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ABSTRACT. In practical applications, when testing parametric restrictions for hidden Markov
models (HMMs), one frequently encounters non-standard situations such as testing for zero entries
in the transition matrix, one-sided tests for the parameters of the transition matrix or for the compo-
nents of the stationary distribution of the underlying Markov chain, or testing boundary restrictions
on the parameters of the state-dependent distributions. In this paper, we briefly discuss how the
relevant asymptotic distribution theory for the likelihood ratio test (LRT) when the true parameter
is on the boundary extends from the independent and identically distributed situation to HMMs.
Then we concentrate on discussing a number of relevant examples. The finite-sample performance of
the LRT in such situations is investigated in a simulation study. An application to series of epileptic
seizure counts concludes the paper.
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1. Introduction

Hidden Markov models (HMM) are a class of discrete-time stochastic processes that have
been successfully applied in various fields of dependent data analysis, including speech
recognition (Rabiner, 1989), econometrics (Rydén et al., 1998), biology (Holzmann et al.,
2006), medical statistics (Albert, 1991) or biological sequence alignment (Arribas-Gil et al.,
2006). See the monograph by MacDonald & Zucchini (1997) for further examples.

An HMM consists of two ingredients, an unobservable finite-state Markov chain (Xk) and an
observable stochastic process (Yk) such that: (i) the (Yk) are conditionally independent, given
the (Xk); and (ii) given the (Xk), the distribution of Yj depends on Xj only. As the Markov
chain (Xk), which is sometimes called the regime or the latent process, is unobservable,
inference has to be based on the (Yk) alone. Typically, it is assumed that the state-dependent
distributions, i.e. the distributions of Yk given that Xk =a, a ∈ M, come from a parametric
family (f�)�∈� of densities or discrete distributions, e.g. the normal or the Poisson distribution.
Thus, the unknown parameters in an HMM involve both the transition probabilities of the
Markov chain and the parameters of the state-dependent distributions. The major approach
to estimate the parameters in an HMM is by using likelihood-based methods. For general
HMMs, strong consistency of the maximum-likelihood estimator (MLE) was proved by Leroux
(1992). Bickel et al. (1998) established asymptotic normality of the score with limit covariance
matrix J0, as well as a uniform law of large numbers for the Hessian of the log-likelihood
with limit matrix −J0 (for related results see also Douc et al., 2004). Once these major results
are obtained, the standard likelihood theory, such as asymptotic normality of the MLE with
limit covariance J −1

0 (cf. Bickel et al., 1998) and the asymptotic Chi-squared approximation to
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the distribution of the likelihood ratio test (LRT) under regularity conditions (cf. Giudici
et al., 2000), follows as in the i.i.d. setting.

In this paper, we observe that also the likelihood theory under non-standard conditions
with parameters on the boundary, as developed by Chernoff (1954) and Self & Liang (1987),
can be extended from the i.i.d. case to HMMs by using the results of Bickel et al. (1998).
In particular, we give the asymptotic distribution theory for the LRT for general, nonlinear
hypotheses with parameters on the boundary, and these parameters might also involve the
parameters of the state-dependent distributions.

Indeed, such testing situations are frequently encountered in practice when using HMMs.
For example, if one wishes to test whether the state a is always left immediately, or whether
the underlying Markov chain tends to stay in the state a, or whether the state a is on average
more frequently visited than the state b, one requires testing for zero entries of the transition
matrix, testing a one-sided hypothesis on the parameters of the transition matrix and on the
parameters of the stationary distribution of the underlying Markov chain respectively. Hence,
all these testing problems and several others involve the extended asymptotic distribution of
the LRT with true parameter on the boundary of the hypothesis.

The paper is organized as follows. In section 2, after formally introducing HMMs, we
briefly discuss how the asymptotic distribution theory for the LRT under non-standard
conditions can be extended from the i.i.d. case to HMMs. An extensive list of examples is
given in section 3. In section 4, we present simulation results and illustrate the application of
the tests for a series of epileptic seizure count data, previously analysed by Le et al. (1992).
Some proofs are given in the Appendix.

