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Summary. We study the issue of identifiability of mixture models in the context of capture–recapture
abundance estimation for closed populations. Such models are used to take account of individual hetero-
geneity in capture probabilities, but their validity was recently questioned by Link (2003, Biometrics 59,
1123–1130) on the basis of their nonidentifiability. We give a general criterion for identifiability of the mix-
ing distribution, and apply it to establish identifiability within families of mixing distributions that are
commonly used in this context, including finite and beta mixtures. Our analysis covers binomial and geo-
metrically distributed outcomes. In an example we highlight the difference between the identifiability issue
considered here and that in classical binomial mixture models.
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1. Introduction
Capture–recapture methods are widely used in wildlife abun-
dance estimation and also in fields such as epidemiology and
quality control. They have been developed to estimate the size
of both closed and open populations, but here we restrict our
attention to the former. For terminology and an overview of
the methods see, for example, Seber (1982).

An important issue in this context is the fact that, in
many applications, the probability of capture/recapture dif-
fers among individuals in ways that are caused by factors that
are not, or cannot be, observed (see, e.g., Borchers, Buckland,
and Zucchini, 2002, Section 11.3). Ignoring such heterogeneity
can lead to substantial bias and to inaccurate confidence inter-
vals. One can address this problem by regarding the capture
probabilities as realizations of a random variable, from which
it follows that the number of animals captured in x out of T
capture occasions follows a mixture distribution (Burnham,
1972; Agresti, 1994; Norris and Pollock, 1995, 1996; Pledger,
2000, 2005; Dorazio and Royle, 2003). However, the use of
mixture models raises the issue of identifiability (e.g., Hug-
gins, 2001). Indeed Link (2003) concludes “Thus even with
very large samples, the analyst will not be able to distinguish
among reasonable models of heterogeneity, even though these
yield quite distinct inferences about population size.” Further-
more, he gives examples to illustrate this statement, thereby
casting doubt on the validity of using mixture models for es-
timating abundance in the presence of unobserved individual
heterogeneity.

The aim of this article is to examine the identifiability
issue in more detail. In particular we prove identifiability
within the mixture families that are most commonly used in

this application, including finite mixtures and beta mixtures.
Thus, so long as the analyst is prepared to assume that the
mixture distribution belongs to a certain family then iden-
tifiability is not a problem. In this case corresponding para-
metric estimators such as maximum likelihood estimators can
be used. Of course, if the analyst is prepared to make no as-
sumptions about the distribution of probabilities then, as is
well known in the context of mixture models in general, Link’s
conclusion is correct, and nonparametric estimation methods
(cf. Burnham and Overton, 1978) might be preferable.

Proofs of the theorems in this article are provided sepa-
rately on the Biometrics website.

2. Notation and Preliminaries
Suppose that a closed population of unknown size N is sam-
pled on T occasions. We assume that the number of captures
Xi of animal i is distributed as binomial B(T, pi ), where pi

is the capture probability of this animal over T independent
samples. We assume that the pi ’s are distributed according to
some distribution G on [0, 1]. This implies that the probability
that an individual is sampled x times is given by

πG(x) =

(
T

x

)∫ 1

0

px(1 − p)T−x dG(p). (1)

Let n be the number of animals that were captured at least
once, that is, for which Xi > 0. Let

fx = #{i : Xi = x}, x = 1, . . . , T.

As pointed out by Link (2003), the vector (f 1, . . . , fT ) is
multinomially distributed with T cells, n repetitions, and cell
probabilities:
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πc
G =

(
πc
G(1), . . . , πc

G(T )
)
, πc

G(x) =
πG(x)

1 − πG(0)
,

x = 1, . . . , T.

