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Abstract We introduce a new class of circular time series based on hidden Markov
models. These are compared with existing models, their properties are outlined and
issues relating to parameter estimation are discussed. The new models conveniently
describe multi-modal circular time series as dependent mixtures of circular distribu-
tions. Two examples from biology and meteorology are used to illustrate the theory.
Finally, we introduce a hidden Markov model for bivariate linear-circular time series
and use it to describe larval movement of the fly Drosophila.
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1 Introduction

The goal of this paper is to describe a new class of models for circular-valued time
series, namely circular hidden Markov models (HMMs). We outline their main prop-
erties and illustrate their application.
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Directional or circular data, i.e. measurements in the form of angles or other peri-
odic values, arise naturally in several scientific disciplines such as biology, climatology,
oceanography, geophysics, and astronomy. The substantial literature on the analysis
of circular data focuses on regression and correlation analysis, and on one- and
multisample tests (see, e.g. Mardia and Jupp 2000; Jammalamadaka and SenGupta
2001). However, circular data with a temporal structure, i.e. circular-valued time se-
ries, have not received as much attention. Typical examples of such time series are
hourly or daily wind directions at a fixed location, the series of directions followed by
an animal over time, or the time of day at which some event occurs, e.g. the level of
air pollutant peaks.

Apart from summary statistics and graphical displays it is generally of interest to
describe observations by means of a stochastic model that encapsulates their charac-
teristic features. The latter include of course any temporal dependence that is evident
in the series. Thus, an important concept here is the circular autocorrelation function
(cacf) introduced by Fisher and Lee (1994) (see Appendix A for the definition). The
HMMs offer considerable flexibility in their serial dependence properties.

In many applications the marginal distribution of the observations is clearly multi-
modal, suggesting that they arose from a mixture of different distributions associated
with different regimes. Precisely such behavior is a key property of HMMs; their mar-
ginal distribution is a mixture of state-dependent distributions, which can differ in their
means, dispersions, or which may even belong to different distributional families. This
degree of flexibility is not achieved by the models that have been described to date.

Bivariate time series, in which one of the variables is linear-valued and the other
circular-valued also arise in practice, e.g. measurements on the speed and the direction
of wind, ocean current, or an animal movement taken at consecutive points in time;
the daily peak load of a pollutant and the time of day at which the peak is observed.
We are not aware of any general-purpose models that are suitable for such time se-
ries. We show that HMMs provide tractable models for linear-circular time series and
illustrate their use to describe the movements of Drosophila larvae.

The remainder of the paper is organized as follows. Following a brief review of the
main classes of existing models for circular time series (Sect. 2), we define circular
HMMs and consider two varieties of such models, the von Mises and the wrapped
normal or Cauchy HMMs (Sect. 3). An expression is given for the likelihood and
some issues relating to parameter estimation are discussed, including the findings
based on a simulation experiment. In Sect. 3, we give two examples of application.
We show that a von Mises-HMM provides a plausible description of the changes in
direction of Drosophila larval movements. The marginal distribution can be modeled
by a mixture of two von Mises distributions with equal means and unequal disper-
sion parameters. The second example deals with a series of wind directions. The raw
data were not given as continuous measurements; they had been classified into the
16 conventional compass directions, i.e. as N, NNE, NE,..., NWN. We show how the
likelihood of the HMMs can be easily modified to take precise account of such cen-
soring. This demonstrates that the models can be applied to discrete-valued circular
time series. Section 4 outlines the construction of HMMs for bivariate linear-circular
times series. We discuss the issue of measuring the linear-circular cross-correlation
structure for such series and illustrate the application of the model using a series
of bivariate observations on the speed and change in direction of Drosophila larvae.
Section 5 gives some conclusions and some general remarks. The Appendices A and B
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give the required theoretical details on circular autocorrelation- and cross-correlation
functions.

All data used in this article are available at http://www.statlab.de/statistics_group/.

2 Outline of existing models

We outline a number of models that have been proposed in the literature for time
series of circular-valued observations.

2.1 Linked processes

Fisher and Lee (1994) introduced a general method to construct circular processes
from linear processes. The idea is to associate (link) the circular-valued observations
with those of a linear-valued time series, for which models are plentiful.

A link function is a strictly monotonically increasing, odd function g : R → (−π , π).
Recall that a circular random variable (crv) is by definition a random variable taking
values on the unit circle R/2πZ. If X is a linear random variable and µ ∈ [0, 2π),
then � = g(X) + µ mod 2π is called the linked crv. Conversely, if � is a crv having
a density, then X := g−1 ◦ (� − µ), where � − µ is taken in (−π , π), is a linear
random variable. Let (Xt)t∈Z be a stationary process on the real line and µ ∈ [0, 2π).
The process �t = g(Xt) + µ mod 2π is called the linked circular process. It is also
stationary. Important examples are obtained by taking (Xt)t∈Z to be ARMA(p,q).

Linked processes are designed for time series with low dispersion. In series with
high-dispersion the occurance of similar values of �t does not imply that the corre-
sponding Xt are also similar; they can differ substantially. Thus linked processes are
unlikely to be useful for such series.

The cacf of these processes is not available in closed form, but simulations indicate
that it is similar to the acf of the corresponding linear process (Fisher and Lee 1994).