2. Likelihood inference for HMMs

Let us start by introducing some further notation and definitions. Let (Xk)k≥1 be a stationary,
finite-state Markov chain with state space M={1, . . ., m}, transition probabilities �ab =
P(Xk +1 =b |Xk =a) and unique stationary distribution �= (�1, . . ., �m). Further, let (Yk)k≥1

be a stochastic process taking values in a Borel-measurable subset Y of Euclidean space,
such that given (Xk)k≥1, the (Yk)k≥1 are independent and the distribution of Yk depends on
Xk only. These conditional distributions are called the state-dependent distributions, and we
assume that they come from a parametric family {f (y;�) |�∈�} of densities w.r.t. a �-finite
measure � on Y , so that the distribution of Yk , given that Xk =a, has density f (·;�a). We
assume that both the parameters of the transition matrix {�ab}={�ab(ϑ)} and the parameters
of the state-dependent densities �a =�a(ϑ) depend on a parameter ϑ∈�⊂Rd . The standard
parametrization is given by ϑ= (�11, . . ., �1,m−1, �21, . . ., �m,m−1, �1, . . ., �m). The subindex 0
indicates the true value ϑ0 and the true distribution P0 of the bivariate process (Xk , Yk)k≥1.
Note that as the parameters of the transition matrix �ab(ϑ) depend on ϑ, so do the compo-
nents of the unique stationary distribution �a =�a(ϑ).

The joint density of (X1, . . ., Xn, Y1, . . ., Yn) [w.r.t. (counting measure)n × �n] is given by

pn(x1, . . ., xn, y1, . . ., yn;ϑ)=�x1 (ϑ)
n−1∏
k =1

�xk ,xk +1 (ϑ)
n∏

k =1

f (yk ;�xk (ϑ)),

the joint density of (Y1, . . ., Yn) (w.r.t. �n) by

pn(y1, . . ., yn;ϑ)=
m∑

x1 =1

· · ·
m∑

xn =1

pn(x1, . . ., xn, y1, . . ., yn;ϑ),
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and the log-likelihood is denoted by Ln(ϑ)= log pn(y1, . . ., yn;ϑ). An MLE ϑ̂ is any value of
ϑ∈� which maximizes Ln(ϑ).

Leroux (1992) gives conditions for HMMs with finite-state space and general observational
space Y under which the MLE is strongly consistent, i.e. ϑ̂→ϑ0 P0 – almost surely as n→∞.
Denote the matrix of second derivatives of Ln(ϑ) by D2

ϑLn(ϑ). Bickel et al. (1998) show that
if ϑ̃n is any strongly consistent sequence of estimates, under their assumptions 1–4,

n−1D2
ϑLn(ϑ̃n)→−J0 in P0 probability, (1)

as n→∞. The matrix J0 is called the Fisher information matrix. Douc et al. (2004) extend
(1) to almost sure convergence. Bickel et al. (1998) further show under their assumptions 1–4
a central limit theorem for the score,

√
nDϑLn(ϑ0) L→N(0, J0).

Once these fundamental results are established, the standard likelihood theory can be
derived in complete analogy to the i.i.d. case. Bickel et al. (1998) conclude that if ϑ0 is an
interior point of � and if J0 is non-singular,

√
n(ϑ̂−ϑ0) is asymptotically normally distri-

buted with mean zero and covariance matrix J −1
0 . Giudici et al. (2000) extend the Chi-squared

approximation for the LRT for regular hypotheses from the i.i.d. setting to HMMs.
However, we observe that this strategy also applies when treating the LRT in case the true

parameter is on the boundary of the hypothesis, cf. Chernoff (1954) and Self & Liang (1987)
for the i.i.d. setting. To formulate the results, for �0 ⊂� let

