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Abstract

The asymptotic distribution of the likelihood ratio test statistic in two-sample testing problems for hidden Markov models is
derived when allowing for unequal sample sizes as well as for different families of state-dependent distributions. In both cases under
regularity conditions the limit distribution is a standard �2-distribution, and in particular does not depend on the ratio of the distinct
sample sizes. In a simulation study, the finite sample properties are investigated, and the methodology is illustrated in an application
to modeling the movement of Drosophila larvae.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov models (HMMs) are a class of stochastic processes applied in various fields of dependent data
analysis (see Cappé et al., 2005 and MacDonald and Zucchini, 1997 for descriptions of diverse applications). An HMM
consists of two ingredients, an unobservable finite-state Markov chain (Xk) with state space M and an observable
stochastic process (Yk) such that (i) the (Yk) are conditionally independent, given the (Xk) and (ii) given the (Xk), the
distribution of Yj depends on Xj only. Typically it is assumed that the state dependent distributions, i.e. the distributions
of Yk given that Xk = i, i ∈ M, come from a parametric family (f�)�∈� of densities or discrete distributions. Therefore,
the unknown parameters in an HMM involve both the transition probabilities of the Markov chain and the parameters
of the state dependent distributions. Note that since the Markov chain (Xk) is unobservable, inference has to be based
on the (Yk) alone.

The major approach to estimate the parameters in an HMM is via likelihood-based methods. Strong consistency of
the maximum likelihood estimator (MLE) was proved by Leroux (1992). Bickel et al. (1998) established the asymptotic
normality of the MLE under Cramér-type conditions. The likelihood-ratio test (LRT) for HMMs in the one-sample
case was studied by Giudici et al. (2000). They show that under regularity conditions both on the HMM and on the
structure of the hypothesis, the standard asymptotic �2-distribution occurs under the hypothesis.

In this paper we study the LRT for HMMs in two-sample problems. Such testing problems often arise in practical
applications when using HMMs. For example, MacDonald and Zucchini (1997) model the behavior of 24 locusts
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(locusta migratoria) via multivariate HMMs. These locusts were separated into two groups, according to whether they
were recently fed or not, and a multivariate HMM was fitted to each group consisting of 12 animals. MacDonald and
Zucchini (1997) concluded from the parameter estimates that the behavior of fed and unfed subjects differs; such a
statement can be formally tested by a two-sample LRT for equality of the parameters. This situation occurs if one
models two (or more) time series via HMMs, where the time series are related from the context (e.g. movement of
two animals from the same species), but where the actual parameter values are expected to differ (e.g. fed and unfed
animals).

On the other hand, if one models several time series via HMMs, where it is reasonable to assume that the HMMs, or at
least some relevant parameters coincide (e.g. movement of two animals from the same species under equal conditions),
the LRT should not reject the corresponding hypothesis if the HMMs provide a good fit. Here we consider the circular
time series of direction changes of several Drosophila larvae, which were previously analyzed by means of HMMs by
Holzmann et al. (2006). It turns out that at least the test for equality of the transition parameters of two distinct series
can typically not be rejected.

Rydén et al. (1998) divide a long time series of the S&P 500 US stock price index into 10 subseries, and fit HMMs
to each of these subseries. Using pairwise tests, one can now test for structural changes between series for different
periods.Although independence between the samples will in general not hold exactly in this context, if the two subseries
to be compared are sufficiently separated, they will typically be approximately independent. While Rydén et al. (1998)
use subseries of equal length, in general it might also be reasonable to use breaks which lead to subseries of different
lengths.

When discussing the LRT for HMMs in two-sample problems, we will allow for different sample sizes as well as for
different parametric families of state-dependent distributions, and study the LRT for joint multi-dimensional restrictions
on the parameters of both HMMs. It turns out that as long as both sample sizes are of the same order, the asymptotic
distribution is still a standard �2-distribution and does not depend on the ratio of the sample sizes. Our results apply
in particular to situations with equal state spaces and equal parametric families for the state-dependent distributions, if
it is the purpose to test for equality of some of the parameters. In principle, all of our results could be extended to the
multi-sample case, however, for simplicity of presentation we restrict ourselves to the two-sample case.

