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Abstract

A general result about identifiability and strong identifiability of finite mix-
tures of a family of distributions is obtained via tail conditions on the corre-
sponding characteristic functions. This is applied to location-scale families
on the real line and to circular distributions. Particular cases include circular
wrapped distributions of location-scale families, stable distributions and the
d-dimensional wrapped normal distribution. Finally, counter examples are
given which highlight differences between identifiability on the real line and
on the circle.
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1 Introduction

Identifiability is a task of general interest in the theory of mixture models,
see e.g. Teicher (1961) and Lindsay (1995), but also has applications to other
fields (Leroux, 1992 and Bickel et al., 1998). Finite mixtures of continuous
densities were first studied by Teicher (1963). Most results for this problem
are obtained for distributions on the real line or the d-dimensional Euclidean
space. For distributions on the circle, only few examples are known.

Identifiability of finite mixtures of von Mises distributions was first proved
by Fraser et al. (1981). Kent (1983) extended this result to certain general-
ized von Mises distributions. While Fraser et al. (1981) used the real part
of the characteristic functions in its proof, Kent (1983) argued directly via
the tail behaviour of the densities.

Here we extend the result of Fraser et al. (1981) in another direction
which allows us to treat wrapped distributions, among others. Our method
is based on a condition on the tail behaviour of the Fourier transform which
is adapted from Teicher (1963). The Fourier transform turns out to be
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particularly useful for circular distributions. For example, wrapping leaves
the Fourier transform almost unchanged and hence identifiability results
from the real line can be directly transferred to wrapped distributions.

Our results apply to certain location-scale families on the real line as
well as to the corresponding wrapped families on the circle. We also obtain
identifiability of arbitrary mixtures of some location families on the circle.
Counter examples are given which highlight differences between identifiabil-
ity of distributions on the circle and on the real line. If only either location
or scale families on the real line are considered, identifiability (even of ar-
bitrary mixtures) was established by Teicher (1961). However, let us stress
that general location-scale families have not been treated in the literature
so far. Exceptions are normal and Cauchy mixtures (cf. Teicher, 1963, and
Yakowitz and Spragins, 1968), however, the technique used there cannot be
transferred to general location-scale families.

We also consider strong identifiability as introduced by Chen (1995), and
show that location-scale mixtures from the normal and the Cauchy distribu-
tion are strongly identifiable. Therefore Chen’s (1995) result on the speed
of convergence in estimating the mixing distribution and the asymptotics
for the modified likelihood ratio statistic of Chen et al. (2001) for testing
homogeneity apply to such mixtures.

The paper is organized as follows. In Section 2 the main theorem is
proved. In Section 3.1 this is applied to several distributions on the real
line and on the circle. Extensions to multivariate distributions are briefly
discussed in Section 3.2. This includes the multidimensional wrapped normal
distribution and a distribution on the cylinder as introduced by Johnson and
Wehrly (1978). Finally, in Section 3.3. strong identifiability is considered.

2 Identifiability of Mixtures - the Main Theorem

Finite mixtures of a class of continuous densities { f, : @ € Q} are identi-
fiable if for any distinct set of parameters ay, ..., an,, m > 1, the functions
fa;» 3 =1,...,m, are linearly independent (Yakowitz and Spragins, 1968, p.
210). Throughout the following let {f, : @ € Q} be either a two parameter
family of continuous densities on the real line, f,(z), o = (u,a) € Q =
R xRy, z € R, or on the circle, f,(f), a = (n,a) € 2 =1[0,27) xRy, 6 €
[0,27). For densities f,(x) on the real line (respectively f(#) on the circle)
the characteristic function will be denoted by ®,(t), t € R (respectively
¢a(n), n € Z). Now we are in the position to state our main result.

THEOREM 2.1 Let {fq : a € Q} be a two-parameter family of continuous
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densities on the real line or on the circle, respectively. Suppose that the
characteristic function of f is of the form

D, (t) = exp(ipt) - h(t,a), t€ETR, (1)

or
¢a(n) = eXP(W”) : h(nv a‘)a n €z,

where h(-,a) is a function which satisfies

tlim h(t,a2)/h(t,a1) =0, a9 > aq, (2)
—00
or
ll)m h(n,az)/h(n,a1) =0, a2 > a. (3)
n

Then finite miztures of {fo, « € Q} are identifiable.

For the proof we will require the following simple lemma. Note that it
will be important to exclude 0 from the support of the measure v.

LEMMA 2.1 Let v be a finite signed Borel measure on (0,2x). Then for
b, = f(o o) e dy(z), n >0, we have that n=" 37— b — 0.