The probabilities πc
G are simply the conditional probabilities

of the mixture of binomial distributions given that x ≥ 1.
Note that only these conditional probabilities can be esti-
mated from the observations fx . Consequently the problem of
establishing identifiability in this context differs from that of
establishing identifiability of the mixing distribution G from
the probabilities of a binomial mixture, πG , in the classical
mixture context (cf. Teicher, 1961, 1963; Lindsay, 1995). Here
we need to investigate the identifiability of G from the con-
ditional probabilities, πc

G, given that x ≥ 1. Note that once
this identifiability is settled, G can be consistently estimated
(within the given parametric family) by the maximum like-
lihood estimator Ĝ, for example. Then πG(0) is consistently
estimated by πĜ(0), and N by

N̂ =
n

1 − πĜ(0)
.

By embedding the issue of identifiability in such capture–
recapture models in the general context of identifiability of
finite mixtures from the binomial distribution, it is immedi-
ately clear that G cannot be identified within the set of all
distributions (for any fixed T), because this does not even
hold for the complete (nonconditional) model (1) (cf. Teicher,
1961). However, in this note we show that within various com-
monly used parametric families, G is identifiable. Specifically,
we show that within the class of finite mixtures with at most
m components (cf. Pledger, 2000), G is identifiable if and only
if 2m ≤ T. Furthermore, we give a general criterion for iden-
tifiability based on the moments of the mixing distribution.
As particular cases, this yields the identifiability of the class
of beta distributions if T ≥ 3, and of the class of uniform
distributions on [0, b], b ≤ 1, if T ≥ 2.

We stress that establishing identifiability in the context of
this application is a more subtle problem than identifiability of
binomial mixtures with fixed T, because only the conditional
probabilities are available. Finally we remark that some of our
results carry over to other distributions of the Xi ’s, such as
the truncated geometric (cf. Norris and Pollock, 1996).

3. Theory and Examples
Definition 1: In the capture–recapture model (1) we shall

call a family G of distributions on [0, 1] identifiable if, for each
G ∈ G, the vector πc

G uniquely determines G within the class
G, that is, if for G,H ∈ G,

πc
G = πc

H ⇒ G = H. (2)

Lemma 1: Let π = (π(0), . . . ,π(T)) and ρ = (ρ(0), . . . ,
ρ(T)) be two probability vectors on {0, . . . ,T}, and let πc and
ρc be the conditional probability vectors on 1, . . . ,T, given that
x ≥ 1. Then

πc = ρc ⇔ there is an A > 0 : π(x) = Aρ(x), x = 1, . . . , T.

It is known (e.g., Link, 2003) that for identifiability to be
possible, 0 has to be excluded from the support of the distri-
butions in G. Indeed, let G be any distribution on [0, 1] and

consider H = λδ0 + (1 − λ)G, λ ∈ (0,1), where δ0 is the point
mass at 0. Because πδ0(0) = 1, we have that πH(x) = (1 − λ)×
πG(x) for x = 1, . . . ,T. From Lemma 1, it follows that πc

G =
πc
H . Thus in the following we will concentrate on distributions

G with support in (0, 1]. This simply means that the whole
population is in principle observable.

Teicher (1961) observed that the probabilities (1) can be
expressed in terms of the moments of the mixing distribution
G. In fact, we have that

πG(x) =

(
T

x

) T∑
k=x

(−1)k−x

(
T − x

k − x

)
mG(k), x = 1, . . . , T,

(3)

where mG(k) =
∫ 1

0 tk dG(t) is the kth moment of G. For our
problem this implies

Theorem 1: For two distributions G, H on (0, 1], πc
G = πc

H

implies that there is an A > 0 such that

mG(x) = AmH(x), x = 1, . . . , T. (4)

Therefore if there exist no two different G,H ∈ G such that
(4) holds, then G is identifiable.

Example 1. The beta distribution B(p, q), p, q > 0 was
used as a mixing distribution by Dorazio and Royle (2003).
We show that this family is identifiable if T ≥ 3. The xth
moment is given by

mp,q(x) =
(p + x− 1) · . . . · p

(p + q + x− 1) · . . . · (p + q)
.