Let us mention that Michalek et al. (2001) considered the LRT in the two-sample case for two-state Gaussian HMMs
with equal sample sizes. They reduced the problem to the one-sample case by constructing a superimposed HMM via
adding the two time series. However, this method only works in very special situations, in particular it requires equal
sample sizes and linear data, while we treat the problem in full generality.

The paper is organized as follows. In Section 2 we introduce some further notation and definitions. Section 3
contains the asymptotic distribution theory for the LRT in the two-sample case. The finite sample properties are
investigated in Section 4 by means of a simulation study. In Section 5, we give an application to modeling the circular
time series of direction changes of Drosophila larval movement. The data set can be obtained from
http://www.stochastik.math.uni-goettingen.de/pub/. Formal assumptions and proofs are deferred to an appendix.

2. Notation

Here we introduce some further notation. Let (Xk)k �1 be a stationary, finite-state Markov chain with state space
M={1, . . . , m}, transition probabilities �ab=P(Xk+1=b|Xk=a), and unique stationary distribution �=(�1, . . . , �m).
Further let (Yk)k �1 be a stochastic process taking values in a Borel-measurable subset Y of Euclidean space, such that
given (Xk)k �1, the (Yk)k �1 are independent and the distribution of Yk depends on Xk only. These conditional distribu-
tions are called the state-dependent distributions, we assume that they come from a parametric family {f (y; �)|� ∈ �}
of densities w.r.t. a �-finite measure � on Y, so that the distribution of Yk , given that Xk = a, has density f (·; �a). We
assume that both the parameters of the transition matrix {�ab} = {�ab(ϑ)} and the parameters of the state-dependent
densities �a = �a(ϑ) depend on a parameter ϑ ∈ 	 ⊂ Rd . The standard parametrization is given by

ϑ = (�11, . . . , �1,m−1, �21, . . . , �m,m−1, �1, . . . , �m).

The subindex 0 indicates the true value ϑ0 and the true distribution P0 of the bivariate process (Xk, Yk)k �1.
In the following we will consider two independent HMMs, so that the bivariate processes (X1

k , Y
1
k )k �1 and

(X2
k , Y

2
k )k �1 are independent. In general we allow different image spaces Yj , state spaces Mj , different parametric
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families {f j (y; �)|� ∈ �j }, j = 1, 2, for the state-dependent densities and also different parameterizations ϑj ∈ 	j ⊂
Rdj

. If we assume equality of these objects, we call the two HMMs homogeneous and drop the j-index from the notation.
In this case we also assume that they have the same parametrization. Let us stress that homogeneous does not mean
that the two HMMs have the same distributions, since the actual parameter values are allowed to differ.

3. Two-sample likelihood ratio tests for HMMs

In this section we study the asymptotic distribution of the LRT statistic for HMMs in two-sample problems.
Let (X

j
k , Y

j
k )k �1, j = 1, 2, be two independent HMMs. One observes Y 1

1 , . . . , Y 1
n1

and Y 2
1 , . . . , Y 2

n2
, and we assume

that for n = n1 + n2 there is a c ∈ (0, 1) such that as n1, n2 → ∞,

n1

n
→ c,

n2

n
→ 1 − c, (1)

thus, n1 and n2 are of the same order of magnitude, i.e. n1/n2 → c/(1 − c) ∈ (0, ∞). Let

Lnj
(ϑj ) := log pnj

(Y
j
1 , . . . , Y

j
nj

; ϑj ), j = 1, 2

denote the log-likelihood functions, as given in Eq. (1) in Bickel et al. (1998). If both HMMs satisfy Assumptions 6–9
(see the appendix), the normalized second derivatives of the log-likelihood functions, evaluated at sequences ϑn → ϑ0,
converge P

j
0 -almost surely (a.s.) to constant matrices −J

j
0, where the J

j
0 are called the Fisher information matrices,

cf. Lemma 2 in Bickel et al. (1998). Further let

Lc
n(ϑ

1, ϑ2) = Ln1(ϑ
1) + Ln2(ϑ

2)

= log pn1(Y
1
1 , . . . , Y 1

n1
; ϑ1) + log pn2(Y

2
1 , . . . , Y 2

n2
; ϑ2)

be the joint log-likelihood function. We want to test joint hypotheses on the parameters ϑj , j =1, 2. To this end assume
that the joint hypothesis H0 can be expressed as a regular r-dimensional restriction of the form H0 : R(ϑ1, ϑ2) = 0,
where R is a two-times differentiable map into Rr with continuous derivatives from some neighborhood around the
true parameter (ϑ1

0, ϑ
2
0), i.e.