PRrROOF. Since

1— ein:z:
—1 zlm -1
g dv(z) = / n — dv(z)
/0 2r) (0,27) I —e®

and | 320" e/ /n| < 1, we can apply the dominated convergence theorem

to obtain the result. O
In particular, if v = Z§:1 Aj Oy, where 0 < pp,...,pup <2m, N ER, j =
1,...,k and ¢, denotes the Dirac measure at p, then
n—1 k
n! Z Z Ajexp(ipil) =0, n — oo. (4)
=0 j=1

PrOOF OF THEOREM 2.1. First let us consider the slightly more simple
case of densities on the circle. Fix m € N and suppose that Z;”:l Ajfa; =0
and hence

m
Z Ajexp(ipjn) - h(n,a;) =0 VYV n€Z, (5)
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where a; = (p5,a;) are distinct. We may arrange the o such that a; <
a < ...<amand ay =ay =... =a < agy1.- Thecase a; = ... = ap, is
treated implicitly. Upon multiplying (5) by e "™ we can assume p; = 0.
From (5) it follows that

k m
Z Ajexp(ipn) + Z Ajexp(ipjn) - h(n,a;)/h(n,a1) = 0.

Since by (3) the second sum tends to 0 as m» — oo, so must the first one. If
k =1, we immediately conclude \; = 0 (remember py = 0). If k£ > 2, setting

k
by, = Z Aj exp(ipin)
j=2

we have that b, — —A; as n — oco. Then also n~! Elnz_ol by — —Ay. Since
the a; are all distinct, at most one pj;, 1 < j < k, can be 0, this being p1.
Thus pj # 0, 2 < j <k, and using (4) we can conclude A\; = 0. The claim
for densities on the circle follows by induction.

As for densities on the real line, using (2) we argue similarly and may
choose k in the above way. If k > 2, 2?22 Ajexp(ipjt) — —Ai, t = o0,
where now p; € R\{0}, j =2,...,k. Choose ty > 0 so small such that tou; €
(—m,m) \ {0}, 7 = 2,...,k. Then in particular 2?22 Ajexp(i[pujto]n) —
—A1, n — 00, and using (4) once more we conclude A; = 0. O

REMARK 2.2 Theorem 2.1 and its proof are inspired by a result of Teicher
(1963, p. 1267) on general integral transforms. See also Chandra (1977) or
Al-Hussaini and El-Dab Ahmad (1981) for extensions and applications. Our
proof extends Teicher’s argument to Fourier transforms of type (1), which
have an additional factor arising from a location parameter. In this case
identifiability relies on Lemma 2.1.

3 Examples
3.1 Identifiability on the real line and on the circle.

EXAMPLE 1 (Location-scale families) Consider a location-scale family of
densities on the real line

fa(@) = fua(@) = a7 f(z = pl/a), (6)
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where u € R, a > 0. If only either the scale or the location parameter are al-
lowed to vary in the mixture, identifiability (even for arbitrary mixtures) was
established by Teicher (1961, p. 246) (see also Yakowitz and Spragins, 1968,
for the case of finite mixtures of location families). By means of Theorem
2.1 identifiability can be proved when both location and scale parameter are
allowed to vary simultaneously. To this end suppose that the characteristic
function ® of f satisfies

lim ®(ast)/®(art) =0, a»>aj > 0. (7)
t—00

Then finite mixtures are identifiable. Indeed, the characteristic function of
fu.a is given by @, ,(t) = ' ®(at), t € R. Evidently condition (7) implies
(2). Ishwaran (1996) considered identifiability and rates of convergence of a
joint scale parameter in a location mixture.

REMARK 3.1 Condition (7) does not have an immediate interpretation. A
slightly stronger condition is the following. Suppose that the characteristic
function of f satisfies ®(¢) ~ exp(—log(t)-s(t)),t — oo, where s is eventually
non-decreasing and s(t) — co. Then condition (4) is satisfied.

EXAMPLE 2 (Stable distributions) Symmetric stable distributions (Jammala-
madaka and SenGupta, 2001, p. 46) have characteristic function ®(t) =
exp(—|t|%), a € (0,2] and therefore satisfy condition (7). It follows that
finite mixtures of the corresponding location-scale family are identifiable.
Particular cases are the normal distribution (o = 2) and the Cauchy distri-
bution (o = 1) (Yakowitz and Spragins, 1963, p. 212).

In the next example we consider families of densities on the circle obtained by
wrapping location-scale families on the real line. Recall that for a real density
f the corresponding wrapped density f* is given by f*(0) = >, ., f(0 +
27n), 0 € [0,27) (Mardia and Jupp, 2000, pp. 47-49).

