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Abstract

We propose a parametric test for bimodality based on the likelihood principle by

using two-component mixtures. The test uses explicit characterizations of the modal

structure of such mixtures in terms of their parameters. Examples include the univariate

and multivariate normal distributions and the von Mises distribution. The asymptotic

distribution of the proposed test is presented, and its finite sample performance is analyzed

in a simulation study. As an application, we investigate the modal structure of the cross-

sectional distribution of per capita log GDP across EU regions from 1977 to 1993 using

mixtures. While these mixtures clearly have two components over the whole time period,

the resulting distributions evolve from bimodality toward unimodality at the end of the

seventies.
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1 Introduction

Analyzing the modality of the distribution of a random sample is an important problem,

especially for proper graphical visualization of the data. In particular, it is relevant to decide

whether modes which are present in a certain fit are merely sampling artifacts or whether

they are actual features of the underlying density.

Most testing procedures for multimodality, which were suggested in the literature, are non-

parametric in nature. The arguably most popular method, which is based on kernel estimates

with the normal kernel, was suggested by Silverman (1981). He observed that for fixed ob-

servations the number of modes in such an estimate is a monotonically decreasing function

of the bandwidth. Using this fact Silverman (1981) defined the k-critical bandwidth hk as

the minimal bandwidth for which the kernel estimate still just has k modes. If hk exceeds

a critical value, which is constructed from a bootstrap procedure, then the hypothesis for

k modes of the underlying density is rejected. See also Mammen et al. (1992), Fisher et

al. (1994) and Hall and York (2001). A test for unimodality against multimodality, which is

based on measuring the distance between the empirical distribution function and the class

of unimodal distribution functions, was introduced by Hartigan and Hartigan (1985), it is

called the dip test. Müller and Sawitzki (1991) used the so-called excess mass functional to

construct a test for k-modality. For k = 1 their test is equivalent to the dip test. See also

Fisher and Marron (2001).

The notion of multimodality of the distribution of a population is closely related to the notion

of population heterogeneity. A popular way to model population heterogeneity parametri-

cally is via mixture models. In particular, the likelihood ratio test for homogeneity in two-

component mixtures has been extensively studied in recent years, cf. e.g. Chen et al. (2001).

However, mixtures with two distinct components need not be bimodal, and two component

mixtures of unimodal component densities can have more than two modes. Therefore, there is

no immediate connection between the number of components in a mixture and the number of
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modes of the resulting density. Nevertheless, the modal structure of two-component mixtures

of certain parametric families, notably the normal distribution (Richardson and Fry, 1969)

and the von Mises distribution (Mardia and Sutton, 1975), is completely known in terms of

the parameters of the mixture. For two-component mixtures, for which such an explicit char-

acterization of the modal structure is available, we construct a likelihood ratio (LR) test for

unimodality against bimodality. The asymptotic distribution of the LR test for bimodality,

though not a standard χ2-distribution, can be deduced from existing results on the behavior

of LR statistics on the boundary of the parameter space, cf. Chernoff (1954) and Self and

Liang (1987).

When compared to the nonparametric methods mentioned above, the LR test has certain

merits as well as certain limitations. Concerning the advantages, the LR test is more pow-

erful than competing nonparametric methods if the distributional assumptions are satisfied.

Further, using von Mises mixtures, the LR test can easily be applied to circular data. Note

that for circular data, only few methods are available, notably the tests by Fisher and Marron

(2001) and by Basu and Jammalamadaka (2002). Moreover, using recent results by Kay and

Lindsay (2005) on the modal structure of multivariate normal mixtures, it can be extended to

the multivariate setting where no methods seem to be available yet. Concerning limitations,

the LR test can only test for unimodality against bimodality and not for k against more than

k modes, since there are no parametric descriptions for these cases. Further, it loses power if

the mixture component densities are not normally distributed but have heavier tails (like the

t-distribution).