�n = supϑ∈�0
pn(y1, . . ., yn;ϑ)

supϑ∈� pn(y1, . . ., yn;ϑ)

be the likelihood ratio. If assumptions 1–4 in Bickel et al. (1998) hold true, if both � and �0

satisfy assumption 1 (cf. the Appendix), if J0 is non-singular and if � can be approximated
by a cone C� at ϑ0, and if �0 can be approximated by a cone C�0 at ϑ0 (cf. the Appendix
for the definition), then

Tn =−2 log �n
L→ min

z∈C�0
−ϑ0

(Z − z)T J0(Z − z)− min
z∈C�−ϑ0

(Z − z)T J0(Z − z), (2)

where Z ∼ N(0, J −1
0 ) and J0 is the Fisher information matrix in an HMM as given in (1).

The asymptotic distribution in (2) in general depends on the Fisher information matrix. In
some examples (cf. example 3 in section 3), it can be evaluated algebraically, otherwise, if
required it has to be estimated, for example, by using a version of the forward algorithm
for computing the observed information matrix (cf. Lystig & Hughes, 2002). Alternatively,
if one uses direct numerical maximization for computation of the MLE ϑ̂, most algorithms
also give an estimate of the Hessian matrix at ϑ̂. From (1) one can then in principle deter-
mine an estimate of J0. Still, estimation of J0 is a difficult problem, and the approximation
(2) works best if the right-hand side does not depend on J0.

3. Examples

Example 1 (Zero entries of the transition matrix). To reduce the number of parameters in
an HMM, and sometimes also from the context of the statistical problem, it is reasonable to
restrict attention to transition matrices with certain prespecified zero entries (for an example
see (9)). Therefore, testing for zeros in the transition matrix is evidently of some practical
interest. Such boundary cases for LR testing were also studied by Bartolucci (2006) for latent
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Markov models, and here we briefly discuss them in a general HMM framework. Consider
the hypothesis that a certain entry �ab of the transition matrix is zero:

H0
ab :�ab =0 against K 0

ab :�ab > 0,

where it is assumed that under H0
ab, the transition matrix still is ergodic, and the parameters

of the state-dependent distributions are allowed to vary. In the case of two states, if �21 /=0
and �22 /=0 this is true for �11 =0 but evidently not for �12 =0. Under H0

ab, from case 5 in
Self & Liang (1987) it follows that

Tn
L→ 1

2 χ2
0 + 1

2 χ2
1, (3)

where χ2
0 is the point measure at 0. If one combines several of the H0

ab-type hypotheses,
Tn will have a χ̄2-distribution (Bartolucci, 2006), where the weights in the χ̄2-distribution can
be determined from the entries of the Fisher information matrix (cf. Silvapulle & Sen, 2005,
for a simulation procedure). Thus, a joint test would involve estimation of the Fisher informa-
tion matrix. A simpler, although less efficient method would be to test several of the H0

ab-type
hypotheses by using some multiple testing procedure.

Example 2 (Boundary cases for parameters of the state-dependent distributions). Another
possibility for model reduction is to test whether certain parameters of the state-dependent
distributions are on the boundary of their parameter spaces.

As a first particular case, suppose that the state-dependent distributions are Bernoulli B(p),
and that the underlying Markov chain has two states. MacDonald & Zucchini (1997, pp. 140–
144) consider the situation that in one of the states of the Markov chain (e.g. state 1) the
outcome is just deterministic. This can be formulated by testing H : p1 =0 against K : p1 > 0.
The corresponding LRT again has the asymptotic distribution (3).

Another relevant case arises in the analysis of count data with overdispersion relative to
the Poisson distribution (Leroux & Puterman, 1992). Such data are often modelled by finite
mixtures of Poisson distributions, and HMMs then provide a natural generalization to the
time-series context. Often, overdispersion mainly arises as there are too many zero observa-
tions (relative to Poisson), which is then modelled by zero inflation of the Poisson distribution
(van den Broek, 1995). This can be interpreted as a two-component Poisson mixture, where
�=0 for one of the components. Thus, in the context of overdispersed count series, test-
ing for zero inflation against general overdispersion structure can be accomplished by testing
H : �1 =0 against K : �1 > 0, with two-state underlying Markov chain and �1 <�2. The LRT
again has the asymptotic distribution (3).