2.2 Circular autoregressive processes

Fisher and Lee (1994) also introduced a von Mises-based analog of the well-known
AR(p) processes for linear data. The density of a von Mises distribution VM(µ, κ) is
given by

φ(θ) = [2πI0(κ)]−1 · exp[κ cos(θ − µ)], κ ≥ 0, µ ∈ [0, 2π),

where

In(κ) := [2π ]−1
∫ 2π

0
exp(κ cos φ) · cos(nφ) dφ

is the modified Bessel function of order n ≥ 0.
A process (�t)t∈Z is called circular autoregressive of order p, CAR(p), with link

function g if �t, given �t−1 = θt−1, �t−2 = θt−2, . . . , �1 = θ1, is distributed as VM(µ,κ)
for t = 1, . . . , p, and as VM(µt, κ) for t > p, where

µt := µ + g
(
α1 · g−1(θt−1 − µ) + · · · + αp · g−1(θt−p − µ)

)

and where θi−µ is taken in (−π , π). Again the cacf can only be obtained by simulation.
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2.3 Wrapped processes

A simple way to obtain a crv is to wrap a linear random variable around the circle,
i.e. to reduce its values mod 2π . If applied to a linear process (Xt)t∈Z, the resulting
circular process �t := Xt mod 2π is called the corresponding wrapped circular process.
A particular case occurs if Xt is an AR(p) process, in which case the wrapped process
is called a wrapped autoregressive process WAR(p). These were introduced by Brec-
kling (1989) (see also Fisher and Lee 1994 for further discussion). The cacf is given in
Appendix A.

2.4 Markov processes

Johnsson and Wehrly (1979) introduced the following method to obtain stationary
Markov processes on the circle. Let f , g be two densities on the circle; set F(θ) =∫ θ

0 f (η) dη and

p(θ |η) = 2πg
(
2π [F(θ) − F(η)])f (θ).

For convenience, we assume that θ , η ∈ [0, 2π). For each η, p(·|η) is a density on the
circle and

∫ 2π

0 p(θ |η) · f (η) dη = f (θ). Hence, we obtain a stationary Markov process
(�t)t≥0 such that the joint density of �0, . . . , �T is given by

f (θ0, . . . , θT) = f (θ0) ·
T∏

t=1

p(θt|θt−1).

Notice that for uniform g, (�t)t≥0 is i.i.d. with density f . If g is von Mises VM(µ, κ)

and f is uniform, then

p(θ |η) = [2π · I0(κ)]−1 · exp[κ cos(θ − η − µ)].

Johnsson and Wehrly (1979) used this model to develop uniformly most powerful
tests for independence in a circular time series. They did not give the cacf, but this can
be derived by direct calculation and is given in Appendix A.

3 Hidden Markov models for circular time series

Hidden Markov models were introduced by Baum and his co-workers in a series of
papers published between 1966 and 1972 (e.g. Baum and Petrie 1966; for additional
references to these papers see, e.g. Chap. 2 of MacDonald and Zucchini 1997). There
is now an extensive literature on the subject covering both theory and a wide variety
of applications. Among other things, properties of the maximum likelihood estima-
tors such as strong consistency (Leroux 1992) and asymptotic normality (Bickel et al.
1998) have been obtained. Their application to discrete-valued and multivariate time
series have been discussed in detail in MacDonald and Zucchini (1997). However, to
our knowledge, their use as general-purpose models for circular-valued time series
has not yet been described.
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3.1 Hidden Markov models

We start by defining circular HMMs in general and then consider two particular
families of models, the von Mises-HMM and the wrapped-normal-HMM.

Let (Ct)t≥1 be an irreducible, homogeneous Markov chain with state space
{1, . . . , m} and transition probability matrix � := (γij)i,j=1,...,m. By the irreducibility
of (Ct), there exists a unique, strictly positive, stationary distribution � = (δ1, . . . , δm).
We shall suppose that (Ct) is stationary, so that 
 is for all t the distribution of Ct, and
� · � = �. The powers of � are denoted as �k = (γ

(k)
ij )i,j=1,...,m.

A circular process (�t)t≥1 will be called a circular HMM with underlying stationary
Markov chain (Ct)t≥1 if for every T ≥ 1, i1, . . . , iT ∈ {1, .., m} and A1, . . . , AT ⊂ [0, 2π)

measurable we have

P(�1 ∈ A1, . . . , �T ∈ AT | C1 = i1, . . . , CT = iT) =
T∏

t=1

P(�t ∈ At | Ct = it).

It follows that for t ≤ T,

P(�t ∈ At | C1 = i1, . . . , CT = iT) = P(�t ∈ At | Ct = it).

Hence, �t0 depends on (Ct) only through Ct0 . If the state dependent probabilities
P(�t ∈ At | Ct = i) do not depend on t, which we will always assume, the process
(�t)t≥1 is also stationary.

We note that it is possible to relax the assumption that the process (Ct) is station-
ary, or the assumption that state dependent probabilities do not depend on t. Such
extensions are useful, and necessary, if one wishes to model series that exhibit trend
or seasonal variation, or series that depend on covariates other than time. Examples
of non-stationary HMMs are given in MacDonald and Zucchini (1997).

3.1.1 The von Mises-HMM

The von Mises-HMM is defined by assuming the state dependent probabilities P(�t ∈
·|Ct = (i) to be distributed as VM(µi, κi), i = 1, 2, . . . , m. The cacf of a von Mises
HMM is given in Appendix A. Of particular interest are those cases in which either
all mean directions, or all concentration parameters, are assumed to be equal, i.e.
µ1 = · · · = µm, or κ1 = · · · = κm.