Section 2 describes the asymptotic distribution of the LR test for bimodality in two-component

mixtures and gives two examples. In Section 3 we investigate the performance of the LR test

via a simulation study. As an application, in Section 4, following Pittau (2005) and Pittau

and Zelli (2006) we analyze the cross-sectional distribution of per capita log GDP across

EU regions via mixtures. After excluding the mere urban areas, it turns out that a two-

component mixture model with equal variances for the two components adequately describes
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the data for all years. We further investigate whether the distribution is actually bimodal,

both by using Silverman’s test as well as via the LR test for bimodality. Silverman’s test

can never reject the hypothesis of unimodality. In contrast, for the years 1977-79 the LRT

rejects unimodality with level 5%, while in the following years, it can no longer reject this

hypothesis with increasing p-values. Thus, while the cross-sectional distribution of per capita

log GDP in the EU regions under investigation remains heterogeneous in the sense of being

well-modeled by a two-component mixture of normal distributions, these components only

significantly result in a bimodal distribution in the years 1977-1979, while in the following

years the two components start to merge and form a unimodal distribution.

2 The likelihood ratio test for bimodality

Let f(x; θ), θ ∈ Θ ⊂ R
d, be a parametric family of densities, and consider the two component

mixture family

f(x; θ1, θ2, p) = pf(x; θ1) + (1 − p)f(x; θ2),

where

(θ1, θ2, p) ∈ Θ × Θ × [0, 1] = Θmix ⊂ R
2d+1.

In order to allow for possible joint parameters of the component densities (e.g. equal vari-

ances), we consider a subset Emix ⊂ Θmix, where Emix ⊂ R
q for a minimal q ≤ 2d + 1.

Suppose that the mixture density is at most bimodal, so that we can split the set Emix dis-

jointly into Emix = Eunim ∪ Ebim, the unimodal part Eunim and the bimodal part Ebim. We

will denote the boundary between Ebim and Eunim by ∂Eunim, i.e. ∂Eunim = Eunim ∩ Ebim,

where Ebim denotes the closure of Ebim. Given observations X1, . . . ,Xn from the mixture

density, we consider the log-likelihood function

Ln(θ1, θ2, p) =
n∑

k=1

log f(Xk; θ1, θ2, p).

Assumption 1. The partial derivatives of log f(x; θ1, θ2, p) of order 3 with respect to θ1, θ2

and p exist a.s., at least in a neighborhood N of the true value (θ0
1, θ

0
2, p

0).
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Assumption 2. For (θ1, θ2, p) ∈ N , the first and second order partial derivatives of

f(x; θ1, θ2, p) are uniformly bounded in absolute value by a function F (x) with finite in-

tegral, and the third order partial derivatives of log f(x; θ1, θ2, p) are uniformly bounded in

absolute value by a function H(x) with EH(X1) < ∞.

Assumption 3. The expectation of the matrix of second order partial derivatives of

log f(x; θ1, θ2, p) is finite and positive definite for (θ1, θ2, p) ∈ N .

Theorem 1. Suppose that the true parameter vector (θ0
1, θ

0
2, p

0) of the mixture density lies

on the boundary ∂Eunim, and that locally around (θ0
1, θ

0
2, p

0), ∂Eunim is a smooth (q − 1)-

dimensional surface in R
q. If furthermore Assumptions 1 - 3 hold true, then we have that

Rn := 2
(

sup
(θ1,θ2,p)∈Emix

Ln(θ1, θ2, p) − sup
(θ1,θ2,p)∈Eunim

Ln(θ1, θ2, p)
) D→ (χ2

0 + χ2
1)/2, (1)

where χ2
0 is the point measure at zero and χ2

1 is the chi-square distribution with 1 degree of

freedom.

