doi: 10.1111/5.1467-9469.2006.00505.x

© Board of the Foundation of the Scandinavian Journal of Statistics 2006. Published by Blackwell Publishing Ltd, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA, 2006

Identifiability of Finite Mixtures of
Elliptical Distributions

HAJO HOLZMANN and AXEL MUNK
Institut fiir Mathematische Stochastik, University of Géttingen

TILMANN GNEITING
Department of Statistics, University of Washington

ABSTRACT. We present general results on the identifiability of finite mixtures of elliptical distri-
butions under conditions on the characteristic generators or density generators. Examples include
the multivariate 7-distribution, symmetric stable laws, exponential power and Kotz distributions. In
each case, the shape parameter is allowed to vary in the mixture, in addition to the location vector
and the scatter matrix. Furthermore, we discuss the identifiability of finite mixtures of elliptical
densities with generators that correspond to scale mixtures of normal distributions.

Key words: characteristic function, elliptically symmetric, finite mixture, identifiability,
Laplace transform, multivariate ¢ distribution, normal scale mixture

1. Introduction

Finite mixture distributions have been widely used in the statistical and general scientific
literature, both as tools for modelling population heterogeneity and as a flexible method
for relaxing parametric distributional assumptions. Comprehensive surveys are available in
Titterington et al. (1985), Lindsay (1995), Bohning (2000) and McLachlan & Peel (2000).
The assumption of identifiability for a statistical model lies at the heart of most statistical
theory and practice (Titterington et al., 1985, p. 35). In the context of finite mixture models,
identifiability allows for the recovery of the mixing distribution from the mixture and is essen-
tial for consistent estimation (Leroux, 1992). Different variants of the identifiability problem
arise in specific mixture models used in practice (Link, 2003; Holzmann et al., 2006).

Teicher (1961) pioneered the study of identifiability for finite mixture distributions, and
identifiability has been proved in numerous special cases since. Nevertheless, identifiability
often is tacitly assumed to hold while proofs remain unavailable (Titterington et al., 1985,
section 3.1.3; Lindsay et al., 2004, p. 396), and the literature appears to be incomplete in
two ways. First, the number of parameters allowed to vary in the mixture is limited. Typi-
cally, a single location parameter or univariate location and scale parameters are considered
only (Holzmann et al., 2004). However, it is often desirable to allow additional shape para-
meters to vary with the mixture components as well. Secondly, results for multivariate dis-
tributions are generally unavailable, with a few but notable exceptions. Yakowitz & Spragins
(1968) showed that finite mixtures of multivariate normal distributions with variable mean
vectors and covariance matrices are identifiable, and Kent (1983) proved a general result on
the identifiability of finite mixtures of distributions on Stiefel manifolds. Chandra (1977)
studied identifiability of finite mixtures on general measurable spaces.

Our work addresses both limitations simultaneously, by considering finite mixtures of ellip-
tical densities of the form
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Here, f,(-;0) is a density generator, that is, a non-negative function on [0,00) or (0, c0)
such that the spherically symmetric function f,(xTx;0), x € R, integrates to 1. The para-
meter vector = (0, 1, X) belongs to A? c RF*PPP+D2 where ne R” is a location parameter,
T is a positive definite scatter matrix, |Z| denotes its determinant, and 0 € ® C R* may be
an additional shape parameter which may also be allowed to vary in the mixture. Finite
mixtures of elliptical densities play crucial roles in model-based clustering, discriminant anal-
ysis, density estimation and other applications (Fraley & Raftery, 2002).

Elliptically symmetric densities can be defined via characteristic generators or via density
generators (Kelker, 1970; Cambanis et al., 1981; Fang et al., 1990). Specifically, a function
¢(u), u>0, is a characteristic generator in dimension p>1 if ¢(¢T¢) is the characteristic func-
tion of a probability distribution on R”. A characteristic generator in dimension p is a char-
acteristic generator in dimension p’ if p’ <p, but not necessarily if p’ >p. If the probability
distribution in R”, determined by ¢(:'7), has a density, it is of the form f,(xTx). The density
generator f, depends on the dimension, p, and generates a location-scatter family of ellipti-
cally symmetric densities in R”.