From mp,q(x) = Amp′,q′(x), x = 1, 2, 3, and some A > 0, it
follows that

(p + i)

(p + q + i)
=

(p′ + i)

(p′ + q′ + i)
, i = 1, 2.

Straightforward algebra now shows that p = p′ and q =
q ′. Let us briefly illustrate the difference between identifia-
bility in the capture–recapture context and in the context
of usual binomial mixtures. From the moment criterion in
Teicher (1961), it follows that beta mixtures of the binomial
distribution are identifiable for T = 2. However, it is easily
seen that relation mp,q(x) = Amp′,q′(x), x = 1, 2 is satisfied
for p = 1, q = 2, p′ = 3, q′ = 4, and A = 7/9, and hence
identifiability in the capture–recapture context does not hold
for T = 2.

Example 2. The uniform distribution on (0, b] was consid-
ered as a mixing distribution in Pledger (2005). The first two
moments are given by mb(1) = b/2 and mb(2) = b2/3. From
these expressions and Theorem 1 it is simple to see that for
T ≥ 2 the uniform distribution is identifiable.

Now let us consider the class of finite mixing distributions
with at most m support points

Gm =

{
G =

m∑
k=1

λkδpk , λk ≥ 0,
∑
k

λk = 1, pk ∈ (0, 1]

}
.

Note that Gm−1 ⊂ Gm, because the λk ’s are allowed to be zero.
Theorem 1 also applies to finite mixtures, however, it is not
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helpful in this case. Therefore we use a direct method of proof
for the following:

Theorem 2: The class Gm is identifiable if and only if
2m ≤ T.

Pledger (2000) used finite mixtures to model population
heterogeneity. She observed that the condition 2m ≤ T is
necessary for identifiability. In fact, the class Gm has 2m −
1 parameters, and these have to be identified from the T −
1 variable probabilities. Thus 2m ≤ T is a necessary and suf-
ficient condition. An inspection of the proof of Theorem 2
(given in the online Supplementary Materials) shows that the
same arguments apply if the outcomes Xi follow a discrete dis-
tribution which, as a function of the parameter, is a Čebyšev
system (cf. Karlin and Studden, 1966) with a joint zero out-
side the interval (0, 1]. An example is the truncated geomet-
ric distribution (for which P (Xi = x) = pi (1 − pi )

x, 1 ≤
x ≤ T ) used in Norris and Pollock (1996), to model popula-
tion heterogeneity with behavioral response to capture.

4. Supplementary Materials
Proofs can be found at the Biometrics website http://www.

tibs.org/biometrics.
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The author replied as follows:

In Biometrics 59, 1123–1130, I wrote

The purpose of this note is to draw attention to a problem
inherent to all attempts to model heterogeneity in detection
probability. The problem has not gone entirely unnoticed pre-
viously, but its extreme consequences appear not to have
been fully recognized. The problem is this: that while it may
be possible to discern heterogeneity in detection probabil-
ity, it is likely that an analyst will be unable to distinguish
between reasonable descriptions of the heterogeneity, even
when these alternative descriptions lead to vastly different
inferences about population sizes.

In the first half of my article, I illustrated these points in
the context of the closed population heterogeneity model Mh ,
based on T sampling occasions. The sufficient statistic is f =
(f 1, f 2, . . . , fT )′, where fx is the number of individuals cap-

tured exactly x times; n =
∑T

x=1 fx is the number of distinct
individuals observed.

I showed that ruling out mass on or near zero in the distri-
bution of detection probabilities was not sufficient to ensure
identifiability of population size N (contrary to a suggestion
of Huggins, 2001). To do so, I constructed distributions G and
H on (δ, 1], δ > 0, with the property that the first T moments
of G are proportional to, but distinct from, the corresponding
moments of H. It is easily verified that the sampling distribu-
tion of f is identical for such G and H, but that the indicated
proportions of individuals not detected are different, so that
N is not identifiable.