3.1.2 The wrapped normal- and wrapped Cauchy-HMM

The wrapped normal distribution, WN(µ, ρ), is obtained by wrapping a normal dis-
tribution N(µ, σ) around the circle, where ρ = e−σ 2/2. Specifically, if φ(x; µ, σ) is
the density of the normal distribution, then the density of WN(µ, ρ) is given by (cf.
Jammalamadaka and SenGupta 2001, p. 44)

φw(θ ; µ, ρ) =
∑
n∈Z

φ(θ + 2πn; µ, σ) .

The wrapped normal-HMM is defined by assuming that the state dependent prob-
abilities P(�t ∈ ·|Ct = i) are distributed as WN(µi, ρi), i = 1, 2, . . . , m. Again one
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can consider cases of equal mean directions, µ1 = · · · = µm, or equal mean resul-
tant lengths, ρ1 = · · · = ρm. The wrapped Cauchy distribution WC(µ, ρ) is defined
in an analogues way; one simply assumes that the state dependent probabilities are
distributed as wrapped Cauchy. The cacfs of the wrapped normal- and the wrapped
Cauchy-HMM are given in Appendix A.

As was indicated by Fisher and Lee (1994), the cacf does not seem to be well suited
for discriminating between different classes of models, e.g. between circular-HMM
and CAR(p), but it may be useful to select an appropriate model within a given class.
For the class of HMMs the cacf can give some indication of the number of hidden
states (See Appendix A). If the mean directions of the state-dependent distributions
are all equal then the cacf is 0 for all lags ≥ 1 and thus the cacf is of no use for selecting
m in this case. However, as is the case in the application described in Sect. 4.1, if the
empirical cacf has this form then an HMM with equal mean directions would be plau-
sible. Note, that this lack of circular correlation does not imply that the consecutive
values are independent.

3.2 Maximum likelihood estimation

In this section, we will discuss maximum likelihood estimation in circular HMMs. To
obtain the likelihood function, suppose that the conditional distributions P(·|Ct = i)
have densities φηi(θ), where the ηi range over some parameter set E . Then, the joint
density of �1, . . . , �T conditional on C1 = i1, . . . , CT = iT is given by

fT(θ1, . . . , θT |C1 = i1, . . . , CT = iT) =
T∏

t=1

φηit
(θt),

hence the joint density of �1, . . . , �T is

fT(θ1, . . . , θT) =
m∑

i1=1

. . .

m∑
iT=1

fT(θ1, . . . , θT |C1 = i1, . . . , CT = iT)

· P(C1 = i1, . . . , CT = iT)

=
m∑

i1=1

. . .

m∑
iT=1

δi1φηi1
(θ1)

T∏
t=2

γit ,it+1 · φηit
(θt)

= � · A(θ1) · � · A(θ2) · · · · · � · A(θT) · 1

where A(θ) = diag (φ1(θ), . . . , φm(θ)) and 1 = (1, . . . , 1)′. If we let

B(θt) = � · A(θt)

then using � · � = � we can also write

fT(θ1, . . . , θT) = � ·
T∏

t=1

Bt(θt) · 1. (1)

The parameters over which (1) is maximized are η1, . . . , ηm and the entries of �, where
the latter are subject to constraints; in particular each row sum is equal to one.
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3.2.1 The von Mises-HMM (continued)

For the case m = 2 of the von Mises-HMM, the parameters are 0 < γ12, γ21 < 1,
µ1, µ2 ∈ [0, 2π) and 0 < κ1, κ2 < ∞. The marginal distributions of �t are mixtures
of von Mises distributions. The question of identifiability needs to be considered for
consistent estimation of the parameters (Leroux 1992). Identifiability has been proved
by Fraser et al. (1981). If we assume that κ1 = κ2 = κ and restrict this parameter to
a compact interval [ε, 1/ε] for some small ε > 0, then the conditions for strong con-
sistency and asymptotic normality of the maximum likelihood estimator (MLE) are
satisfied (Leroux 1992; Bickel et al. 1998). In case of different concentration parame-
ters the likelihood function becomes unbounded, a problem that is well known from
the theory of mixture models (see Spurr and Koutbeiy 1991; Hathaway 1985) for
simulations and consistency results). Although consistency results have not yet been
obtained for HMMs, our simulations show that maximum likelihood estimation seems
to work well in this situation, too.

3.2.2 The wrapped normal- and wrapped Cauchy-HMM (continued)

Similar qualifications regarding consistency apply to the wrapped normal and wrapped
Cauchy HMM. In case of two states (m = 2) the parameter ρ has to lie in some interval
[ε, 1 − ε] for small ε > 0. Identifiability of finite mixtures was obtained by Holzmann
et al. (2004).

The MLE can be computed by direct maximization of the likelihood function, e.g.
using the Newton–Raphson algorithm. In order to avoid underflow, a scaled version
of the likelihood and finally the log-likelihood can be calculated as suggested by Mac-
Donald and Zucchini (1997). To this end consider the vectors of forward probabilities
defined by

αj = � ·
j∏

t=1

B(θt), j = 1, . . . , T.

Of course, αj+1 = αj · B(θj+1). In each step, we scale the vector αj to have mean 1, i.e.
compute

s1 =
m∑

i=1

α1(i), α̃1 = s−1
1 · α1

and recursively

α′
j+1 = α̃j · B(θj+1), sj+1 =

m∑
i=1

α′
j+1(i), α̃j+1 = 1

sj+1
· α′

j+1.