The paper is organized as follows. In section 2, we present identifiability theorems for
elliptically symmetric densities, defined via characteristic generators or via density generators.
When expressed in terms of characteristic functions, identifiability questions for elliptical dis-
tributions reduce to univariate problems, and this allows us to work with tail conditions on
the characteristic generators. In terms of density generators, we prove identifiability under tail
conditions, or smoothness conditions at the origin. These results extend and complete pre-
vious work by Teicher (1961, 1963), Yakowitz & Spragins (1968), Kent (1983) and Holzmann
et al. (2004).

Section 3 turns to examples. In particular, we show that finite location-scatter mixtures
from the multivariate z-distribution, even with variable degree of freedom, are identifiable.
Peel & McLachlan (2000) proposed the use of mixtures of this type to robustify cluster anal-
ysis and discussed maximum likelihood estimation via the expectation maximization (EM)
algorithm in such models. We also prove identifiability of mixtures from multivariate stable
laws, where the characteristic exponent takes the role of the variable shape parameter, and we
consider finite mixtures of Kotz type distributions. These results are summarized in Table 1.
Further examples for identifiable finite location-scatter mixtures include generalized hyper-
bolic secant and Bessel distributions.

Section 4 considers finite location-scatter mixtures of elliptical distributions with com-
pletely monotone characteristic generators, corresponding to scale mixtures of normal
distributions. Here, a condition for identifiability can be stated in terms of the tail be-
haviour of the Laplace transform of the mixing measure in the scale mixture. We extend
the respective Abelian theory which links the tail behaviour of the Laplace transform to
the behaviour of the mixing distribution at the origin, and this result might be of inde-
pendent interest. The paper closes with a discussion in section 5. All proofs are deferred
to the appendix.

Table 1. Examples of location-scatter families in R’ with identifiable finite mixtures

Distribution Additional shape parameters Shape parameter in mixture
Multivariate ¢ Degrees of freedom 0>0 Variable

Symmetric stable Characteristic exponent 0 <o <2 Variable

Kotz Shape parameter r>—p/2 Variable

Exponential power Exponent s>0 Variable with s>1
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2. Identifiability theorems

Finite mixtures are said to be identifiable if distinct mixing distributions with finite support
correspond to distinct mixtures. In the present context, finite mixtures from the location-
scatter family {f, ,:oa=(0, u,X) € A’} are identifiable if a relation of the form

m m

D Al s =D A ), XER, @)
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where m is a positive integer, Y7, =", Z=1and 4;, ;>0 for j=1,...,m, implies that
there exists a permutation ¢ € S, such that (4, o) = (/1:,(,-), a;(/.)) for all j. Evidently, finite mix-
tures are identifiable if the family {f; ,:a=(0, u, X) € A”} is linearly independent. A classical
result of Yakowitz & Spragins (1968) states that this linear independence is a necessary and

sufficient condition for identifiability.

2.1. Hdentifiability via characteristic generators

Let ¢(u;0), where u>0 and 0 € ®, be a parametric family of characteristic generators, giving
rise to spherically symmetric characteristic functions ¢(¢7t;0), t€R?, where 1 <p<gq and 1<
q <oo. The positive integer ¢ gives an upper bound on the permissible dimensions in which
¢(u; 0) is a characteristic generator, and might be infinite. We suppose that the associated dis-
tributions have spherically symmetric densities f,(xTx;0), x € R, and recall that the density
generator, f,, depends on the dimension, p. The respective family {f, ,:0=(0, u,X) € A’} of
elliptical densities is defined in (1).

The following result shows that identifiability reduces to a univariate problem if the distri-
butions are defined via characteristic generators.

Lemma 1

Suppose that a parametric family of characteristic generators gives rise to families of elliptical
densities {f, ,:0=(0,u,Z)€ A’} in dimension 1 <p<gq. Then the identifiability of finite mix-
tures from the univariate family {f, |:a€ A'} implies the identifiability of finite mixtures from
the family {f, ,:0€ A’} for each 1<p<q.

Next we give a sufficient condition for identifiability. To this end, we introduce a scale para-
meter, a >0, and consider the family

bp(u)=p(au;0), B=(a,0)€(0,00) x O=:B. 3)

Theorem 1

Suppose that a parametric family of characteristic generators gives rise to families of elliptical
densities {f, ,:0=(0,u,X)€ A’} in dimension 1 <p<gq. Suppose there exists a total ordering
=< on the set B such that , <, implies

fim 220

U—00 d)/;l (u)

for the corresponding characteristic generators. Then finite mixtures from the class
{fo.p10=(0,u, Z)€ AP} of elliptical distributions in RF are identifiable for each 1 <p<gq.