This result follows from the theory of the likelihood ratio test for parameter vectors which lie

on the boundary of the parameter space, cf. Chernoff (1954) and Self and Liang (1987). Note

that if the true parameter vector lies in the interior of Eunim, then due to consistency, the

unrestricted maximum likelihood estimator will asymptotically lie in a neighborhood U of θ0

with U ⊂ Eunim, so that Rn → 0 in probability. Therefore the test will also asymptotically

keep the level in this case.

Example 1 (Normal distribution). For the normal density f(x;µ, σ) = 1√
2πσ

e

(
− (x−µ)2

2σ2

)
we

obtain the general two component mixture as follows:

f(x; p, µ1, µ2, σ1, σ2) = p f(x;µ1, σ1) + (1 − p)f(x;µ2, σ2), (2)

where 0 ≤ p ≤ 1 and without loss of generality, µ2 ≥ µ1. Introducing the parameters

r = σ1/σ2 and d = (µ2 − µ1)/(2
√

σ1σ2), one easily sees that f(x; p, µ1, µ2, σ1, σ2) has the

same number of modes as f(x; p,−d, d, r, 1/r), cf. Behboodian (1970). Thus, bimodality
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solely depends on the three parameters (p, d, r). Let us mention that such an argument can

be made for general location-scale families (e.g. also for the t-distribution with fixed degrees

of freedom). In case of equal variances, σ1 = σ2 = σ, one obtains r = 1, and the conditions

read as follows: f(x; p, µ1, µ2, σ) is unimodal if and only if d ≤ 1 or if

d > 1 and | log(1 − p) − log p| ≥ 2 log(d −
√

d2 − 1) + 2d
√

d2 − 1, (3)

otherwise, it is bimodal. In Fig. 1, the region of bimodality is depicted, where for r 
= 1 the

characterization in Robertson and Fryer (1975) was used.

Figures 1 and 2 about here

If we assume that the variances σ1 = σ2 = σ are equal (though possibly unknown) and that

p is known and fixed, then the smoothness assumption on the boundary of the unimodal

parameter domain is satisfied everywhere, and thus Theorem 1 holds true.

This is e.g. obvious for the case p = 1/2, in which case the mixture is unimodal with mode

at (µ1 + µ2)/2 if and only if µ2 − µ1 ≤ 2σ. For other values of p it follows from equation (3).

However, in case of variable p and equal variances, the boundary has a singularity for d = 1

and p = 1/2, which follows from equation (3) by taking equality there and the limit d → 1.

If d = 1 and p = 1/2, the likelihood ratio statistic will be asymptotically stochastically

smaller than the limit distribution in (1). This is because the angle between the tangents to

the bimodal region at these points is less than π, so that the unrestricted ML estimator will

in more than 50% of all cases fall into the unimodal region, and the LR statistic will be zero.

See also Fig. 1. In summary, a test based on the critical value of the 1/2(χ2
0 +χ2

1) distribution

will asymptotically keep the level everywhere in the unimodal parameter space. Extensions

to the characterization of the number of modes of higher dimensional normal distributions

were recently obtained by Ray and Lindsay (2005).

Example 2 (Von Mises distribution). The von Mises distribution is given by the density

f(x;µ, κ) =
1

2πI0(κ)
exp

(
κ cos(x − µ)

)
, 0 ≤ x < 2π,
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where µ ∈ [0, 2π), κ > 0 and I0(κ) is a norming factor given by the modified Bessel function

of the second kind. The two component mixture of von Mises distributions will be denoted

by

f(x; p, µ1, µ2, κ1, κ2) = p f(x;µ1, κ1) + (1 − p)f(x;µ2, κ2),

where w.l.o.g. µ2 − µ1 =: d ∈ [0, π]. Mardia and Jupp (1975) give precise conditions for

bimodality for general parameters constellations. Here we only review their results for the

case of equal concentration parameters, i.e. κ1 = κ2 = κ. In this case, the mixture is unimodal