Example 3 (One-sided tests for the transition probabilities). In this example, we consider one-
sided hypotheses for the entries of the transition matrix. First consider

H :�ac ≥�bc against K :�ac <�bc,

where a, b, c ∈ M, i.e. that it is more probable under the alternative to have reached state
c coming from state b than coming from state a. On the boundary of H , i.e. for �ac =�bc,
Tn has the asymptotic distribution (3), and if �ac >�bc, by strong consistency of the MLE,
Tn →0 in probability. Similarly, one can test H :�ab ≥�ac against K :�ab <�ac, that under the
alternative it is more likely to go from a to c than to b, or Hq

ab : �ab ≤ q against K q
ab : �ab > q

for some q ∈ (0, 1) and a, b∈M.
For the Hq

ab-type hypothesis, a relevant special case is when a =b and q =1/2 because, in this
case, under the alternative the HMM tends to stay in state a ∈ M. We shall call such a state
stable. Let us consider joint tests on two states a, b∈M. First consider the testing problem
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Ha∧b,1/2 :�aa =1/2∧�bb =1/2 against Ka∧b :�aa > 1/2∧�bb > 1/2. (4)

We shall only derive the limit law in a special situation, namely if there are only two states
and only the transition probabilities are allowed to vary. Using case 7 in Self & Liang (1987),
one shows that under Ha∧b,1/2,

Tn
L→( 1

2 −p)χ2
0 + 1

2 χ2
1 +pχ2

2, (5)

where the mixing quantity p can be evaluated as

p=(
cos−1 �

)
/(2�), (6)

with � given in (12) in the Appendix, which also contains the proof.
The testing problem (4) is somewhat artificial, and if one intends to test the hypothesis that

neither state is stable against the alternative that both states are stable, the testing problem
should be formulated as

Ha∧b :�aa ≤1/2∧�bb ≤1/2 against Ka∧b :�aa > 1/2∧�bb > 1/2. (7)

It turns out that in this testing problem, the asymptotic distribution given in (2) is no longer a
finite mixture of Chi-squared distributions with different degrees of freedom (cf. Self &
Liang, 1987, for an example where a nuisance parameter is on the boundary of the hypoth-
esis). Here, the reason is that the whole parameter space under investigation, �=Ka∧b ∪Ha∧b

is not convex. The asymptotic distribution of Tn for the testing problem (7) in the case of
two states with known state-dependent distributions for �aa =�bb =1/2 turns out to be

Tn
L→ 1

2
χ2

0 + �−	
2�

χ2
2 + �−	

2�
P1(	)+ 2	−�

2�
P2(	), (8)

where 	= cos−1 �∈ [�/2, �), � is given in (12) and the densities of P1(	) and P2(	) are speci-
fied in (14) and (15) in the Appendix, which also contains the proof. For other parameter
constellations under Ha∧b, the limit distribution is stochastically smaller. The asymptotic dis-
tributions (5) and (8) of the closely related testing problems (4) and (7) differ surprisingly
strongly. As testing problems which lead to these asymptotics arise in other contexts as well,
this example is of more general interest, also for the i.i.d. setting.

Example 4 (Tests on the stationary distribution). For an ergodic Markov chain, the transition
probability matrix uniquely determines the stationary distribution �. Hence, tests on the
entries of � can be reformulated into tests for the entries of the transition probability
matrix, and (2) in principle allows to test one-sided hypotheses such as �a ≥�b for a, b∈M.
However, the formulas for � in terms of the �ab are highly nonlinear for more than two states,
which makes explicit maximization under the hypothesis difficult. We illustrate this issue for
two states and for a certain type of transition matrices in the case of three states.