R ∈ C2(B, Rr ), B := B
(ϑ
1
0, ϑ

2
0) ⊂ 	1 × 	2 for some 
 > 0.

Denote by ϑ̂
j
n, j = 1, 2, the unrestricted MLEs and by ϑ̃

j
n, j = 1, 2 the MLEs restricted to the parameter values under

the hypothesis, i.e.

(ϑ̂1
n, ϑ̂

2
n) := arg max

(ϑ1,ϑ2)∈	1×	2
Lc

n(ϑ
1, ϑ2), (ϑ̃1

n, ϑ̃
2
n) := arg max

{R(ϑ1,ϑ2)=0}
Lc

n(ϑ
1, ϑ2).

In the following we will assume that if the hypothesis is true, i.e. if R(ϑ1
0, ϑ

2
0) = 0, both the unrestricted and the

restricted MLEs are strongly consistent. In case of a single HMM Leroux (1992) proved the consistency of the MLE
under regularity conditions. For the restricted MLE consistency can be shown in a similar fashion, for details see
Dannemann (2006). The asymptotic distribution of the LRT is described in the following result.

Theorem 1. Suppose that Assumptions 6–11 (cf. the appendix) hold for two independent HMMs (X
j
k , Y

j
k )k �1, j =1, 2,

respectively and that the Fisher information matrices Jj
0, j = 1, 2, are non-singular. Further assume that under the

hypothesis given by a regular, r-dimensional restriction H0 : R(ϑ1, ϑ2) = 0, the restricted MLE is strongly consistent.
Then under H0, the likelihood-ratio test statistic �n is asymptotically �2

r -distributed, i.e.

�n = 2(Lc
n(ϑ̂

1
n1

, ϑ̂2
n2

) − Lc
n(ϑ̃

1
n1

, ϑ̃2
n2

))
D−→ �2

r ,

under P c
0 = P 1

0 ⊗ P 2
0 as n1, n2 → ∞ such that (1) holds.

Thus, the asymptotic distribution does not depend on the ratio of the sample sizes. The formal proof of the theorem
is given in the appendix.
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Remark 2. For equal sample sizes n1 = n2 the theorem can easily be reduced to the one-sample case by considering
a superimposed HMM. In fact, the bivariate process X = (X1

k , X
2
k )k �1 is a stationary, finite-state Markov chain and

further, Y = (Y 1
k , Y 2

k )k �1 satisfies the properties of an HMM w.r.t. X. Therefore, in this situation the result follows
from the one-sample version (Giudici et al., 2000). Note that this way of constructing a superimposed HMM differs
from the one suggested by Michalek et al. (2001).

Remark 3. Suppose that the two HMMs are homogeneous (i.e. have equal state spaces and families of state-dependent
distributions). Using Theorem 1 we can construct a test for equality of some or all components of the parameters H0 :
ϑ1,i = ϑ2,i , i = 1, . . . , r with r �d . In this case, the LRT is asymptotically �2-distributed with r degrees of freedom
(d.f.). In particular, for r = d ,

�n = 2

(
sup
ϑ1,ϑ2

Lc
n(ϑ

1, ϑ2) − sup
ϑ

Lc
n(ϑ, ϑ)

)
D−→ �2

d .

To obtain a test with nominal level � we reject H0 for �n > �2
d,1−�.

Remark 4. Even if the two HMMs are non-homogeneous, there are relevant problems leading to joint tests. For
example, if the families of state-dependent distributions differ but if the state-spaces are the same, using Theorem 1 one
can construct tests on the parameters of the transition matrices of the Markov chains, e.g. for equality of these parameters.

Remark 5. As Giudici et al. (2000) point out, the standard asymptotic �2-distribution for the LRT does not apply when
testing for the number of states of an HMM in the one-sample case. Similarly, for the two-sample situation, standard
asymptotics do not hold when testing for equality of the number of states.