Holzmann, Munk, and Zucchini (2006, subsequently HMZ)
have shown in their Theorem 1 that the sufficient condition I
used to construct the example is also a necessary condition.
Thus if we can restrict our attention to a family of distribu-
tions G in which distinct distributions G and H cannot satisfy
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the moment condition, there is no problem of nonidentifiabil-
ity of N.

This is an interesting observation. HMZ have used their
theorem to show that N is identifiable if it is known that the
distribution of detectability is in the beta family, or within the
class of finite mixtures with at most m components, provided
that 2m ≤ T. While these specific results can perhaps be
established by other means (e.g., for the beta distribution by
K. P. Burnham in his 1972 thesis), the result is nonetheless
interesting as a general mathematical characterization of the
problem of nonidentifiability under Mh .

I am happy to have the opportunity to respond to HMZ.
Their commentary includes two common reactions to my
2003 paper. First, that given sufficiently strong assumptions
about the mixture family, identifiability is not a problem. This
is true, but not very reassuring. Without such strong and
untestable assumptions, identifiability is a problem. Pledger
(2005) has commented with regard to my paper that “the im-
pact of these findings on capture–recapture analysis has yet
to be determined” but concluded with the optimistic state-
ment that “despite all the problems . . . heterogeneous mod-
els are working well for many data sets.” I am somewhat
more confident about the implications of my findings, and less
sanguine about whether “heterogeneous models are working
well.” Thus in the first section of this response I will dis-
cuss practical implications of HMZ’s Theorem 1, reiterating
that nonidentifiability among families of distributions means
that the data cannot inform a fundamental and noninnocuous
modeling decision.

Another reaction to my 2003 paper has been that if para-
metric models cannot be used with confidence, then perhaps
we ought to use nonparametric methods instead. HMZ wrote

Of course, if the analyst is prepared to make no assump-
tions about the distribution of probabilities then, as is well-
known in the context of mixture models in general, Link’s
conclusion is correct, and nonparametric estimation methods
(cf. Burnham and Overton, 1978) might be preferable.

The second part of this response addresses this suggestion
through consideration of the jackknife estimator of Burnham
and Overton (1978). I conclude that the availability of non-
parametric methods provides no solution to the problem of
identifiability.

1. Practical Implications of Holzmann et al.’s
Theorem 1
Interesting as HMZ’s Theorem 1 is from a mathematical
perspective, I believe it offers little comfort to analysts of
capture–recapture data with heterogeneous detection proba-
bilities. The choice of a family of distributions for heterogene-
ity is typically made on the basis of convenience, rather than
because of compelling prior knowledge. If it is argued that
we may try various models of heterogeneity, and let some
model selection criterion such as Akaike’s Information Crite-
rion (AIC) sort through them, then it is essential that identi-
fiability of N prevails across the set of candidate models, and
not simply within models.

Thus, for instance, when T = 4, N is identifiable with het-
erogeneity described by a two-point mixture or by a beta dis-
tribution. N is identifiable under either family; however, N is

Table 1
Distribution of f given n under alternative models

of heterogeneity

E(fx/n)

x 1 2 3 4 5 6 7

Logit- 0.319 0.199 0.143 0.112 0.092 0.077 0.059
normal

Beta 0.320 0.196 0.144 0.113 0.092 0.076 0.060

not identifiable in the larger family consisting of the union of
the two families. There exist two-point mixtures and beta dis-
tributions yielding identical sampling distributions of f . An
example is the two-point mixture placing mass of w = 3/4 on
p1 = 1/4 and 1 − w on p2 = 3/4, and the beta distribution
with parameters a = 1/2 and b = 3/2; the first four moments
of the beta distribution are precisely 2/3 of the correspond-
ing moments of the two-point mixture. The frequencies fx ,
x = 1, 2, 3, 4, occur in the exact same proportions 28:18:12:7
under both models, but the expected number of individuals
detected is 0.508N under the beta model, and 0.762N under
the two-point mixture model. Thus the beta model indicates a
population size 50% larger than the two-point mixture model.
It is nice to know that N is identifiable within the beta family
and within the two-point mixture family, but the data give
no basis for choosing between the models; inference regard-
ing N can only be made on the basis of an untestable model
assumption.