0 C))

Note that the shape parameter is allowed to vary in the mixture, in addition to the location
parameter and the scatter matrix. Pure location-scatter mixtures are covered by the special
case in which ® is trivial.
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2.2. Identifiability via density generators

Typically, identifiability of finite mixtures is proved via integral transforms such as the
Fourier or Laplace transform (Teicher, 1961). However, it is often more convenient to argue
in terms of densities, since the corresponding transforms may not be known in closed form
or may even not exist. A prominent example was given by Kent (1983), who argued directly
via the densities of certain distributions on Stiefel manifolds.

In this section, we present conditions on density generators that guarantee the identifi-
ability of finite mixtures from the associated elliptical distributions. Let f,(u;0), where
u€[0,00) or (0,00) and 0 € ®, be a parametric family of density generators on R’, that
is, f,(xTx; 0) is non-negative and has unit integral over x € R?, for all 6 € ®. The associated
location-scatter family {f, ,:a=(0, u, X)€ A”} is given by (1).

Theorem 2
Let f,(-;0), 0€ O, be a parametric family of density generators for spherically symmetric dis-
tributions in RP. Let C=0 x (0,00) x R and let y;=(0;,a;,b;) €C for j=1,2. Suppose there
exists a total ordering < on the set C such that y, <7y, implies

. f};(azu2 +byu+c2;0,)

1 = R.
uLToﬁ,(alu2+b1u+cl;9|) 0 fOV €1,2€ (5)

Then finite mixtures from the family {f, ,:0=(0, u,X)€ A’} of elliptical distributions in R are
identifiable.

The following result concerns location-scatter mixtures for density generators that lack
smoothness at the origin.

Theorem 3

Let f, be a density generator for a spherically symmetric distribution in R'. Suppose that f,
has continuous derivatives of any order everywhere on (0,00), and suppose that there exists a
positive integer ko such that the function h(u)=f,(u?), uc R\ {0}, satisfies

BP0 4) # A D0-) for k=koko+1,... (6)

Then finite mixtures from the location-scatter family {f,, ,:o0=(u,X)} are identifiable.

3. Examples

Example 1 ( Multivariate t-distribution). The multivariate z-distribution with location para-
meter u, scatter matrix X and 0 >0 degrees of freedom has density function

r(3%)

S )= nr g

—(0+p)/2
} , xel,

[ =
where a=(0, u, ¥) € A?. Finite mixtures from the multivariate ¢-distribution are identifiable,

even with variable degree of freedom. Indeed, the respective characteristic generator (Kotz &
Nadarajah, 2004, p. 39) is given by

0 0/4
P(u; 9):29,2(?1711(0/2)1@/2 (\/E), u>0, (7
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where Ky, denotes the McDonald or modified Bessel function of the second kind (Watson,
1944, p. 78). A well-known estimate (Watson, 1944, p. 202) implies that

M oc e VEQ/ @0 =/a0), =004 a9 4o (8)

4)/;1 (1) ’
where f§;=(a;, 0;) for j=1,2, and o< means that the quotient converges to a positive constant.
We define a total ordering on the set B, specified in (3), as follows: , < f, if @0, <a,0,, or
if @10, =a,0, and 0, > 0,. With this total ordering, the asymptotic relationship (8) implies (4),
and theorem 1 applies. A straightforward extension of the argument shows that finite mix-
tures of elliptical distributions from the union of multivariate ¢ and normal distributions are
also identifiable.

Example 2 (Symmetric stable law). The characteristic generator of the multivariate symmetric
stable law with characteristic exponent 0 <0 <2 is given by

qb(u;0)=exp(—u”/2), u>0.

To show that finite mixtures from the associated family of elliptically symmetric densities are
identifiable, let ;=(q;,0;) for j=1,2 and define a total ordering on the set 3, specified in
(3), as follows: 5, < p, if 0, <0, or if 6, =0, and a; <a,. With this total ordering, theorem
1 applies.