Then α̃T = αT/(s1 · · · · · st), fT(θ1, . . . , θT) = ∑
αT(i) and

∑
α̃T(i) = 1, hence

log(fT(θ1, . . . , θT)) =
T∑

t=1

log(st).

In carrying out the numerical maximization one must also attend to the problem
that some of the parameters are subject to constraints. A simple option here is to rep-
arameterize the model in terms of parameters that are unconstrained. For example,
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in the case m = 2, the entries 0 < γ12 < 1, 0 < γ21 < 1 of � can be reparameterized in
terms of their logits. The logit transformation can also be used for the parameters ρ

in wrapped normal, and the log transformation for the parameters κ in the von Mises.
The case of HMMs with more than two states is a little trickier but appropriate param-
eterizations, which lead to unconstrained maximization are suggested in Zucchini and
MacDonald (1998).

The practical problem of finding starting values requires close examination of the
data and some experimentation. For the mean directions the modes of the histo-
gram provide obvious starting values so long as the modes are clearly distinguishable.
Of course more sophisticated methods such as nonparametric mode estimators are
also available. For the concentration parameters, we suggest partitioning the sample
into two parts at one antimode and estimating κ for each subsample separately. The
starting values for the parameters of � seem to have little effect on the convergence
properties so long as the entries are not close to 0 or 1.

The case where the modes are not clearly distinguishable is trickier. Some sugges-
tions are offered below. Desirable here would be a procedure that yields automatic
(i.e. purely data-based) starting values, but this is not yet available. Furthermore, it
seems unlikely that a single method will work well for all models.

3.3 Simulation results

In this section, we summarize the results of a Monte Carlo study, which we conducted
to assess the performance of the estimation procedure for a number of two-state
von Mises-HMMs. Random deviates from the von Mises distribution were generated
using an algorithm by Best and Fisher (1979).

First, we simulated series with parameters µ1 = 1, µ2 = 5, κ1 = 3, κ2 = 8, γ1,2 =
0.2, γ1,2 = 0.3. The sample size was chosen as 100 and 500, respectively, and 200
replicates were performed in each simulation scenario. This case is clearly bimodal
and so presents no starting-value problems.

The resulting estimates are displayed as boxplots in Figs. 1 and 2. These show that
the estimators of all six parameters are approximately unbiased. A QQ-plot revealed
that the µ-estimates are approximately normal even for n = 100. The distributions of
the κ- and the γ -estimates are skewed for n = 100 but symmetric (and approximately
normal) for n = 500. This gives an indication that a fairly long series is required for
asymptotic normality to take effect for these parameters.

Fig. 1 Boxplots of estimated
transition probabilities for von
Mises HMM with
(µ1, µ2, κ1, κ2, γ1,2, γ1,2)

= (1, 5, 3, 8, 0.2, 0.3)

n=100 n=500

0.
1

0.
3

0.
5

0.
7

γ12 = 0.2
γ21 = 0.3



Environ Ecol Stat (2006) 13:325–347 333

Fig. 2 Boxplots of the
estimated parameters of the
state dependent distributions
for von Mises HMM with
(µ1, µ2, κ1, κ2, γ1,2, γ1,2)

= (1, 5, 3, 8, 0.2, 0.3)

µ1 = 1

0.
8

1.
0

1.
2

µ2 = 5
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κ2 = 8
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Fig. 3 Boxplots of the
estimated parameters for von
Mises HMM with equal mean
directions with
(µ, κ1, κ2, γ1,2, γ1,2)

= (3, 1, 10, 0.1, 0.2)

n=100 n=500

0.
0

0.
4

0.
8

γ12 = 0.2
γ21 = 0.1

2.
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3.
0

3.
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µ = 3
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2 κ1 = 1

5
15

25

κ2 = 10

In a second experiment we considered equal mean directions with µ = 3 and
κ1 = 1, κ2 = 10, γ1,2 = 0.2, γ1,2 = 0.1. To obtain starting values we first treated the
observations as if they were a random sample from a single von Mises distribution and
estimated µ and κ accordingly. We then set κ1 = κ/2, κ2 = 2κ . The results, displayed
in Fig. 3, show similar tendencies as in the first experiment but the skewness is slightly
more extreme. (Five outlining estimates of κ2 are not shown in the plot.)

Finally, we considered the case of equal concentration parameters with κ = 4 and
µ1 = 2, µ2 = 3, γ1,2 = 0.7, γ1,2 = 0.8. Here, the resulting marginal distribution is
unimodal. We note also that it is for this case (κ1 = κ2) that the asymptotic normality
of the estimators has been proved (It is not unlikely that this also holds for the other
cases considered, but this has not yet been proved.)

Starting values were again obtained by first estimating µ and κ as one would if
the observations were a random sample from a single von Mises distribution; µ1 was
set equal to µ plus the circular standard deviation, and µ1 as µ minus the standard
deviation. The results are displayed in Fig. 4.

For n = 100 there appears to be a small bias in γ2,1. This is probably due to
the few cases where the estimate converged to 1. Apart from this the distributions
the µ- and γ - estimators are approximately normally distributed in accordance with
the asymptotic theory for n = 100. However, the estimator of κ is still skew even for
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Fig. 4 Boxplots of the
estimated parameters for von
Mises HMM with equal
concentration parameter with
(µ1, µ2, κ , γ1,2, γ1,2)

= (2, 3, 4, 0.8, 0.7)

n=100 n=5000.
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0

γ12 = 0.7
γ21 = 0.8
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4
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n = 500. As a practical remedy one can reparameterize the von Mises distribution
in terms of log(κ), whose estimator is approximately normally distributed even for
n = 100.

