/(1 − πG(0)). Following Mao (2007),
define

φ
(
πc
G

)
= inf

{
θ(H) : πc

G = πc
H ,H ∈ A

}
. (1)

As in Mao (2008b) consider K = {G ∈ A : indexG ≤ T/2}.
Mao (2008b) shows that K is the set of mixing distributions
for which the inf in (1) is obtained: φ(πc

G) = θ(G) if and
only if G ∈ K. Further, from Mao (2007) the infimum in (1)
is always obtained.

Together with the results on strong identifiability in Sec-
tion 1, one has for every G ∈ A: Either indexG ≤ (T − 1)/2,
in which case πc

G is unique and φ(πc
G) = θ(G), or index G >

(T − 1)/2, in which case there is a (unique, see below) H ∈ K
with indexH = T/2, for which πc

G = πc
H and φ(πc

G) = θ(H).
Thus, K satisfies b.

To show (a), let us further describe the set K. For even
T,K = Sfin are simply the finite mixtures with at most T/2
support points. For odd T, these are all G with #G ≤ (T −
1)/2 support points as well as those with #G = (T + 1)/2
and for which one of the support points is 1. Therefore, for
even T, identifiability of K follows from the results in HMZ,
and for odd T we give the proof in the Appendix.

It is now tempting to use K as a “universal” parametric
model. Under a small additional regularity condition (com-
pactness of the parameter space, i.e. a lower bound δ > 0
on the possible capture probabilities), the (conditional) MLE
Ĝ ∈ K converges to the unique G ∈ K which gives πc

G = πc
G0

,

where G0 ∈ A is the true mixing distribution, and θ(Ĝ) con-
verges to the lower bound θ(G) = φ(πc

G0
). Thus, one di-

rectly obtains an estimate of the lower bound in (1) and
of a corresponding mixing distribution. Further, it offers a
direct way to construct confidence intervals to the lower
bound.
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Appendix

Proof of Identifiability of K. We only have to give the proof
for odd T, and start with the following lemma.

Lemma 1: If

T−1∑
k=1

tk p
x
k(1 − pk)

T−x = 0, x = 1, . . . , T − 1,

for some tk ∈ R and distinct pk ∈ (0, 1), then it follows that
t1 = · · ·= tT = 0.

Proof. The polynomials P x(p) = px(1 − p)T−x, x =
1, . . . ,T − 1, are linearly independent because, except for the
normalization, these are the Bernstein polynomials, which are
known to be linearly independent. Therefore any nontrivial
linear combination, which thus is a nonzero polynomial of de-
gree at most T, has at most T roots. Because, evidently, two
of these always equal 0 and 1, there are at most T − 2 roots
within the interval (0, 1). Hence, for different p1, . . . , pT ∈ (0,
1), if

T−1∑
x=1

sxp
x
k(1 − pk)

T−x = 0, k = 1, . . . , T − 1,

it follows that the coefficients s1 = · · ·= sT = 0, all van-
ish. Introducing matrix notation P = (P k,x) = (px

k (1 −
pk)

T−x)k,x=1, ... , T−1 and s = (s1, . . . , sT−1)
′, this is just

P · s = 0 ⇒ s = 0. (A.1)

Relation (A.1) implies that P has full rank, hence so does its
transpose P ′, and we get

P ′ · t = 0 ⇒ t = 0 for t ∈ R
T−1, (A.2)

which is the claim of the lemma.

Suppose that G,H ∈ K with πc
G = πc

H . Due to strong iden-
tifiability of mixing distributions with (T − 1)/2 support
points, we can assume that indexG = indexH = T/2, so that
there are (T + 1)/2 support points for both G and H, one of
which is 1 (we assume that after relabeling this is the (T +
1)/2 support point).

From Lemma 1 in HMZ, there exists an A > 0 with

(T−1)/2∑
k=1

λk,G pxk,G (1 − pk,G)T−x

= A

(T−1)/2∑
k=1

λk,H pxk,H (1 − pk,H)T−x, x = 1, . . . , T − 1,

(A.3)

and

(T−1)/2∑
k=1

λk,G pTk,G + λ(T+1)/2,G

= A

(
T−1∑
k=1

λk,H pTk,H + λ(T+1)/2,H

)
, (A.4)

where λk,G, λk,H ≥ 0 and∑
k

λk,G =
∑
k

λk,H = 1. (A.5)

Subtracting the r.h.s. from the l.h.s. in (A.3), following the
argument in HMZ and using Lemma 1 we find that after re-
labeling, pk,G = pk,H , k = 1, . . . , (T − 1)/2, and

λk,G = Aλk,H , k = 1, . . . , (T − 1)/2.

Inserting this into (A.4) and using (A.5) yields the statement
of the proposition.
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