Example 3 (Kotz type distributions). Kotz type distributions in R” (Fang et al., 1990, p. 76)
are defined via the density generators

sT(p/2)

np/zl—- |:2r+p]
2s

Jp(u;0)= u" exp (—u“'), u>0,

where 0= (r, s) € (—p/2, 00) x (0, o). This flexible family includes the exponential power distri-
bution (Box & Tiao, 1992, p. 157), the original Kotz distribution (Fang et al., 1990, p. 76) and
the multivariate normal law as the special cases in which r=0, s=1 and (r, s)=(0, 1), respec-
tively. When compared with Gaussian densities, Kotz type distributions allow for lighter as
well as heavier tail behaviour.

We apply theorem 2 to show that finite location-scatter mixtures from the Kotz family with
variable shape parameter 0=(r,s) € (—p/2, 00) x (1/2,00) are identifiable. Let 0;=(r;,s;) and
Y =(0;,a;,b;) for j=1,2 and define a total ordering on the set C, specified in the theorem, as
follows: y, <7, if s <s5; or if 51 =5, and a; <ay; or if s =5, a; =a, and by <b,; or if 5, =4,,
ay=ay, by=>b, and r; >r,. With this total order, condition (5) is satisfied and theorem 2
applies.

For fixed parameter values condition (6) is satisfied, unless both r and s are integers. Hence,
theorem 3 shows that the respective location-scatter families are identifiable. For r=0 and
s=1/2 we obtain the identifiability of finite location-scatter mixtures from the multivariate
Laplace distribution (ky=1). Al-Hussaini & Ahmad (1981) considered mixtures of univariate
Laplace distributions, but proved identifiability with fixed location or scale parameters only.
A similar comment applies to many of their examples. The aforementioned results can be
combined to prove the identifiability of location-scatter mixtures for the exponential power
distribution with variable shape parameter s> 1/2. We omit the tedious proof.

Example 4 ( Location-scatter mixtures). We give additional examples of elliptical distributions
with identifiable finite location-scatter mixtures.

© Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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The multivariate generalized hyperbolic secant distribution (Harkness & Harkness, 1968),
with shape parameter 0> 0, has characteristic generator

—20
¢>(u;0)=sech20(\/a/2)=[(eﬁ/2+e*ﬁ’2)/2] , u>0.

For fixed 6>0 finite mixtures from the associated location-scatter family are identifiable.
Indeed, ¢(au;0)~e V¥ as u— oo for a>0, and theorem 1 applies with the standard order
on (0,00). However, theorem 1 cannot be used to prove identifiability with variable shape
parameter.

The symmetric Bessel distribution (Fang et al., 1990, p. 92), with shape parameter 0>0,
has a density generator f,(-;0) that is proportional to the characteristic generator (7) of the
multivariate ¢ distribution. One can show that for fixed shape parameter 6, theorem 3 applies,
yielding identifiability of the associated location-scatter mixtures. Indeed, f, evidently has con-
tinuous derivatives of all orders on (0, c0) since this holds for the modified Bessel function
K. Furthermore, (6) can be checked with ky=1 using the series expansions in Abramowitz
& Stegun (1965, p. 375).

Example 5 ( Band-limited densities). Densities with compactly supported characteristic gener-
ators are called band-limited and play significant roles in signal processing (Kay, 1988). Let
¢ be a characteristic generator in R” where 1 <p <gq. A slight variant of the arguments in the
proof of theorem 1 shows that if there exists d>0 such that ¢(u)=0 for u>d and ¢(u)+#0
for u<d, then finite mixtures from the respective location-scatter family {f, ,:o=(u, Z)} are
identifiable.

The classical example of a non-identifiable location-scatter family is based on the uniform
distribution on R (Teicher, 1961). We give a similar counterexample.

Example 6 (Triangular distributions). Consider the univariate triangular location-scale family

X—p

1
f(X;,uaa):; (1 T4 ) l\x—u\iaa xeR,

where € R and a>0. It is easily seen that
0.1 _4 .12 4. .12 1 -0 1 R
f(x’ > )_§f(xa§’§)+§f(x’_§’§)+§f(x’ 55)9 xe .

Hence, finite location-scale mixtures of the triangular density are not identifiable.