4 Examples

In this section, we describe two examples of application of circular HMMs.

4.1 Changes in direction of Drosophila larval movement

Larvae of the fruit fly Drosophila melanogaster disperse by repeated episodes of
linear movement and brief episodes of head swinging and turning (Green et al. 1983).
Locomotion can be largely summarized by the speed and direction change of the larva
in each of these two episodic states (Suster et al. 2003). During straight movement,
larvae maintain a high-speed and a low-direction change, in contrast to the low-speed
and high-direction change characteristic of turning episodes. An accurate mathemati-
cal model of Drosophila larval crawling behavior would be valuable for characterizing
subtle changes in locomotion due to genetically-targeted alterations in the underlying
neural circuitry. Previously, randomly selected pairs of speed and direction change
were used to model this motor behavior (Suster 2000). Using this approach, we could
not accurately simulate the pattern of larval locomotion, indicating the need to take
time and variable correlations into account. Given that the larva alternates between
one of two states during locomotion (linear movement or turning), we reasoned that
a two-state HMM, in which both speed and turning rate are modeled according to
two behavioral states, would be more appropriate for describing the pattern of lar-
val locomotion. As an illustration, we will examine the movements of a single larva,
whose position was recorded once per second over three minutes. The path taken by
the larva is displayed in Fig. 5.

From these data it is easy to compute the speed and the change in direction in each
second. In this section, we will focus on the circular variable, i.e. the time series of
direction change. Most of the directions are concentrated near 0, but there are also
several observations at higher angles. Thus, the marginal distribution seems to be a
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Fig. 5 Plot of the movement
of one larva of the fly
Drosophila

Movement in mm

0 20 40 60

0
20

40
60

Fig. 6 Histogram and fitted
density (solid line) with
weighted mixture components
(dashed line: highly variable
component, dashed dotted
line: low variable component)
of the ts of one Drosophila
larva

Angles of changes in directions
–3 –2 –1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

mixture of two (or more) circular distributions, suggesting that a two-state circular
HMM might be appropriate. State 1, which is more frequently visited, involves small
changes in direction and hence a high-concentration parameter. In state 2, the data
is spread over the whole circle; the concentration parameter is small. Taking into
account the cacf of the series, which has no significant values for lags ≥ 1, we selected
a common mean direction for both states (in which case cacf = 0 for lags ≥ 1). The
estimated parameters for a von Mises-HMM are µ̂ = −0.01, κ̂1 = 36.38, κ̂2 = 1.73
and γ̂1,2 = 0.24, γ̂2,1 = 0.34. This gives a log-likelihood of −114 and a stationary initial
distribution δ̂1 = 0.59, δ̂2 = 0.41. Figure 6 shows a histogram of the data together with
the estimated marginal mixture distribution and its weighted components. Finally,
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we tested for independence of the observations within our class of models using the
likelihood ratio test (Giudici et al. 2000). In case of two states, the i.i.d. situation arises
if γ1 = 1−γ2. Under the hypothesis of independence, the likelihood ratio test statistic
has a chi–squared distribution with one degree of freedom. For the above larva, the
value of the likelihood ratio statistic is 10.8, hence, we can reject the hypothesis of
independence.

We will return to this example in Sect. 5 to fit a bivariate linear-circular HMM,
which describes the joint behavior of speed and changes of direction of the larvae.

4.2 Wind direction at Koeberg, South Africa

In this example, we consider a time series comprising average hourly values of
the wind direction at the Koeberg nuclear power station in South Africa. The period
covered is 1 May 1985 to 30 April 1989, which results in a series of length 35,064. The
averages were classified into the 16 conventional directions N, NNE,…, NNW, coded
1–16, in that order. MacDonald and Zucchini (1997) fitted a number of models for this
series, including a multinomial–HMM with two states and a 16 state Markov chain.
A complication here is that the distribution of wind direction changes over the day, a
feature that is clearly evident in the rose-plots displayed in Figure 7.

They also considered a reduced series of daily data for a particular hour of the
day. Their models did not take into account the fact that the observations arose from
circular-valued measurements, but regarded the 16 directions simply as 16 categories.
Here, we will also consider the daily series of the average wind direction in the interval
23:00–24:00, and fit the von Mises-HMM to model the observations.

The data in this application are not available as exact measurements; they are given
as principal compass directions, with 16 possible values. It is therefore necessary to
modify the likelihood function of the von Mises-HMM so that it takes account of
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Fig. 7 Rose plots of wind directions at Koeberg by time of day
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this interval-censoring. It is remarkable that HMMs can accommodate this type of
complication; the exact likelihood is easy to obtain, and to compute. We discretize
the von Mises distribution by integrating the density over arcs of equal length around
the discretized observations. Thus the probability that the wind direction is in the
principal compass direction j (j = 1, . . . , 16) is given by

πj =
∫ uj

lj
φ(t; µ, κ) dt, lj := j − 0.5

16
· 2π , uj := j + 0.5

16
· 2π ,

where φ is the density of a von Mises distribution with parameters µ and κ . Thus, for
each i = 1, 2, . . . , m, the i th state-dependent probability distribution for the discretized
observations is discrete, namely multinomial with parameters (π i

1, π i
2, . . . , π i

16), where
the π i

j are determined by µi and κi, the parameters of the corresponding von Mises
state-dependent distribution. The expression for the likelihood for the discretized
data is obtained using these m multinomial distributions in place of the corresponding
m state-dependent von Mises densities in (1).