Consider also the frequency distribution for f given in
Table 1: the logit-normal frequencies are based on the as-
sumption that logit(p) is normal with mean −1.75 and vari-
ance 4; the beta frequencies arise from assuming that p has
a β(0.256, 1.135) distribution. These frequency distributions
were obtained by numerical minimization of the Kullback–
Leibler distance from the logit-normal-induced distribution
for f to the corresponding family of distributions induced by
the β(a,b) mixing distribution. Under the logit-normal model,
the expected number of individuals detected is 0.6072N, while
under the beta model it is 0.4397N. I note that the ratios of
the first seven moments of the two mixing distributions (logit-
normal/beta) are nearly but not precisely constant, ranging
from 1.371 to 1.382. Two possibilities exist: (1) that the joint
family (consisting of logit-normal and beta distributions) is
not identifiable, and that the nonconstant ratio I obtained
was the result of round-off error; or (2) that the union of
logit-normal and beta families is identifiable, but very nearly
not so. I would guess that the second explanation is the cor-
rect one; regardless, the example shows that unless one has
compelling grounds for believing that the mixing distribu-
tion is of the beta family, and not of the logit-normal fam-
ily (or vice versa), then the problem of nonidentifiability of
N must be taken seriously, this even when the number of
sampling occasions is large relative to the number of model
parameters.

2. Nonparametric Estimation Methods
There is current among some analysts the notion that
nonparametric methods can be applied for free, with no
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assumptions entailed. D. H. Johnson, in a paper aptly titled
“Statistical sirens: The allure of nonparametrics” (1995), cited
examples of scientific papers in which this misapprehension is
explicitly stated:

The main advantage of nonparametric methods over their
parametric counterparts is the absence of assumptions re-
garding the distribution underlying the observations.

(Potvin and Roff, loc. cit., Johnson’s emphasis). HMZ’s com-
ment that should an analyst be unwilling to make paramet-
ric assumptions, “nonparametric methods might be prefer-
able,” could nurture this misconception. The fact is that
nonparametric methods do make assumptions, but that the
assumptions tend to be less restrictive, or at least appear
so, with the consequence that they may be less vigorously
scrutinized.

Nonparametric methods are typically applicable to larger
families of distributions than their parametric counterparts.
If the problem of nonidentifiability can only be resolved by
restrictions to specific parametric families (as HMZ have
demonstrated) then it is hard to see how omnibus nonpara-
metric methods might be preferable, except to those who
would sweep assumptions under the rug.

Consider the popular jackknife estimators of Burnham and
Overton (1978, 1979) referenced by HMZ. The estimators
were developed using the bias reduction properties of the
jackknife procedure, beginning with the biased estimator n
of N. Burnham and Overton’s kth order estimator N̂Jk is a
linear combination of jackknife estimators having order j =
1, 2, . . . , k, and has bias of order 1/Tk . The greater bias re-
duction for larger k is understood as coming at the expense
of greater sampling variability; this observation stands as the
basis for a rather ad hoc procedure for selecting k, described in
Burnham and Overton (1978) and implemented in the widely
used program CAPTURE (White et al., 1978).