4. Normal scale mixtures

In this section, we study conditions on a particular class of characteristic generators ¢, as to
guarantee identifiability of the associated location-scatter families.

To characterize this class, we recall Schoenberg’s theorem, which states that a function ¢
is a characteristic generator in any dimension if and only if it is of the form

B =sdow= [ eRdG0). w0 ©)

0
where G is a probability measure on (0,00). See, for example, Fang ez al. (1990, p. 48).
Equivalently, the associated elliptical distributions form scale mixtures of normal distribu-

tions. Many of the examples in section 3 are of this form (Gneiting, 1997).
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We now fix the measure G and consider the respective location-scatter family
{fs.p10=(u, Z)}, defined in terms of the associated characteristic functions,

dua(=cxp(in’ 0pg ('21), 1R,
Note that ¢;(2u) equals the Laplace transform, Lg(u), of the mixing measure, G, in the
representation (9). Hence, if Lg(au)/Lg(aiju)— 0 as u— oo for ay >a; >0 or, equivalently,

im Lg(au)
u—oo L(u)

=0 for a>1, (10)

then theorem 1 implies that finite mixtures from the family {f, ,, = (u, X)} generated by ¢
are identifiable. The following result provides a sufficient condition.

Theorem 4
Suppose that the density g of G exists and satisfies

g(r)
rl% g(ar)

=0 for a>l. (11)

Then the tail condition (10) holds and, consequently, finite mixtures from the family {f,:
a=(u, X)} generated by ¢ are identifiable.

In particular, if the mixing density g satisfies
g ocrfexp(—chr*) as r—0 (12)

for some o, ¢ >0 and € R, or decays even faster as r— 0, then (11) holds. On the other hand,
if g satisfies

g)xrf as r—0 (13)

for some f$>0, or decays even slower as r — 0, then Ls decays at most algebraically and f
lacks smoothness at the origin; therefore, theorem 3 applies. Clearly, (12) and (13) span a
comprehensive range of behaviours for the mixing distribution under which finite mixtures
from the location-scatter family generated by ¢ are identifiable. It is tempting to conjecture
that finite location-scatter mixtures based on a normal scale mixture are always identifiable,
irrespectively of the mixing measure.

Note that theorem 4 links the tail behaviour of the Laplace transform L to the behaviour
of the measure G at the origin. This result complements the Abelian theory in section XIII
of Feller (1973) and might be of independent interest.

5. Discussion

There appears to be an understanding in the literature that finite location-scatter mixtures of
continuous densities are generally identifiable, with few exceptions (McLachlan & Peel, 2000,
p- 28). However, various questions remain open, particularly as to which densities are the
exceptional ones, which parameters are allowed to vary in the mixture, and as to the effects
of smoothness and dimensionality. We believe that our results are reassuring, in that identi-
fiability for elliptical distributions generally persists in higher dimensions, and if in addition
to the location vector and scatter matrix additional shape parameters are allowed to vary as
well. Furthermore, our results apply to differentiable densities and also to densities that lack
smoothness. Some of our findings, and in particular theorems 2 and 3, might well extend to
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location-scatter families associated with less stringent or alternative notions of multivariate
symmetry, such as those discussed by Fang et al. (1990).
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Appendix: Proofs

Proof of lemma 1
Let the dimension, p, be fixed and suppose that

> hifyo(x)=0, xeER, (14)
=1

where /; € R and where the tuples o;=(0;, 1, %)) € A” are pairwise distinct. Taking the
p-dimensional Fourier transform in (14) gives

S exp (il Dp( S5 0)=0, reR.

Yakowitz & Spragins (1968, p. 211) show that there exists z € R? such that the tupels
o =(0; ’Hj 2,21, z) are pairwise distinct. If we write 1 =uz for u€ R then

n
Z Ayexpliup 2)p(u’z"%jz; 0,)=0, ueR.
Taking the one-dimensional inverse Fourier transform gives
n
D Aifea=0,  (€R,
=1

which implies 1; =---=21,=0 by our identifiability assumption on the univariate family.