We consider the issue of model selection which, in the case of a von Mises-HMM,
comes down to selecting m, the number of states in the Markov chain. Figure 8 displays
the fitted marginal distributions (mixtures of von Mises distributions) for m = 1, 2, 3, 4
plotted over the histogram of the observed directions.

Clearly, the case m = 1 (a single von Mises distribution) does not provide an
acceptable fit for these data, which exhibit two clear modes in the directions SSE and
NNW. As is to be expected, the fit improves with increasing m, but it is not clear at
which stage the improvement might be a consequence of overfitting. A more objec-
tive assessment is provided by the values of formal model selection criteria. The table
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model k −l AIC BIC

1-state von Mises-HMM 2 3947.2 7898.3 7908.9
2-state von Mises-HMM 6 3522.8 7057.7 7089.4
3-state von Mises-HMM 12 3464.5 6953.0 7016.4
4-state von Mises-HMM 20 3425.7 6891.4 6997.1
2-state multinomial-HMM 32 3440.3 6944.5 7113.7
Saturated Markov chain 240 3236.5 6953.0 8221.9

below, which gives, for m = 1, 2, 3, 4, the number of free parameters, k, the negative
log likelihood, −l, and the values of the AIC and BIC criteria.

The criteria are also given for two additional models that were fitted in MacDonald
and Zucchini (1997). The first is a two-state multinomial-HMM, in which the direc-
tions are regarded as 16 unrelated categories. (Note that although the discretized
von Mises-HMM also leads to multinomial state-dependent distributions, the param-
eters of these distributions are related because each set of 16 parameters is uniquely
determined by the two parameters of the corresponding von Mises distribution.)
The second model is a saturated stationary Markov chain, whose 16 × 16 transition
probability matrix is therefore determined by 16 × 15 = 240 free parameters.

Both the AIC and the BIC rate the four-state von Mises-HMM as best in the group.
The parameter estimates for that model are given by

�̂ =

⎛
⎜⎜⎝

0.776 0.009 0.000 0.215
0.056 0.540 0.404 0.000
0.000 0.168 0.831 0.001
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Fig. 10 Rose plots of monthly wind directions (23:00–24:00)

While it is somewhat disappointing to select a model with so many parameters it needs
to be kept in mind that the series is a long one. Furthermore at least two of the four
state-dependent densities (Fig. 9) correspond to interpretable meteorological states.
State 1, the most likely of the four states, is strongly associated with the direction SSE
and state 2 (even more strongly) with the direction NNW. The prevailing directions
in states 3 and 4 are slightly east of those in states 1 and 2, respectively.

The above conclusion needs to be qualified by the fact, illustrated in Fig. 10, that
wind direction is highly seasonal over the year. It is possible to relax the assump-
tion that the state process is stationary, and the assumption that the state-dependent
distribution depends solely on the state of the process; it can be allowed to depend
on time, or some other covariate. Among other things such extensions allow one to
accommodate seasonal variation. A discussion on the issue of seasonality would lead
us beyond the scope of this paper (Examples and applications of seasonal HMMs are
given in, e.g., MacDonald and Zucchini 1997).

5 Hidden Markov models for bivariate linear-circular time series

We start by defining bivariate linear-circular HMMs. Let (Ct)t≥1 be an irreducible
stationary Markov chain. A bivariate process (Xt, �t)t≥1, where the �t are circular
and the Xt linear random variables, respectively, is called a linear-circular HMM with
underlying Markov chain (Ct)t≥1 if for all T ∈ N, At ⊂ [0, 2π), Bt ⊂ R measurable
and it ∈ {1, . . . , m},

P(X1 ∈ B1, . . . , XT ∈ BT , �1 ∈ A1, . . . , �T ∈ AT | C1 = i1, ..., CT = iT)

=
T∏

t=1

P(Xt ∈ Bt, �t ∈ At | Ct = it).

Modeling is simplified considerably if one assumes conditional independence, i.e.

P(�t ∈ At, Xt ∈ Bt | Ct = it) = P(�t ∈ At | Ct = it) · P(Xt ∈ Bt | Ct = it).

In Appendix B, we suggest a way to quantify the cross-correlation structure of such
linear-circular HMMs.
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The main advantage of the above assumption is that it allows us to model the
(state-dependent) linear and the circular random variables individually rather than
jointly. In other words, we can use univariate rather than bivariate state-dependent
distributions. However, either with or without the assumption, the likelihood of linear-
circular HMMs is still of the form given in (1). The state-dependent distributions now
pertain to two random variables, but so long as one can compute values of their
joint density functions (or probability functions) no additional complications arise.
We therefore proceed immediately to an example of application.

5.1 A bivariate model for speed and change in direction of Drosophila larvae

The time series of the spatial positions of Drosophila larvae at consecutive equi-
spaced times were transformed to provide the (more conveniently interpretable)
bivariate linear-circular time series of speeds and changes in direction, which we will
refer to as angles.

An examination of the speeds and the angles for these larvae (Fig. 11 gives a graph-
ical display for one larva) indicates that high-speeds are associated with small angles
and low speeds with large angles. These two modes of behaviour suggest the exis-
tence of two states, one being fast directed movement and the other slow undirected
movement. Furthermore the states appear to be somewhat persistent.