if and only if either d = 0 or

• d = π and 0 ≤ p ≤ (1 + exp(2κ))−1 or (1 + exp(−2κ))−1 ≤ p ≤ 1 or

• 0 < d < π and either

– sin d < 2κ sin3(d/2), 0 ≤ p ≤ 1, or

– sin d ≥ 2κ sin3(d/2) and 0 ≤ p ≤ −t(δ)/(1− t(δ)) or 1/(1− t(δ)) ≤ p ≤ 1, where

δ is the solution of

2κ cos3 δ − κ(1 + cos d) cos δ − 2 cos(d/2) = 0, 0 < δ < d/2, (4)

and

t(δ) = −sin(d/2 + δ)
sin(d/2 − δ)

exp
( − 2κ sin(d/2) sin δ

)
.

The conditions for von Mises mixtures are more complicated than those for normal mixtures,

since it is not a simple location-scale family (this notion is not defined for circular distrib-

utions). Still, although one has to distinguish several cases, these cases merge continuously.

For example, for sin d = 2κ sin3(d/2), the mixture is still unimodal for all 0 ≤ p ≤ 1. Further,

for d → π, one has that −t(δ)/(1− t(δ)) → (1 + exp(2κ))−1 (and similarly on the other side).

In Fig. 2, the region of bimodality is displayed.

For fixed p, Theorem 1 is again generally applicable. However, for p variable and equal con-

centration parameters, there occurs a singularity on the boundary of the set of unimodal
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parameter constellations for p = 0.5 if sin d = 2κ sin3(d/2). Again, the test will nevertheless

asymptotically keep the critical value.

3 Simulations

In this section we conduct a simulation study in order to analyze the practical feasibility of

the LR test for bimodality.

First let us investigate the quality of the approximation by the asymptotic distribution as

given in Theorem 1. To this end, for certain parameter constellations on the boundary of

the unimodal region we simulate the actual level of the test when using asymptotic critical

values. Here we use 104 samples of various sizes. Further, direct numerical maximization of

the log-likelihood function is employed, and for the constrained estimate we reparametrize the

problem in order to use unconstrained maximization. The results for the normal distribution

are displayed in Table 1, simulations for the von Mises distribution led to similar results. It

turns out that the test keeps the nominal level quite well even for moderate sample sizes,

both for normal and von Mises mixtures, as long as either equal variances (or concentration

parameters) are employed or if the variances are assumed to be known. However, further

simulations indicated that if both variances are allowed to vary, the approximation is rather

inaccurate and should not be used.

Table 1 about here

Now let us investigate the power properties of the LR test for bimodality. For simplicity

we restrict ourselves to normal mixtures, and we compare the performance with Silverman’s

(1981) test and with the Dip test by Hartigan and Hartigan (1985). When implementing

Silverman’s (1981) test we use 1000 bootstrap replications to estimate the critical value for

the bandwidth. Further the R-library “Diptest” is used for the Dip test by Hartigan and

Hartigan (1985). We consider several alternative scenarios. In each scenario 1000 samples of
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various sizes are generated.

a. First alternative: a normal mixture f1(x) = f(x, 0.5,−1.5, 1.5, 1, 1). The density is sym-

metric and clearly bimodal, cf. Fig. 3. where also the unrestricted ML fit and the ML fit

restricted to the unimodal region are displayed for a sample from f1. Here we use only equal

variances, and σ is allowed to vary. The LR test performs slightly superior to Silverman’s

test, and both outperform the Dip test. See Table 2 for the simulation results.

Fig. 3 and Table 2 about here

b. Second alternative: a normal mixture f2(x) = f(x, 0.3,−1.5, 1, 0.75, 0.75). The density

is asymmetric but bimodal, cf. Fig. 4. Again we only use equal variances for the fit, and

σ is allowed to vary. The results are displayed in Table 3. The dip test has no significant

power exceeding the level for this hypothesis for sample sizes up to n = 500, and the LR test

strongly outperforms Silverman’s test.