First consider the case of two states, and suppose that we want to test certain restrictions
on �1 (or equivalently on �2 =1 −�1), where the state-dependent parameters are allowed to
vary. Let �12 =� and �21 =
, then �1 =
/(�+
). Consider testing the hypothesis that state 1
is, on average, at least as often visited as state 2, i.e. H :�1 ≥�2 against K :�1 <�2. Evidently,
H is equivalent to the linear restriction 
≥�, and on the boundary of H , i.e. for �=
 /=1,
one has the asymptotic distribution given in (3). Similarly, general restrictions Hp : �1 ≤ p
for some p ∈ (0, 1) can be formulated into linear restrictions Hp : (1 − p)
 ≤ p�, and on the
boundary of the hypothesis, (3) applies as well.

Next, we consider HMMs with three states, where the transition matrix is supposed to be
given by
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⎛
⎝1−� � 0


 1−
− � �
0 � 1−�

⎞
⎠. (9)

Here, state 2 can be interpreted as a transitory state, through which every transition from
state 1 to state 3 has to pass. The stationary distribution is given by

�1 = �

�
+��+ ��

, �2 = ��
�
+��+ ��

, �3 = ��
�
+��+ ��

.

Evidently, even linear restrictions on the parameters �1 will lead to nonlinear restrictions on
the parameters of the transition matrix. For example, consider the hypothesis H1,3 : �1 ≥�3,
which is equivalent to H1,3 : �
≥ ��, and one again obtains the asymptotic (3) for Tn. Fur-
ther, if one wishes to test H1,2,3 :�1 =�3, �1 >�2, which is equivalent to H1,2,3 :�
= ��, 
>�,
then (cf. case 6 in Self & Liang, 1987)

Tn
L→ 1

2 χ2
1 + 1

2 χ2
2.

Example 5 (Testing for bimodality). Suppose that we have a two-state Gaussian HMM.
Then the marginal distribution will be a two-component mixture of normals, where the
mixing proportions are given by �1 =
/(�+
) and �2 =1 − �1, using the notation in
example 4. A two-component mixture of normals is either unimodal or bimodal, and explicit
characterizations for unimodal parameter regions are available (Robertson & Fryer, 1969).
For example, for �1 =1/2, the mixture is unimodal if and only if |
1 −
2|≤2�. Using these
facts, one can construct an LRT for bimodality of the marginal distribution of a two-state
normal HMM by using theorem 1. To this end, the model has to be reparameterized in (�1, 
)
instead of (�, 
), and the restriction of unimodality can then be formulated in terms of �1

and the parameters of the state-dependent distributions. Let �0 be the unimodal para-
meter region. Then, for all ϑ∈�0, the asymptotic distribution of Tn is stochastically smaller
than (χ2

0 +χ2
1)/2, and for some parameter values on the boundary of �0 there is equality.

Therefore, a test based on the critical value of (χ2
0 +χ2

1)/2 asymptotically keeps the level for
all ϑ ∈ �0. The test can be extended to other families of state-dependent distributions for
which a characterization of the modality in two-component mixtures is available (e.g. the
von Mises distribution, cf. Mardia & Sutton, 1975, or the multivariate normal distribution,
cf. Ray & Lindsay, 2005).

4. Simulations and empirical illustration

4.1. Quality of asymptotic approximation for the LRT

As advocated by MacDonald & Zucchini (1997), for the numerical computation of the
maximum-likelihood estimates, we use direct maximization by using a Newton-type algorithm.
In each setting, we reparametrize the problem so that unconstrained maximization is possible.

(a) Consider testing the hypothesis H :�11 =0 in a stationary two-state normal HMM, as
described in example 1, where the asymptotic distribution for Tn is given in (3). The transition
matrix is taken as

A=
(

0 1
0.3 0.7

)
,

and for the parameters of the state-dependent distributions we choose �2 =1 and mean
values 
1 =0, 
2 =2 in the first setting, which corresponds to sufficiently well-separated
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state-dependent distributions, and 
1 =0, 
2 =1 in the second setting, where the state-dependent
distributions strongly overlap. In the simulation, we fix the parameters of the state-dependent
distributions at their true values, and let only the parameters of the transition matrix vary.
We generate N =10,000 samples of various sizes, and for visualization we use PP plots, which
show for each nominal level 1−� the empirical probability that the LRT-statistic Tn ≤q1−�,
where q1−� is the (1−�)-quantile of the asymptotic distribution.