ExAMPLE 3 (Wrapped distributions) We show that finite mixtures of the
family of wrapped densities of a location scale family (6) on the real line,
for which condition (7) is satisfied, are also identifiable. Note that for the
wrapped densities, [, = fi\omn 4 17 € Z. Therefore the wrapped family
can be parametrized by {f3 = f,/4, 4 € [0,27), a > 0}. Since the character-
istic function ¢, 4 of f, is given by ¢, 4(n) = @, 4(n) = """ ®(an), n € Z,
(Mardia and Jupp, 2000, p. 48), condition (3) is satisfied.
In particular this applies to finite mixtures of wrapped normal and wrapped

Cauchy distributions or general symmetric wrapped stable distributions (cf.
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Jammalamadaka and SenGupta, 2001, p. 46). For applications of mixture
models involving such distributions see SenGupta and Pal (2001).

EXAMPLE 4 (von Mises distribution) The von Mises distribution has density
of the form

fun(®) = 2rTo(R)] Fexplscoslo — ), .0 € [0,27), 5 >0,
and characteristic function (see e.g. Mardia and Jupp (2000), p. 39)

bui(n) =exp(ipn) - I(k)/I(k), n€Z,

where I,,(x) denotes the modified Bessel function of order n. Letting h(n,a) =
I,(1/a)/Iy(1/a) and using the series expansion of I,(k) (Mardia and Jupp,
2000, p. 40) shows that condition (3) of Theorem 2.1 is satisfied (see also
Fraser et al., 1981).

In the next example we show that identifiability of finite mixtures on
the line does not imply in general identifiability of finite mixtures of the
corresponding wrapped densities on the circle.

EXAMPLE 5 (Counterexamples) (a) It is well known that mixtures of Pois-
son distributions are identifiable (see Teicher (1961), §3). We will show that
finite mixtures of wrapped Poisson distributions are not in general identi-
fiable. The wrapped Poisson distribution is obtained as follows. If X has
Poisson distribution with mean A and m € N is a fixed integer, then © =
27X /m mod 2r is a random variable on the lattice {27r/m,r =0,...,m—1}
on the circle (see Mardia and Jupp, 2000, p. 49) and is called wrapped
Poisson with parameters A and m. Denote P(© = 27r/m) = p%. The
characteristic function of © is

m—1

dr(n) = Z ph\ exp(2minr/m) = exp(—A[l — eQm’n/m])_
r=0

For wrapped Poisson distributions with fixed m we will consider finite mix-
tures with at most m components. These are identifiable if and only if
for m different choices of A the vectors (p3, ..., pZ‘*l) are linearly indepen-
dent. After applying the Fourier transform this is equivalent to the matrix
(éa;(n))o<jn<m-—1 having full rank. This means that for any choice of coef-
ficients a,, n =0,...,m — 1 the function

m—1
h(\) = Z an exp(Ae?™/™)
n=0
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has at most m — 1 real zeros. But for m > 3 and a1 = —a,;, 1, a; = 0
otherwise, it is easy to see that h(\) has infinitely many real zeros. Hence
wrapped Poisson distributions are not identifiable in general.

(b) Consider the location family of densities f,(z) = f(z — p) on the real
line, where f is the triangular density

f(z) =1/(8m)(4 — w°p+ 2mplz — 7)) o) (7), z€R

for a fixed 0 < p < 4/7% (Jammalamadaka and SenGupta, 2001, p. 34).
Then finite mixtures are identifiable (this always holds for a location family,
see Yakowitz and Spragins 1968, p. 213). For the wrapped densities, how-
ever, the mixture 1/2(f(6—u)+f(0—p—m)) gives the uniform distribution on
the circle for any u. Note that the family of wrapped densities is a location
family on the circle, hence Proposition 6 in Yakowitz and Spragins (1968)
does not extend to distributions on the circle. Observe that finite mixtures
remain identifiable if we restrict the location parameter to 0 < p < 7.

We have, however, the following analog of a result by Teicher (1961, §4)
about mixtures of location families. The proof is similar to Teicher’s (1961)
proof and therefore omitted.

THEOREM 3.1 Let f be a continuous density on the circle. Assume that
its characteristic function ¢ satisfies p(n) #0 YV n € Z. If v, v are two
Borel probability measures on [0,2m) such that

2w 2w

i (z — p) dvi(p) = i (z —p)dvy(p) V =z €[0,2m),

then v = vs.

Examples include the von Mises distribution with fixed x and the wrapped
Cauchy and normal distribution with fixed scaling parameter.