Fig. 4 and Table 3 about here

c. Third alternative: a normal mixture f3(x) = f(x, 0.6,−1.5, 1.4, 0.6, 1.4). The density is

asymmetric but bimodal, cf. Fig. 4. Here we use distinct variances which are assumed to be

known. Only the LR test has a reasonable power against this alternative, and therefore we do

not present a table for this simulation setting. In fact, the comparison is not really fair since

the LR test uses the exact values of the variances, which are hardly available in practice.

d. We also investigated the behavior of the LR test for bimodality if the distributional as-

sumption of normal mixtures is not satisfied, and briefly report the results. We simulated

1000 samples of sizes 200 and 500 from a mixture of two t distributions with 5 degrees of

freedom. One component has location parameter 0 and the other 3. Both have unit scaling

parameter, and a weight of p = 0.4 for the first component is used. The density is clearly

bimodal. However, due to the heavy tails of the t distribution, the variance in the normal fit

is typically too large. Therefore the modes in the normal mixture are much less distinctive

than in the t mixture, and the LR test looses power. In fact, the LR test looses much power
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as compared to Silverman’s test, while the LR test and the dip test perform similarly.

4 Application to the cross-sectional regional income distribu-

tion in the EU

The convergence hypothesis states that poorer economies are growing faster than richer ones,

hence, catching up such that eventually there will be no differences between real average

per capita income across countries. This would imply a unimodal cross-national or even

cross-regional distribution of income which should become constantly less dispersed. The

literature distinguishes between two types of convergence, β-convergence and σ-convergence

(Sala-i-Martin 1996). By definition, β-convergence occurs if the coefficient on initial income

is negative when regressed on the change of log real income, or in words, if initially poorer

economies grow on average faster than the initially rich. Moreover, σ-convergence is defined

as the decrease of the dispersion of the entire income distribution measured by the standard

deviation of log incomes. If there are no other control variables in the growth regression, we

speak of absolute β-convergence, which would be a necessary but not a sufficient condition for

σ-convergence. Thus, for the convergence hypothesis to hold we need absolute ß-convergence

and σ-convergence such that the income distribution converges to one common mode.

However, the extended Solow growth model, given its assumptions, only implies a restricted

type of conditional β-convergence. Indeed, if two groups of countries are governed by dif-

ferent parameters, but display within group homogeneity of parameters, it would imply a

divergence of the two groups, but a within group convergence of economies to their respec-

tive group steady state. Quah (1997) developed a theoretical and empirical framework for

so called club convergence from the viewpoint of income distribution dynamics, implying an

emerging twin peaks phenomenon for the global cross-country income distribution. Bianchi

(1997) finds empirical evidence for a bimodal cross-country income distribution occurring in

the 1970s for all subsequent years. For regions in the European Union this picture however
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is less clear (cf. e.g. Quah (1996) and Le Gallo (2004)).

The framework of EU regions is of special interest, since cohesion among EU regions has been

a major priority of all EU treaties so far. The European Development Fund (EDF) has been in

operation since the very beginning in 1959. Starting with 3.4 million Euro, it went up to 244.7

million Euro in 1977 and 1353.6 million Euro in 1993. Other relevant policy outcomes are the

European Agricultural Guidance and Guarantee Fund (EAGGF) established in 1962 and the

European Regional Development Fund (ERDF) created in 1975. The EAGGF started with

28.7 million Euro in 1975, increasing to 6587.1 million Euro in 1977 and 34935.8 million Euro

in 1993. The EDF already started with 150 million Euro and increased to 400 million Euro

in 1977 and 5382.6 million Euro in 1993.3 Hence, one should expect that policy interventions

assimilate the parameters of the extended Solow growth model in the European Union over

time, implying absolute convergence in the long-run. Furthermore, Barro and Sala-I-Martin

(1991) argue that convergence of incomes between regions is in general supported and ac-

celerated by an economic environment without restrictions on the free movement of capital,

labor and tradeable goods, which is the case in the European Union.