4. Simulation experiments

We now investigate the finite sample properties of the proposed tests in a simulation study.
As advocated by MacDonald and Zucchini (1997) andAltman (2007), for the numerical computation of the maximum

likelihood estimates we use direct maximization via a Newton-type algorithm, specifically the function nlm of the
software package R. This is somewhat faster and simpler than the EM algorithm, although the results depend more
sensitively on the starting values, and in practice one should use several distinct starting values in order to find the
global maximum. However, in simulations this causes no problem since we can simply choose the true values as
starting values. Furthermore, for the simulation the Markov chains are assumed to be in equilibrium, i.e. the stationary
distribution � is used as initial distribution.

We consider two two-state Gaussian HMMs with transition matrices �j
12=0.4, �j

21=0.2, j =1, 2, mean values �j
1 =0,

�j
2 =2, j=1, 2 and variances (�j

i )
2=1, i, j=1, 2. The standard parametrization ϑ=(ϑ1, ϑ2) with ϑ1=(a1

12, a
1
21, �

1
1, �

1
2)

and ϑ2 = (�2
12, �

2
21, �

2
1, �

2
2) and fixed, known variance �2 = 1 is used.

First we use equal sample sizes n. Under the hypothesis H0 : ϑ1 = ϑ2, the LRT statistic is �2
4-distributed, as shown

in Theorem 1. We simulate N = 5000 times the statistic for sample sizes n = 50, 100, 200. For visualization we use
P–P plots, which show for each � ∈ [0, 1] the empirical probability that the LRT statistic �n is �q�, where q� is the
�-quantile of the corresponding limit �2-distribution. Fig. 1 shows the results. The fit is quite good, only for small
sample sizes the LRT is somewhat anti-conservative.

Next we consider a test for equality of some of the parameters, where the additional parameters are treated as
nuisance parameters. We test for equality of the regime, i.e. H0 : (�1

12, �
1
21) = (�2

12, �
2
21). Under the hypothesis H0 the

LRT statistic is �2
2-distributed. Sample sizes and replications are chosen as in the first simulation. Fig. 2 shows P–P

plots of the results. The fit is even better than for the test of equality of all parameters.
Finally, we construct a test in case of unequal sample sizes. In the above model we test for equality of all parameters,

and use sample sizes n1 = 50 and n2 = 50, 100, 500. Fig. 3 shows P–P plots for this testing problem. The fit is also
quite good, and the asymptotic distribution evidently does not depend on the ratio of the sample sizes.
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Fig. 1. P–P plots of the LRT statistic testing for equality of parameters of two HMMs with sample sizes n=50, 100 and 200. (Number of replications:
N = 5000.)
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Fig. 2. P–P plots of the LRT statistic testing for equality of the transition probabilities of two HMMs with sample sizes n=50, 100 and 200. (Number
of replications: N = 5000.)
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Fig. 3. P–P plots of the LRT statistic testing for equality of parameters of two HMMs with unequal sample sizes for n1 = 50 and n2 = 50, 100, 500.
(Number of replications: N = 2500.)

We also considered several other values for the transition probability matrices. Firstly, the situation of rather persistent
states, �j

12 =0.1, �j
21 =0.05, j =1, 2, was investigated, second the opposite situation with �j

12 =0.9, �j
21 =0.8, j =1, 2

and third �j
12 = 0.9, �j

21 = 0.2, j = 1, 2.
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We simulated the distribution of the LRT for both hypotheses considered above, and observed good convergence
properties in most cases. Only for the settings with few transitions between the states, when the smaller sample size
n = 50 is used the fit is not yet satisfactory.

Furthermore we considered a two-state Poisson HMM with state-dependent intensities �j
1 = 1 and �j

2 = 4, j = 1, 2.
Again, four different settings of transition probabilities were examined. Similarly to the results presented for the
Gaussian HMM the simulations show a rather good fit even for the sample size of n = 50.