Thus these series appear to exhibit the properties of a two-state linear-circular
HMM in which one state is associated with a high mean for the linear variable (speed)
and a low variance for the circular variable (angle). The situation is reversed in state 2.
As our model for these time series, we have used a conditionally independent HMM
with von Mises state-dependent distributions for the angles and gamma distributions
for the speeds. The density of the Gamma distribution G(ν, λ) is given by

f (x) = [λν · �(ν)]−1 · xν−1 exp(−x/λ) · 1[0,∞)(x), λ, ν > 0.

For the numerical maximization of the likelihood, we reparameterized the gamma
distribution in terms of its expectation, ξ , and variance σ 2, (where ξ = λ·ν, σ 2 = λ2 ·ν,
so ν = ξ2/σ 2, λ = σ 2/ξ) because this leads to improved numerical performance.

Fig. 11 Joint plot of velocities
and changes in directions of
the movement of a Drosophila
larva
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Fig. 12 Linear- circular cross
correlations for one larva with
estimated parameters
(µ, κ1, κ2)

= (−0.02, 1.81, 31.76),
(m1, m2, σ 2

1 , σ 2
2 )

= (0.45, 1.18, 0.05, 0.1),
(γ1,2, γ2,1) = (0.32, 0.24)
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The estimated parameters for the above mentioned larva are

µ̂ = −0.02,
κ̂1 = 31.76, ξ̂1 = 1.19, σ̂ 2

1 = 0.1, γ̂1,2 = 0.24
κ̂2 = 1.81, ξ̂2 = 0.45, σ̂ 2

2 = 0.05, γ̂2,1 = 0.32

This gives a log-likelihood of −169 and a stationary distribution δ̂1 = 0.57,
δ̂2 = 0.43. Notice, that as we guessed, in state 1 both concentration parameter and
mean velocity are higher than in state 2.

Figure 12 shows a plot of the sample cross-correlation function of the series for one
larva and the theoretical cross-correlation function for the estimated parameter val-
ues. For the first two lags the fit is very close but the empirical cacf remains higher than
expected under the model. To accommodate this feature of the data would require a
substantially more complex model.

6 Conclusions

We believe that the HMMs described in this paper provide a versitile class of general-
purpose models for circular-valued time series. It was illustrated how easy it is to
extend such models to describe bivariate linear-circular time series. In a similar man-
ner one can adapt them to describe multivariate circular time series, such as wind
direction, or the times of day at which some event (e.g. peak demand for electricity)
occurs at different locations.

Many of their probabilistic properties, such as the marginal and conditional dis-
tributions, the moment functions and the forecast distribution are easy to derive. As
was illustrated in the application in Sect. 5 they can be modified to cope with interval-
censoring in a precise manner. Missing observations, so long as these are missing
“completely at random”, present no difficulties and can be dealt with (again pre-
cisely) by adding a few lines of code to the software.
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Despite the simplicity and flexibility of HMMs our knowledge of their properties
is far from complete and many statistical questions remain to be answered. Included,
here is a lack of results on the properties of the parameter estimators, their standard
errors and the construction of accurate confidence intervals. Additional techniques
for diagnostic checking need to be developed. Model selection needs to be addressed
in greater detail, and in particular methods to cope with the selection bias that arises
when one uses the same data to select a model, fit the selected model and also to
assess the fit.

One of the attractive features of HMMs is the fact that their likelihood is easy to
compute, but often enough it is not an easy function to maximize. In most non-trivial
applications the likelihood of an HMM has multiple local maxima and so conver-
gence of the maximization algorithm provides no guarantee that the global maximum
has been found. This applies not only to the direct maximization of the likelihood
but also to the well-known Baum–Welch algorithm (the EM approach to parameter
estimation for HMMs) that, we did not discuss in this paper.

We also wish to draw attention to the growing literature on the Bayesian analysis
of HMMs, in particular on the issue of model selection, i.e. deciding how many states,
m, should be used in the Markov chain component of the model. (For key references
to this literature see, e.g., Scott 2002.) From a Bayesian point m is one of the unknown
parameters to which one should assign a prior and then compute it’s posterior dis-
tribution. The amount of computation required (by means of Monte Carlo Markov
Chains) is formidable, an order of magnitude greater than is needed to compute the
BIC, which is an asymptotic approximation to the Bayes factors under a uniform prior.

Appendix A

Let (�t)t≥0 be a stationary circular process. The circular autocorrelation function (cacf)
is defined by

ρC(k) := ρC(�0, �k), k ≥ 0,

where ρC denotes the circular correlation coefficient as introduced by Fisher and Lee
(1983). By stationarity, we can write

ρC(k) = E[cos �0 cos �k] · E[sin �0 sin �k] − E[sin �0 cos �k] · E[cos �0 sin �k]
(1 − E[cos2 �0]) · E[cos2 �0] − (E[sin �0 cos �0])2

(2)

For properties of ρC, an estimator and its asymptotics, see Fisher and Lee (1983).

Wrapped autoregressive processes

Let ρj denote the lag-j correlation of Xt and let σ 2, φ1 · · · φp be its AR(p) parameters.
Then

ρC(k) = sinh
(
2ρkσ 2 · [1 − φ1ρ1 − · · · − φpρp]−1)

sinh
(
2σ 2 · [1 − φ1ρ1 − · · · − φpρp]−1

) .