We use a dataset on regional GDP in the European Union available from CRENoS 4, covering

the period from 1977 to 1993 and including administrative regions defined by the Nomencla-

ture of the Territorial Units for Statistics (NUTS) established by Eurostat. The GDP figures

are given in 1990 constant prices and are converted to Purchasing Power Standard (PPS).

The dataset includes regions from all EU-12 member countries at that time. Following Pittau

(2005) and Pittau and Zelli (2006) we use the territorial units as follows: NUTS-0 (countries)

for Denmark, Luxembourg and Ireland; NUTS-1 for Belgium (3 Régions), West-Germany

(11 Länder), the Netherlands (4 Landsdelen) and UK (9 Government Office Regions and 3

Countries); NUTS-2 for Italy (20 Regioni), France (22 Régions), Spain (17 Communitades

Autonomas), Portugal (5 Comissaoes de Coordenacao Regional), Greece (13 Development
3For these fact see: European Commission (2000), The Community Budget: The Facts in Figures.
4Center for North South Economic Research, http://www.crenos.it
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Regions). Though not equally sized, these regions are, due to administrative structure of the

different countries, the best units available for comparisons below the national level. Urban

regions usually have their own economic structure and are not comparable to regions covering

both urban and rural parts. Therefore we decided to exclude the mainly urban regions from

our analysis (Brüssel B3, Bremen D4, Hamburg D5, Ile de France F1 and Luxembourg LU).

Pittau (2005) and Pittau and Zelli (2006) analyze the data set (without the exclusion of the

urban regions) by using finite mixtures of normal distributions. For our more homogeneous

data set, in a first step we determine the number of components in the mixture as well as the

structure of the mixture (in particular equal or unequal variances for the components of the

mixture). To this end we use the model selection criteria AIC and BIC. Table 4 shows the

results for the years 1977 and 1990. Both model selection criteria select the two-component

mixture model with equal variances for the components. This is in fact true for all years from

1977-1993, thus, it is the model of choice for this period.

Table 4 about here

Pittau (2005) and Pittau and Zelli (2006) also test the number of components by using a

bootstrap version of the likelihood ratio test. Here, in order to confirm that two components

are indeed present in the data, we use the modified likelihood ratio test for homogeneity (cf.

Chen, Chen and Kalbfleisch, 2001). In contrast to the usual LRT for homogeneity, this test

retains a comparatively simple limit theory, thus a parametric bootstrap (with the resulting

loss in power) is not necessary. We test the hypothesis of a single normal distribution against

a two-component mixture with equal (but unkown) variance, and to this end use a version

of the modified LRT with a structural parameter as investigated in Chen and Kalbfleisch

(2005). They show that the χ2
2 distribution is an asymptotic upper bound for the distribution

of the modified LRT statistic in this case. Based on this bound we find p-values of less than

0.001 for all years in the period 1977-1993, thus, there is strong statistical evidence of two
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components in the distribution.

Nevertheless, as discussed in the introduction this does not necessarily imply that the distri-

bution is bimodal, so that the components are strongly pronounced. Therefore, we test for

unimodality against bimodality, both by using the LRT for bimodality in a two-component

normal mixture with equal variances, as well as using Silverman’s test. The results are dis-

played in Table 5. While Silverman’s test never rejects the hypothesis of a single mode, the

LRT rejects in favor of bimodality in 1977–1979. Afterward, the hypothesis can no longer be

rejected, indicating that the two groups, though still present, start to merge. Fig. 5 shows

the restricted unimodal and the unrestricted fit for the years 1977 and 1993, respectively.