We would like to point out that for both HMMs, Gaussian as well as Poisson, the fit to the asymptotic distribution
becomes less good if the difference between the state-dependent distributions is small. For example, if (�j

1 −�j
2)/�=1,

j = 1, 2, for the two-state Gaussian HMM or if �j
1 = 1, �j

2 = 2, j = 1, 2 for two-state Poisson HMM, the fit is not
yet satisfactory for n = 50, but can be used for the larger sample size n = 200. In these cases estimation (and hence
also testing) is hard since the resulting mixtures are quite similar to single components from these families, so that the
parameters in the mixture can only be estimated in very large samples.

5. Application to modeling Drosophila larval movement

Holzmann et al. (2006) analyzed time series of Drosophila larval movement by means of HMMs. Here we apply our
methodology to testing for equality of some of the parameters of times series of different larvae from this data set.

Let us start by briefly describing the data. A more complete discussion can be found in Holzmann et al. (2006).
Locomotion of Drosophila larvae alternately features repeated episodes of linear movement and brief episodes of head
swinging and turning. It can be summarized by measurements of speed and direction changes of the larvae over time.
For each larva, the measurements are in the form of a bivariate time series of speed and direction changes, recorded
once per second over three minutes. The paths taken by three larvae of the sample are displayed in Fig. 4. In addition,
scatterplots of the data sets are shown in Fig. 5. We restrict ourselves to the univariate circular time series of direction
changes, and fit two-state HMMs to these series, where the state-dependent densities are von Mises with location
parameter � ∈ R and concentration parameter  > 0. Furthermore, we assume that the location parameters in both
states coincide. Hence the model has five parameters ϑ = (�12, �21, �, 1, 2). The MLEs were computed using direct
maximization via a Newton-type algorithm as in Section 4. To ensure convergence to the global maximum several
starting values were used.

In Table 1 the MLEs ϑ̂n for three larvae are displayed. Next we compare the times series models for the different
larvae in pairwise tests. First, we test the hypothesis of equality in all parameters Hhom : ϑ1 = ϑ2. A level-�-test rejects
Hhom if for the LRT statistic �hom

n > �2
5:1−�, where �2

5:1−� denotes the 1 − �-quantile of the �2-distribution with 5 d.f.s.
Second, we test the hypothesis of equality in the regime parameters only:

Hreg : �1
12 = �2

12 and �1
21 = �2

21.

In this case, the corresponding LRT statistic is �2-distributed with 2 d.f.s, and Hreg is rejected with level � if �reg
n > �2

2:1−�.
The results of the pairwise tests are displayed in Table 2. It turns out that the hypothesis of equality in all parameters
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Fig. 4. Plots of the movements of three larvae of the fly Drosophila.
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Fig. 5. Scatterplots of velocity and direction change of the movements of the three larvae.

Table 1
MLEs for a two-state von Mises-HMM

No. �̂12 �̂21 �̂ ̂1 ̂2 �̂1

1 0.34 0.24 −0.0058 1.726 36.38 0.42
2 0.27 0.12 −0.0056 1.506 111.39 0.31
3 0.27 0.17 0.0029 1.559 43.99 0.40

Table 2
Results of the pairwise tests

No. No. �hom
n p-Value �reg

n p-Value

1 2 24.06 0.000 3.26 0.196
1 3 2.17 0.826 0.98 0.612
2 3 18.04 0.002 1.00 0.606

is rejected in two of the pairwise comparisons, while the hypothesis of equality in the regime parameters cannot be
rejected on a 5%-level. Note that the test for the movement of larvae no. 1 against no. 3 has a comparable p-value as
the test of no. 2 against no. 3. The reason is that while the regime parameters of no. 2 and no. 3 look more similar, they
in fact give rise to stationary probabilities which differ more strongly than those of larvae 1 and 3.

The rejection of Hhom seems to be caused by the high value of 2 for the second larva. On the other hand, the
estimates for �21 between the first and the second larva also differ strongly, which alone is however not yet significant
for the LRT. Thus, the illustration shows once more that the LRT in HMMs is more sensitive w.r.t. the parameters of
the state dependent distributions than w.r.t. the parameters of the regime.
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Appendix A.

Here we give the technical assumptions as well as the proof of Theorem 1. Bickel et al. (1998) give assumptions
(their Assumptions (A1)–(A6)) under which they establish the asymptotic normality of the MLE. It is shown that these
assumptions are also sufficient to derive the asymptotics of the LRT statistic (Giudici et al., 2000).
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Assumption 6 (A1). The transition probability matrix {�ab(ϑ0)} is ergodic, i.e. irreducible and aperiodic.