The results are displayed in Figs 1 and 2. It turns out that the asymptotic approximation
for well-separated state-dependent distributions is relatively poor, even for large sample sizes
such as n=500 and in this simple situation with fixed parameters for the state-dependent
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Fig. 1. PP plot of distribution of Tn for n=100 (dashed line) and n=500 (dotted line) for hypothesis
H :�11 =0 in the case 
1 =0, 
2 =2.
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Fig. 2. PP plot of distribution of Tn for n=50 (dashed line) and n=100 (dotted line) for hypothesis
H :�11 =0 in the case 
1 =0, 
2 =1.
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distributions, while for strongly overlapping state-dependent distributions the approximation
is quite good already for n=50.

(b) Further, we examine testing the hypothesis H1,3 :�1 ≥�3 as described in example 4 for
a stationary three-state Poisson HMM. We use a transition matrix as in (9), with �=0.4,

=0.2, �=0.3 and �=0.6, yielding for the state-dependent distribution �1 =�3 =0.25, �2 =0.5.
The parameters of the state-dependent distributions were specified with �1 =2, �2 =5 and
�3 =11. The asymptotic distribution of the likelihood ratio statistic Tn on the boundary of
the hypothesis H1,3 is (3).

First, we consider the described model for fixed and known values of the �s. Secondly,
the �s are considered as unknown parameters one has to estimate. For both cases, we
generate N =5000 samples of sizes n=100 and 500. The results are displayed in Figs 3 and 4
using PP plots. For fixed �s, the approximation is quite satisfactory even for small sample
sizes (n=100). Naturally, estimation of the �s increases variation of the model. But for large
sample sizes (n=500) the approximation is quite good in this case too.

4.2. Series of epileptic seizure counts

Albert (1991) proposed the use of two-state Poisson HMMs for series of daily seizure counts
of epileptics. Using the implementation of the EM (Expectation Maximization) algorithm as
suggested in Baum et al. (1970), Le et al. (1992) fit such models to the series of daily counts of
epileptic seizures in one patient participating in a clinical trial at British Columbia’s Children’s
Hospital. The originally published series consists of 225 observations; however, as indicated
in MacDonald & Zucchini (1997, p. 147), observations 92–112 should be deleted; thus, we
use the corrected data set of 204 observations.

In the neurology literature, Hopkins et al. (1985) proposed that the variation in seizure
occurrences and its dependency structure could be modelled by a Markov chain. This is incor-
porated naturally in the two-state Poisson HMM, where the two states of the chain represent
two states of seizure susceptibility. Haut (2006) pointed out that such Markovian dependence
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Fig. 3. PP plot of distribution of Tn for n=100 (dashed line) and n=500 (dotted line) for hypothesis
H1,3 in the case of fixed and known �s.
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Fig. 4. PP plot of distribution of Tn for n=100 (dashed line) and n=500 (dotted line) for hypothesis
H1,3 :�11 =0 in the case of estimated �s.

of seizure susceptibility allows estimates for the expected incidence of subsequent seizure days,
which might be useful for recognition of seizure clusters.

A relevant question in this model is whether seizures actually occur in both states of the HMM,
or whether there is only a single ‘seizure state’, whereas, in the other state, no seizures occur.

For the above-mentioned data set, MacDonald & Zucchini (1997) fitted a stationary
two-state Poisson HMM with estimated transition matrix(

0.973 0.027
0.035 0.965

)

and seizure frequencies �1 =0.262 and �2 =1.167. Thus, we intend to test whether a model
with �1 =0 could be used instead, and therefore propose to test H : �1 =0 as described in
example 2. Here, the asymptotic distribution of the likelihood ratio statistic Tn under the
hypothesis H follows (3). However, the likelihood ratio test yields a value of Tn =10.25, which
corresponds to a p-value of nearly 0. Hence, the hypothesis H is rejected, and seizures occur
in both states of the HMM.