Proof of theorem 1
By lemma 1, it suffices to consider the case p=1. Starting with the relation (14), we take the
Fourier transform and obtain

> Jyexp (iu) s (W) =0, ucR,
j=1

where ;= (af, 0,) and ¢ stands for the univariate variance parameter. Without loss of gener-

ality we may assume that f; <---=<f,. Let m>1 be such that f,=---=f, <, 2 =b,
the case f§, =---=p, is treated similarly. Dividing by ei“1“¢/,1 (#?) and rearranging terms, we
get
~. by, (%)
s +Z/Lj ety =1 4 Z ; eipy—p) _7 -~ 5D =0, ueR. (15)
j=2 j=m+1 ﬂl
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From (4) and (15) we find that >, 4;e"¥ ") — —J) as u — oco. Since y; — u; #0 for
J=2,....m, there exists up € R such that uo(x; — ;) €(0,2n) mod 2z for j=2,...,m. Now
2;1:2 JjeMolt=rm) — 7, as [ — co; hence, the arithmetic mean of these terms converges to
—21, too. However, lemma 2.1 in Holzmann et al. (2004) implies that

N-1 m

722) eholi=m) 0 a5 N — oo,

1=0 j=2

thereby showing that 4, =0. An inductive argument completes the proof.

Proof of theorem 2

Suppose that
> ity (= )5 = 0] =0, xR,
=1

| 172

where the tuples o; =(y;, Z;, 0;) are pairwise distinct, and where the |%; are subsumed into

the 4;. If we put x=uz, where u varies over R and z € R’ is considered fixed, then
(x— uj)TE’l(x — 1) =au* +bu+c;,

where ¢;=z"%;"'z and b;=—24]E; 'z, and we conclude that

Z fp au +bu+cj,0)
4

, uelR. 16
o a1u2+b|u+cl,9) (16)

j=2

The argument in Yakowitz & Spragins (1968, p. 211) shows that there exists z € R” such that
the tuples (0;,a;,b;) are pairwise distinct. Hence, we can assume without loss of generality
that (01, a1,b1) <+ < (0, am, byy). In view of (5), letting u — oo in (16) implies 2; =0, and the
proof is completed by an inductive argument.

Proof of theorem 3
Suppose that

m

S ik (=) E )] =0, xe R,

j=1
where the tuples (y;,%;) are pairwise distinct. Put x=uz+ y,, where u varies over R and
z€ R is chosen such that the following hold: uz + ) — p; #0€ R” for u € R unless y; =y, and,
furthermore, the 02 = TZ_,-’Iz are pairwise distinct for the indices j with p;=py,. Then it
follows that

S I D gy == > LH*w), ueR\{0}, (17
Jlyi=m Jl#m
where h,-(u)zf;(Hij”z(uz—f—y, —yj)Hz). The right-hand side of (17) is continuous at =0,
which requires that
Z afk’lij=0 for k=ko,....ko+m—1,
Jl=m

where m denotes the number of terms in the sum. Since the Vandermonde matrix has full
rank, this linear system implies that 4; =0 for all indices j such that u; = y,. Proceeding induc-
tively, we see that 4; =0 for all ;.
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Proof of the claim in example 5

By lemma 1, we may suppose that p=1. Starting with (14), we take the Fourier transform

and obtain

> h (o) =0, ueR,

J=1

where we may assume that ¢; <---<g, and ¢; =---=0,, <0, 1. Division by ¢(a?u?) yields
SOy 4 et =0 for dla;, , | <u®<dla}. The functions e”" are analytic; hence, >, /; e*" =0

for u€ R, and the proof is completed in analogy to the proof of theorem 1.

Proof of theorem 4
Suppose that a>1 and consider the decomposition

w12 00

Lg(au)= / e “g(rydr+ / e "g(rydr=hL+1.

0 w12

In order to estimate I,/L¢(u), note that e~ g(r) <e “g(r) exp(—(a — Du"?) for r>u'?,

which implies

L - fuo,ol,z e “rg(r)dr
Lo(u) = [Z; e g(r)dr

Concerning 7, we find that

w12 ) a2
I Jo e g(rdr [ e gls/(au)]ds
Le(u) — fo‘“ﬂu ewg(r)dr a O“um e~ g(slu)ds
From (11),

gls/(au)] _ 9(r)

— =0 as u— oo,

s€[0, aul?] g(S/u) ref0, u=112] g(ar)

and this implies that the quotient in (18) tends to zero, thereby proving (10).
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<exp(—(a—Du'?)—0 as u— oo.

(18)