Assumption 7 (A2). There exists a 
 > 0 such that the maps ϑ �→ �ab(ϑ) and ϑ �→ �a(ϑ) for a, b ∈ M have two
continuous derivatives in the neighborhood B
(ϑ0) := {ϑ|‖ϑ − ϑ0‖ < 
} and the maps ϑ �→ f (y; �a(ϑ)) for a ∈ M
and y ∈ Y has two continuous derivatives in B
(ϑ0).

Assumption 8 (A3). Let ϑ = (ϑ1, . . . ,ϑd). There exists a 
 > 0 such that

(1) for all i ∈ {1, . . . , d} and for all a ∈ M

E0

[
sup

ϑ∈B
(ϑ0)

∣∣∣∣ d

dϑi

log f (Y1; �a(ϑ))

∣∣∣∣
2
]

< ∞

(2) for all i, j ∈ {1, . . . , d} and for all a ∈ M

E0

[
sup

ϑ∈B
(ϑ0)

∣∣∣∣ d2

dϑidϑj

log f (Y1; �a(ϑ))

∣∣∣∣
]

< ∞

(3) for j = 1, 2, all il ∈ {1, . . . , d}, l = 1, . . . , j and for all a ∈ M

∫
sup

ϑ∈B
(ϑ0)

∣∣∣∣∣ d2

dϑi1 · · · dϑij

f (y; �a(ϑ))

∣∣∣∣∣ d�(y) < ∞.

Assumption 9 (A4). There exists a 
 > 0 such that with

�0(y) = sup
ϑ∈B
(ϑ0)

max
1�a,b�m

f (y; �a(ϑ))

f (y; �b(ϑ))
,

P0(�0(Y1) = ∞|X1 = a) < 1 for all a ∈ M.

Assumption 10 (A5). The true parameter value ϑ0 is an interior point of 	.

Assumption 11 (A6). The MLE ϑ̂n is strongly consistent.

Proof of Theorem 1. The proof proceeds along similar lines as the proof for the one-sample case in Pruscha (2000).
Since R is a differentiable map with 0 as regular value, there exists an injective C2 mapping (chart) � : � → 	1 × 	2

such that R(�(t)) = 0, where � is some neighborhood around t0, with t0 defined as the unique preimage of (ϑ1
0, ϑ

2
0),

i.e. �(t0) = (ϑ1
0, ϑ

2
0). The Jacobian of � is denoted by C(t), it has rank d1 + d2 − r for all t. Set C0 := C(t0). Further

let Hj(t) denote the Hessian of the j th component of �(t). Under the hypothesis the likelihood function can be written
as L

�
n (t) = Lc

n(�(t)), and the score, the Hessian and the Fisher information matrix are given by

DtL
�
n (t) = Ct(t)D

(ϑ1,ϑ2)
Lc

n(ϑ
1, ϑ2),

D2
t L

�
n (t) = Ct(t)D2

(ϑ1,ϑ2)
Lc

n(ϑ
1, ϑ2)C(t) +

d1+d2∑
j=1

Hj(t)(D(ϑ1,ϑ2)
Lc

n(ϑ
1, ϑ2))j

and

J
�
0 = Ct

0J
c
0C0 = Ct

0

(
cJ1

0 0
0 (1 − c)J2

0

)
C0. (A.1)

Here D
(ϑ1,ϑ2)

Lc
n(ϑ

1, ϑ2) = (Dϑ1Ln1(ϑ
1), Dϑ2Ln2(ϑ

2))t denotes the joint score, and the index j indicates its j th

component. The joint Hessian is denoted by D2
(ϑ1,ϑ2)

Lc
n(ϑ

1, ϑ2)= Diag(D2
ϑ1Ln1(ϑ

1), D2
ϑ2Ln2(ϑ

2)). Furthermore, Jc
0
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denotes the joint Fisher information, given explicitly in (A.1). J1
0 denotes the Fisher information of ϑ1 and J2

0 the
Fisher information of ϑ2.