3.2 Identifiability of multivariate distributions. 1In this section we in-
dicate how the presented methodology can be extended to multivariate
distributions. First let us consider d-dimensional wrapped normal distri-
butions (Jammalamadaka and SenGupta (2001), p. 53). If X is a ran-
dom vector in R?, then ©® = X mod 27 is a random element taking values
on the d-dimensional torus. The characteristic function of © is given by
$(n) = ®(n), n € Z%, where ®(t), t € R? is the characteristic function of
X. For X having a d-dimensional normal distribution N(u,Y), © is called
d-dimensional wrapped normal.
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THEOREM 3.2 Finite miztures of d-dimensional wrapped normal densi-
ties are identifiable.

PROOF. Suppose not, then for some m > 1 and \; #0, 7 =1,...,m,
m
Z \jexp(inpj) exp(—n'S;n/2) =0 Vn € Z% (8)
j=1

Following Yakowitz and Spragins (1968, p. 211) we find ng € Z% such that
the pairs (ngu1, ngX110), - - -, (NGlm, noLmno) are all distinct. Hence taking
n=1Ing, | € Z,in (5) gives

Z \j exp(ilngu;) exp(—1*ngSne/2) =0, Y 1E€Z,
j=1

with A; # 0, contradicting the identifiability of one dimensional wrapped
normal densities proven above (cf. Example 2). O

Similarly, one can obtain distributions on the cylinder as introduced by
Johnson and Wehrly (1977). More specifically, let (Y7,Y5) be bivariate nor-
mally distributed with means p1, p9, variances oy, o2 and covariance oy .
Set ® = Y7 mod 27 and X =Y5. Then (0, X) takes values on the cylinder
and has characteristic function

P(n,t) = exp(—[nof + t203 + 2ntoy 2]/2) exp(i[npuy + tus)),

where n € Z and t € R. The above argument (just restrict ¢ to the integers)
can be used to conclude that finite mixtures of these distributions are also
identifiable.

3.8 Strong identifiability. Chen (1995) introduced the notion of strong
identifiability (see also Chen et al., 2001). He called a family {F, : o € Q}
of distribution functions on the real line strongly identifiable if for each «, F,
is two times differentiable and furthermore for any distinct set of parameters
at,...,qm,, m > 1, the functions {Fa].,F(;j,F(;’j j =1,...,m} are linearly
independent. Under strong identifiability (and certain further assumptions),
Chen’s (1995) result on the speed of convergence in estimating the mixing
distribution and the asymptotics for the modified likelihood ratio statistic
of Chen et al. (2001) for testing homogeneity apply to finite mixtures from
{Fy : a € Q}. Chen (1995, pp. 226-228) proved strong identifiability of
certain location and certain scale families and also of Poisson mixtures. Our
method yields the following
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THEOREM 3.3 Let {fq : « € Q} be a two-parameter family of continuous
densities on the real line such that for each o € Q, fq is two times differen-
tiable and f! is integrable. Suppose that the characteristic function of fq is
of the form (1), where h(-,a) is a function which satisfies

h(t,a)/h(t,a1) = o(t™2) ast — co, ag > aj. 9)

Then the associated family {F, : a € Q} of distribution functions is strongly
identifiable.

SKETCH OF PROOF. The proof is a variation of the argument used in
the proof of Theorem 2.1. Suppose that » 0" [A;jFa; + N;Fp, + A Fg ] = 0.
Taking the derivative and applying the Fourier transform gives

m
D I+ @)X + (@)X exp(ipgt) - h(ta;) =0 VEieR,  (10)
j=1
where we again can assume that a; = ... = a < agy1. Dividing (10) by
t? h(ay,t) and repeating the argument from the proof of Theorem 2.1 k-
times, we get that \{ = ... = XA/ = 0. Next we divide (10) by t h(a1,t). By
assumption,
h(a;,t) :
lim ¢ ——L—= =0 k
tirg) h(al,t) =25
therefore the same argument applies again and yields \] = ... = A} = 0.
Similarly A\ = ... = A\ = 0, and an induction argument finishes the proof.

O

Theorem 3.3 applies in particular to location-scale mixtures from the nor-
mal and the Cauchy distribution. The argument can also be easily extended
to circular distributions as discussed in Theorem 2.1, under the assumption

h(n,as)/h(n,a1) = o(n"?) asn — 0o, as > aj. (11)

This applies in particular to wrapped distributions and to the von Mises
distribution (see Examples 3 and 4). For the von Mises distribution the tail
behaviour (11) follows as before from the expansion of the modified Bessel
function of the first kind (cf. Mardia and Jupp 2000, p. 40).
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