Using HMZ and my notation, Burnham and Overton’s
(1978) development of N̂Jk assumes that

E(n) = N + a1/T + a2/T
2 + · · · , (1)

where a1, a2, . . . are constants, functionally independent of
T, but not of N. This assumption defines a family of distri-
butions for which the jackknife estimator is appropriate: it is
the family GJ of distributions G on [0, 1] with the property
that we may write

π(0) =
N −E(n)

N
=

∫ 1

0

(1 − p)T dG(p) =

∞∑
j=1

(bj/T
j) (2)

for some sequence of constants bj = −aj/N , with (2) holding
for all positive integers T (or perhaps, for all positive integers
T ≥ T0 > 0).

I would guess that few analysts have much of an intu-
ition for the family GJ , or could name a distribution in the
family, or even state with confidence that such distributions
exist. While an investigation of the family GJ seems beyond
the scope of this response, it seems worthwhile to point out
that the family is limited, and perhaps even rather severely
(proofs of subsequent comments are available from the au-
thor). For instance, if π(0) approaches zero too rapidly as
T →∞, condition (2) cannot be satisfied. This is the case

if limT→∞ T kπ(0) = 0, for all integers k > 0. The finite mix-
ture models have this property, hence are not members of the
family GJ .

Suppose that G(p) corresponds to a β(a,b) distribution. It
can be shown that G is not in the family GJ unless a is an
integer. If a is an integer, (2) is demonstrable for values T ≥
a + b. Why, one might reasonably ask, would one choose to
allow integer values of a, but to rule out all others? Indeed,
why would one choose the family GJ as the basis of inference?

The apparently adequate performance of Burnham and
Overton’s jackknife in empirical evaluations (Greenwood
et al., 1985; Manning et al., 1995) is likely due to its rela-
tion, for large T, to an estimator based on extrapolation of
an interpolating polynomial. Burnham and Overton (1979)
state that

lim
T→∞

N̂J,k = n +

k∑
i=1

(−1)i+1

(
k
i

)
fi. (3)

Now consider the unique polynomial of degree k, gk (x), de-
fined as passing through the points (i, fi ) for i = 1, 2, . . . , k.
For each of these values i, the polynomial tells how many in-
dividuals were captured precisely i times: gk (i) = fi . We may
hazard a guess that the polynomial will do an adequate job
of predicting f0, the number of animals captured zero times.
We might then estimate N by n + gk (0). It turns out that
gk (0) is the same as the second term on the right-hand side
of (3).

It might be argued that this sort of curve-fitting and ex-
trapolation is a reasonable thing to do. The question remains,
“under what conditions?” Are analysts motivated by the be-
lief that the assumption defining family GJ is appropriate for
their specific problem? Or is there an unstated assumption
that the jackknife is useful in vaguely defined broader circum-
stances? In either case, are we to be content with an estimator
of N merely on the basis that it has smaller bias than the näıve
estimator n?

The message of my 2003 paper was that without strong
assumptions, f1, f2, . . . , fT tell us essentially nothing about f0.
HMZ have clarified how strong the assumptions need to be,
and for this I applaud them. Given the message “strong as-
sumptions are needed,” the response “fewer/vaguer assump-
tions is the solution” seems unwarranted. Easily assailable but
clearly articulated assumptions ought always to be preferable.
Nonparametric estimation of N is not the solution to the iden-
tifiability problem.

3. Conclusions
Where does this leave us? Unmodeled heterogeneity is a
shipwreck. Indeed, without specific parametric models for
the heterogeneity in p, we find ourselves in circumstances
quite similar to those considered by Kiefer and Wolfowitz
(1956), who demonstrated that maximum likelihood esti-
mates of parameters of interest may be asymptotically bi-
ased, and badly so, if the number of nuisance parameters (in
this case, individual p’s) is allowed to increase without bound.
In fact, the situation is worse: no estimate of N is available
under model Mh without recourse to untestable model
assumptions.
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HMZ’s Theorem 1 implies that we may have as much con-
fidence in our analyses of model Mh as we have confidence
in the selected distribution of detectability. Rather than re-
lying on untestable assumptions, it seems advisable that we
attempt to identify and control for sources of heterogeneity
through appropriate covariate analyses.
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