The key idea of the proof is to split the statistic of the composite hypothesis into statistics of two simple hypotheses

�c
n = 2(Lc

n(ϑ̂
1
n1

, ϑ̂2
n2

) − Lc
n(ϑ̃

1
n, ϑ̃

2
n))

= 2(Lc
n(ϑ̂

1
n1

, ϑ̂2
n2

) − Lc
n(ϑ

1
0, ϑ

2
0)) − 2(Lc

n(ϑ̃n, ϑ̃n) − Lc
n(ϑ

1
0, ϑ

2
0)) = �0

n − �0,c
n .

A standard argument using Lemmas 1 and 2 as well as Theorem 1 in Bickel et al. (1998) shows that

�0
n = 2(Lc

n(ϑ̂
1
n1

, ϑ̂2
n2

) − Lc
n(ϑ

1
0, ϑ

2
0)) = 1

n
DLc

n(ϑ
1
0, ϑ

2
0)

t (Jc
0)

−1DLc
n(ϑ

1
0, ϑ

2
0) + op(1).

To investigate �0,c
n we first use Lemmas 1 and 2 in Bickel et al. (1998) to establish

1

n
Ct

0D
2Lc

n(ϑ
∗1
n1

, ϑ∗2
n2

)C0 + 1

n

d1+d2∑
j=1

Hj(t
∗
n )(D

(ϑ1,ϑ2)
Lc

n(ϑ
∗1
n1

, ϑ∗2
n2

))j
P−→ −Ct

0J
c
0C0 (A.2)

for �(t∗n ) = (ϑ∗1
n1

, ϑ∗2
n2

)
a.s.−→(ϑ1

0, ϑ
2
0), since

1

n

d1+d2∑
j=1

Hj(t
∗
n )(D

(ϑ1,ϑ2)
Lc

n(ϑ
∗1
n1

, ϑ∗2
n2

))j = Op(
√

n).

From (A.2) and (A.1), for the restricted MLE t̃n with �(t̃n)= (ϑ̃1
n1

, ϑ̃2
n2

) we obtain from a Taylor expansion of DtL
�
n (t)

around t̃n that

√
n(t̃n − t0) = (J

�
0 )−1 1√

n
Ct

0DLc
n(ϑ

1
0, ϑ

2
0) + op(1). (A.3)

Here we use the assumption that t̃n is strongly consistent, i.e. t̃n
a.s.−→ t0. Using (A.3), a Taylor expansion of Ln(�(t))

around t̃n yields

�0,c
n = 2(L

�
n (t̃n) − L

�
n (t0)) = (t̃n − t0)

tD2
t L

�
n (t̄n)(t̃n − t0)

= 1

n
(Ct

0DLc
n(ϑ

1
0, ϑ

2
0))

t (Ct
0J

c
0C0)

−1Ct
0DLc

n(ϑ
1
0, ϑ

2
0) + op(1),

where t̄n denotes a point on the line segment t̃nt0. In summary,

�c
n = 1

n
DLc

n(ϑ
1
0, ϑ

2
0)

t ((Jc
0)

−1 − C0(C
t
0J

c
0C0)

−1Ct
0)DLc

n(ϑ
1
0, ϑ

2
0)

= 1√
n
((Jc

0)
−1/2DLc

n(ϑ
1
0, ϑ

2
0))

tP
1√
n
(Jc

0)
−1/2DLc

n(ϑ
1
0, ϑ

2
0),

where P := I(d1+d2)×(d1+d2) − (Jc
0)

1/2C0(C
t
0J

c
0C0)

−1Ct
0(J

c
0)

1/2.
Since 1√

n
(Jc

0)
−1/2DLc

n(ϑ0, ϑ0) is asymptotically standard normal and P is a projection of rank

rk(P ) = Tr(P )

= Tr(I(d1+d2)×(d1+d2)) − Tr((Jc
0)

1/2C0(C
t
0J0C0)

−1Ct
0(J

c
0)

1/2)

= Tr(I(d1+d2)×(d1+d2)) − Tr((Ct
0J

c
0C0)(C

t
0J

c
0C0)

−1)

= Tr(I(d1+d2)×(d1+d2)) − Tr(I(d1+d2−r)×(d1+d2−r)) = d1 + d2 − (d1 + d2 − r) = r ,

Theorem 1 follows. �
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