The estimate of the transition matrix yields for the stationary distribution �̂= (0.567, 0.433).
Therefore, the estimate indicates that state 1 with low seizure susceptibility is, on average,
more frequently visited than state 2. To test whether this observation is statistically
significant, we test whether the hypothesis H :�2 ≥�1 can be rejected. Again, the asymptotic
distribution of the likelihood ratio statistic Tn on the boundary of the hypothesis is (3). For
this test, the likelihood ratio statistic is Tn =0.111 with a corresponding p-value of 0.369.
Hence, we cannot reject the hypothesis H at the 5% level; thus, there is not enough evidence
that state 1 is more often visited than state 2.
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Appendix

Definition 1
A set � ⊂ Rd is said to be approximated at ϑ0 by a cone with vertex at ϑ0, denoted by
C�,ϑ0

=C�, if

inf
z∈C�

‖z −y‖=o(‖y −ϑ0‖)

for all y ∈� and if

inf
y∈�

‖z −y‖=o(‖z −ϑ0‖)

for all z ∈C�.

A cone C with vertex at ϑ0 is such that if z ∈ C, we also have a(z − ϑ0)+ϑ0 ∈ C for all
a > 0.

Assumption 1

We have ϑ0 ∈�, and the MLE over � is strongly consistent.

Proof of (6). Set a =1, b=2. From (10.29), p. 362 in Cappé et al. (2005), we have to com-
pute the asymptotic covariance matrix of the score vector

E0
(∇ϑ log(�X1 (ϑ)) |Y1:n

)+
n−1∑
k =1

E0
(∇ϑ log(�Xk ,Xk +1 (ϑ) |Y1:n

)
, (10)

where Y1:n = (Y1, . . ., Yn). Let �12 =� and �21 =
, so that ϑ= (�, 
). Neglect the first term in (10)
for the moment. The derivative ∂/∂� (∂/∂
 is similar) of the second term are computed as

∂

∂�
log

(
�x,x′ (ϑ)

)= 1
�
�(1,2)(x, x′)− 1

1−�
�(1,1)(x, x′),

so that the relevant sum in (10) (the derivative w.r.t. � in the second term) is

n−1∑
k =1

E0

(
1
�
�(1,2)(Xk , Xk +1)− 1

1−�
�(1,1)(Xk , Xk +1) |Y1:n

)
, (11)

where

�x(y)=
{

1, if x =y
0, otherwise.

The key observation is that for �0 =
0 =1/2, the (Xk) are independent Bernoulli distributed
with success probability 1/2, and the (Yk) are also i.i.d. with a two-component mixture dis-
tribution. Using

�(i, j)(Xk , Xk +1)=�i(Xk)�j(Xk +1), i, j ∈{1, 2},

(11) can be rearranged as

2
n−1∑
k =1

E0
(
�1(Xk) |Yk

)(
E0

(
�2(Xk +1) |Yk +1

)−E0
(
�1(Xk +1) |Yk +1

))
,

and a similar expression can be obtained for ∂/∂
. Now

E0
(
�i(Xk) |Yk

)= f (Yk ;�i)
f (Yk ;�1)+ f (Yk ;�2)

, i ∈{1, 2}.
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Introducing the random variables

Zk,1 = f (Yk ;�1)
f (Yk ;�1)+ f (Yk ;�2)

f (Yk +1;�2)− f (Yk +1;�1)
f (Yk +1;�1)+ f (Yk +1;�2)

,

Zk,2 = f (Yk ;�2)
f (Yk ;�1)+ f (Yk ;�2)

f (Yk +1;�1)− f (Yk +1;�2)
f (Yk +1;�1)+ f (Yk +1;�2)

,

the components of the score are given by

Sn,1 =2
n−1∑
k =1

Zk,1, Sn,2 =2
n−1∑
k =1

Zk,2.