Table 5 and Fig. 5 about here

Conclusions can be drawn both from an economical and a statistical point of view. Econom-

ically the empirical results indicate that the two component mixture describing the cross-

regional income distribution in the European Union became less and less dispersed, meaning

that well separated clusters of poor and rich regions in the EU moved closer together and

might tend to converge to a single group in the long-run. However, further research is nec-

essary to evaluate the long-run impact of EU cohesion policy on regional GDP, of special

interest would be an analysis of the distribution dynamics past the more recent EU enlarge-

ments. From a statistical point of view, we find, that the LRT is able to detect a second mode

in a real-data application, while Silverman´s test is not able to do so.
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Table 1: Simulated level of Rn on the boundary for normal mixtures, using asymptotic critical

values

scenario free parameters sample size nominal level simulated level

µ1 = 0, µ2 = 3 µ1, µ2, p 100 0.10 0.12

σ1 = σ2 = σ = 1.3 0.05 0.059

p = 0.442 0.01 0.015

250 0.10 0.11

0.05 0.057

0.01 0.012

µ1, µ2, p, σ 250 0.10 0.14

0.05 0.072

0.01 0.016

500 0.10 0.13

0.05 0.066

0.01 0.014

µ1 = 0, µ2 = 2.5 µ1, µ2, p 100 0.10 0.16

σ1 = 1.1, σ2 = 0.8 0.05 0.086

0.01 0.019

250 0.10 0.10

0.05 0.052

0.01 0.011
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Table 2: Power under first alternative, the normal mixture f1 = f(x, 0.5,−1.5, 1.5, 1, 1)

sample size nominal level LR Silverman’s Dip

200 0.10 0.89 0.77 0.30

0.05 0.80 0.63 0.20

0.01 0.53 0.35 0.06

500 0.10 0.99 0.97 0.60

0.05 0.98 0.92 0.47

0.01 0.93 0.75 0.24

Table 3: Power under second alternative, the normal mixture f2 = f(x, 0.3,−1.5, 1, 0.75, 0.75)

sample size nominal level LR Silverman’s

200 0.10 0.80 0.57

0.05 0.70 0.39

0.01 0.45 0.11

500 0.10 0.99 0.97

0.05 0.98 0.92

0.01 0.93 0.75

Table 4: Model selection criteria for mixtures models fitted to the cross-sectional log-income

distribution in of European regions

comp. variances no. param. AIC 1977 BIC 1977 AIC 1990 BIC 1990

1 - 2 -131.70 -126.39 -133.96 -128.66

2 equal 4 -160.99 -150.38 - 145.47 -134.85

distinct 5 -159.56 -146.29 -144.26 -130.97

3 equal 6 -156.99 -141.07 -141.47 -125.55

distinct 8 -154.09 -132.86 -144.14 -122.91

18



Table 5: P-values for tests for unimodality for the distribution of log GDP PPS per capita in

European regions

year p-val LRT p-val. Silverman

1977 0.006 0.14

1978 0.009 0.23

1979 0.042 0.29

1980 0.105 0.28

1985 0.222 0.98

1990 0.214 0.69

1993 0.347 0.54
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Figure 1: Regions of bimodality of the

normal distribution, where d = (µ2 −
µ1)/(2

√
σ1σ2) and r = σ1/σ2.
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Figure 2: Regions of bimodality of the

von Mises distribution, where µ = µ2 −
µ1 and κ1 = κ2 = κ.
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Figure 3: Density of normal mixture f1(x) = f(x, 0.5,−1.5, 1.5, 1, 1) (solid line), together with unre-

stricted fit to sample of size 500 from f1 (dashed line) and restricted unimodal fit (dotted line)
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Figure 4: Densities of normal mixtures f2(x) = f(x, 0.3,−1.5, 1, 0.75, 0.75) (solid line) and f3(x) =

f(x, 0.6,−1.5, 1.4, 0.6, 1.4) (dashed line)
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Figure 5: Unrestricted (solid lines) and restricted unimodal (dashed lines) fits to the cross-sectional

distribution of log GDP PPS per capita for European regions in the years 1977 (left) and 1993 (right).
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