See Fisher and Lee (1983, 1994) for the calculation. The cacf is similar in form to the
acf of the underlying AR(p)-process.
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Markov processes

A direct calculation yields the cacf in the example of Sect. 1.

ρC(k) =
[
cos2(kµ) − sin2(kµ)

]
· (A1(κ))2k .

Hidden Markov models

In order to compute the expectations in (2) and to determine the correlation struc-
ture of a circular HMM, first observe that if f , g are bounded measurable functions of
period 2π and k ≥ 1,

E(f (�0) · g(�0)) =
m∑

i=1

δi · E(f (�0) · g(�0) | C0 = i), (3)

E(f (�0) · g(�k)) =
m∑

i,j=1

δi · γ
(k)
ij · E(f (�0) | C0 = i) · E(g(�k) | Ck = j).

Here, E(·| Ct = i) denotes expectation with respect to the conditional distribution
Ct = i. In general, if

fµ(θ) = (2π)−1
[

a0 + 2
∑
p≥1

ap cos p (θ − µ)

]

is the Fourier expansion of fµ which is assumed to converge uniformly, then
∫ 2π

0
sin x cos x fµ(x) dx = a2 sin(2µ)/2,

∫ 2π

0
cos2 x fµ(x) dx = [a0 + a2 cos(2µ)]/2.

For the von Mises HMM, an = An(κ) := In(κ) \ I0(κ). Since

E(cos(�t) | Ct = i) = A1(κi) cos(µi) and E(sin(�t) | Ct = i) = A1(κi) sin(µi),

where φi(x) = [2πI0(κi)]−1 exp[κi cos(θ − µi)] is the conditional density given Ct = i,
using (3) the cacf in (2) can now be calculated. Note that if µ1 = · · · = µm, the
correlation is 0 for all lags ≥ 1 Figs. 13 and 14.

The Fourier expansion of the density φw(θ ; µ, ρ) of the wrapped normal distribution
WN(µ, ρ) is

φw(θ ; µ, ρ) = (2π)−1
[

1 + 2
∑
p≥1

ρp2
cos p(θ − µ)

]
(4)

hence ap = ρp2
. Similarly, the density of the wrapped Cauchy distribution WC(µ, ρ)

has Fourier expansion

φw(θ ; µ, ρ) = (2π)−1
[

1 + 2
∑
p≥1

ρp cos p(θ − µ)

]
, (5)

hence ap = ρp.



344 Environ Ecol Stat (2006) 13:325–347

Fig. 13 Cacf in several
circular HMMs, parameter
values (µ1, µ2) = (1, 5),
γ1,2 = γ2,1 = (0.2),
κ1 = κ2 = 8 (von Mises HMM)
and ρ1 = ρ2 = 0.94 (wrapped
Cauchy and normal HMM)
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Fig. 14 Cacf in several
circular HMMs, parameter
values (µ1, µ2) = (1, 3),
γ1,2 = γ2,1 = (0.8),
κ1 = κ2 = 4 (von Mises HMM)
and ρ1 = ρ2 = 0.86 (wrapped
Cauchy and normal HMM)
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Appendix B

In order to analyze the cross-correlation structure of linear-circular time series, we
need a measure for the correlation between a linear and a circular random variable.
There have been several attempts to define such a quantity in the literature, see e.g.
Mardia and Jupp (2000, pp.245–248). We will use the one introduced by Mardia (1976).
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For a two-dimensional random vector (X, Y) let

ρ(X, Y) = E[XY] − EXEY√
(E[X2] − [EX]2)(E[Y2] − [EY]2)

denote its correlation. Let (X, �) be a linear-circular random vector. In order to
determine whether there is a relation of the kind

X = a + b · cos(�) + c · sin(�)

for some constants a, b, c ∈ R, Mardia (1976) considered the multiple correlation of
X with (cos(�), sin(�)) defined by

RX,� :=
[

ρ(X, cos �)2 + ρ(X, sin �)2 − 2 · ρ(X, cos �)ρ(X, sin �)ρ(cos �, sin �)

1 − ρ(cos �, sin �)2

]1/2

.

The sample counterpart is given by replacing the correlations of the random
variables by the sample correlation coefficients. The cross correlation function of
a stationary linear-circular process is then defined by

cρC(k) :=
{

RXk,�0 , : k ≥ 0,
RX0,�|k| , : k < 0. (6)

Hidden Markov models

The quantities, which are needed to compute the cross-correlations of a linear-circular
HMM are obtained similarly as in case of a circular HMM. For k ≥ 0 we have that

E(Xk cos �0) =
m∑

i,j=1

δi · γ
(k)
ij · E(cos �0|C0 = i) · E(Xk|Ck = j)

and a similar expression holds for E(Xk sin �0) and for k < 0. As an example, consider
the linear-circular HMM of Sect. 4. Then, using conditional independence,

E(X0 cos �0) =
m∑

i=1

δi · (λiνi) · [cos(µi)A1(κi)], (7)

E(Xk cos �0) =
m∑

i,j=1

δi · γ
(k)
ij · (λjνj) · [cos(µi)A1(κi)], k ≥ 1,

E(X0 cos �|k|) =
m∑

i,j=1

δi · γ
(|k|)
ij · (λiνi) · [cos(µj)A1(κj)], k ≤ −1. (8)

Using (3) and (7) the cross correlation function (6) can now be written down explic-
itely. Notice that if the Markov chain Xt is reversible, the cross correlation function
is symmetric in the sense cρC(k) = cρC(−k). This is always true for a stationary,
two-state chain.
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