Although the Zk,1s are not i.i.d., the covariances for different ks are 0, and the correlation
can be computed as

�= E0Zk,1Zk,2

(E0Z2
k,1E0Z2

k,2)1/2
. (12)

For the first term in (10), one has that

E0
(∇ϑ log(�X1 (ϑ)) |Y1:n

)=E0
(∇ϑ log(�X1 (ϑ)) |Y1

)
,

of which the contribution to the asymptotic covariance matrix is zero. This proves (12),
and (6) follows from case 7 in Self & Liang (1987). Note that this example generalizes
example 4.3 in Bickel et al. (2002), who consider reversible Markov chains and thus only
have a single parameter.

Proof of (8). We use (2) and a coordinate transformation to obtain

Tn
L→T :=min

z∈H
(Z − z)T (Z − z)− min

z∈H∪K
(Z − z)T (Z − z)

=‖Z −ZH‖2 −min
(‖Z −ZH‖2, ‖Z −ZK ‖2

)
(13)

where Z is a bivariate standard normal random variable,

H =J 1/2
0 (R− ×R−) and K =J 1/2

0 (R+ ×R+),

as shown in Fig. 5, ZH and ZK denote the orthogonal projections of Z onto H and K ,
respectively, and 	= cos−1 �.

First, we calculate the distribution of T conditional on the event {Z ∈ region 1 or 1a} and
the weight P(Z ∈ region 1 or 1a). If Z is in region 1, then obviously both terms in (13) are
zero. For region 1a, the difference is zero as well, because ‖Z − ZH‖≤‖Z − ZK ‖. Hence, the
conditional distribution of T in region 1 and 1a is χ2

0. As displayed in the figure its weight is

1
2�

(
	+2

�−	
2

)
= 1

2
.

If Z is in region 2 and therefore in K , the term ‖Z −ZK ‖ is zero. Hence, the distribution of
T conditional on {Z ∈ region 2} is determined by the first term, which gives a χ2

2 distribution,
as ZH =0. The weight is given by (� − 	)/2�. Observe that Z is determined by its argument
�=arg(Z) and its length r(Z) by Z = (r cos�, r sin �), where r2 is χ2

2 distributed and � is uni-
formly distributed on [0, 2�), and r2 and � are independent. If Z is now in region 3, i.e.

�∈ [	, (	+�)/2)∪ [−(�−	)/2, 0),

one has

‖Z −ZH‖2 = r2 sin2(�−�) and ‖Z −ZK ‖2 = r2 sin2(�−	).
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H

K

(p − f) 2

f

1

1a

1a

3

3

24

4

Fig. 5. Diagram of the parameter space of example 3.

Setting

a1(�, 	)= sin2(�−�)− sin2(�−	),

for fixed � the difference

T (�)=‖Z −ZH‖2 −‖Z −ZK ‖2 = r2a1(�, 	)

has a rescaled χ2
2 distribution with density

p(t;	, �)= 1
2a1(�, 	)

exp
(

− t
2a1(�, 	)

)
.

Hence, the density of T is an averaged rescaled χ2
2 distribution P1(	) with density

h1(t;	)= 2
�−	

∫ (	+�)/2

	

1
2a1(�, 	)

exp
(

− t
2a1(�, 	)

)
d�. (14)

The weight of region 3 is given by (�−	)/2�.

For region 4, one proceeds similarly. For �∈ [0, 	−�/2)∪ [�/2, 	), one has

‖Z −ZH‖2 = r2 cos2 �

and trivially ‖Z −ZK ‖=0. Setting

a2(�)= cos2
(
�− �

2

)
,

this yields a conditional distribution P2(	) of T with density

h2(t;	)= 2
2	−�

∫ 	

�/2

1
2a2(�)

exp
(

− t
2a2(�)

)
d� (15)

with weight

2
	− (�/2)

2�
= 2	−�

2�
.
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