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Abstract

We consider switching regression models with independent or Markov-dependent regime.
Based on the modified likelihood ratio test (LRT) statistic by Chen, Chen and Kalbfleisch
(2004, JRSSB) we propose a test for two against more states of the underlying regime,
and derive its asymptotic distribution in case when there is a single switching parameter.
We show that its asymptotic distribution is robust when the regime is no longer indepen-
dent but rather Markov-dependent. In a simulation study we investigate the finite-sample
behavior of the test. Finally, we apply the methodology to data of a dental health trial.
Here, the model selection criteria AIC and BIC favor distinct binomial regression models
with switching intercept (AIC three states, BIC two states). The modified LRT allows us
to reject the hypothesis of two states in favor of three states.

Key words: decayed, missing and filled teeth index, hypothesis testing, logistic regression,
switching regression, Poisson regression, Markov regime

Running head: mixture regression models

1 Introduction

Mixture models and their extensions are extensively used for describing populations with un-
observed heterogeneity, for comprehensive treatments see Frühwirth-Schnatter (2006); Böhning
(1999); McLachlan and Peel (2000). Often, in addition to population heterogeneity covariates
should be taken into account, in which case one speaks of switching regression models. For
a Gaussian response, i.e. linear switching regression, these were introduced by Quandt and
Ramsey (1978); Kiefer (1978). Further, switching regression models are also extensively used
for count data, in particular Poisson switching regression as e.g. in Le et al. (1992); Wang and
Puterman (2001, 1999), or for binary or binomial responses, i.e. switching logistic regression
as e.g. in Wang and Puterman (1998). These models allow to incorporate overdispersion
relative to the corresponding GLM, and can often be nicely interpreted.
In this paper we shall propose a penalized likelihood ratio test (LRTs) for two against more
states in switching regression models with independent and also with Markov-dependent
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regime. The proposed methodology is applied to the data on dental health analyzed in
Böhning et al. (1999) and Skrondal and Rabe-Hesketh (2004) in order to decide between
a switching binomial regression model with either two-states (favored by the BIC) or three
states (favored by the AIC). Our proposed test will allow us to reject the hypothesis of two
states in favor of three states at a 5% level.
Following Zhu and Zhang (2004), we shall introduce switching regression models in a longi-
tudinal setup. Suppose we observe data from n units, and within each unit i we observe ni

measurements. More precisely, we observe Yi =
(

Yi,1, . . . , Yi,ni

)T
, and covariates Xi,j ∈ R

q

for observation Yi,j . Write Xi =
(

XT
i,1, . . . ,X

T
i,ni

)T
. First suppose that for different i, the

observations are independent, and that fi(yi,xi; β, θ) ·g(xi) is a parametric family of densities
for (Yi,Xi), where the parameters β ∈ B ⊂ R

p, θ ∈ Θ ⊂ R
l, do not depend on i, and B and

Θ are assumed to compact.

Adopting the notation of Chen, Chen and Kalbfleisch (2004) let

Mm =
{

G(θ) =
m

∑

k=1

πkI{θk≤θ} : θ1 ≤ . . . ≤ θm,
m

∑

k=1

πk = 1, πk > 0
}

denote the set of all m-point distributions on Θ, and let M = ∪m≥2Mm. For G ∈ Mm with
parameters (π1, . . . , πm) and (θ1, . . . , θm) we let fi, switch(yi,xi; β, G) denote the m-density of
the observations (Yi,Xi)

fi, switch

(

yi,xi; β, G
)

= (π1fi(yi,xi; β, θ1) + . . . + πmfi(yi,xi; β, θm)) g(xi). (1)

The joint density of
(

Y1,X1, . . . ,Yn,Xn

)

is then the corresponding product of the densities
fi, switch. For G ∈ M2 this model corresponds to the model considered by Zhu and Zhang
(2004, Eq.3).

Example 1 (switching logistic regression). Let Ui be independent copies of a latent variable
with values in Θ and distribution function G. If (Yi,1,Xi,1), . . . , (Yi,ni

,Xi,ni
) are conditionally

independent given Ui and satisfy

logitP
(

Yi,j = 1|Xi,j = xi,j , Ui = θk

)

= xT
i,jβ + wT

i,jθk,

where wi,j is an l-dimensional vector of covariates, then the model is called a m-component
switching logistic regression model. Note that the weights πk of the components do not depend
on the regression parameters, although the model could easily be extended in this direction.

For yi =
(

yi,1, . . . , yi,ni

)T
we then have that

fi, switch(yi,xi, β, G) =

m
∑

k=1

πk

(

∏

j: yi,j=1

logit−1(xT
i,jβ + wT

i,jθk)

∏

j: yi,j=0

(

1 − logit−1(xT
i,jβ + wT

i,jθk)
)

)

g(xi).

This model can be extended in a straightforward fashion to switching binomial regression
models, in which case we denote the number of successes by n.
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Example 2 (switching Poisson regression). Again let Ui be independent copies of a latent
variable with values in Θ and distribution function G. If (Yi,1,Xi,1), . . . , (Yi,ni

,Xi,ni
) are

conditionally independent given Ui and satisfy

P
(

Yi,j = yi,j |Xi,j = xi,j , Ui = θk

)

=
1

yi,j !
λ

yi,j

i,j;k exp(−λi,j;k),

where λi,j;k = exp
(

xT
i,jβ+wT

i,jθk

)

, then the model is called an switching m component Poisson

regression model. For yi =
(

yi,1, . . . , yi,ni

)T
we then have that

fi, switch(yi,xi, β, G) =
m

∑

k=1

πk

(

ni
∏

j=1

1

yi,j !
λ

yi,j

i,j;k exp(−λi,j;k)
)

g(xi)

Example 3 (Linear switching regression). Here,

Yi,j = xT
i,jβ + wT

i,jUi + ǫi,j ,

where the ǫi,j are independently distributed with Eǫi,j = 0 and Var ǫi,j = σ2 < ∞. A special
case is ǫi,j ∼ N(0, σ2), alternatively, one could also use t-distributed errors (with more than
3 degrees of freedom).

The prevalent method of estimation in switching regression models is maximum likelihood,
as discussed e.g. in Zhu and Zhang (2004). Concerning identifiability of the parameters,
Hennig (2000) gives interesting results for the linear case in which he shows that identifia-
bility of finite mixtures of the error distribution together with a full-rank design matrix does
not suffice in general to achieve identification. The area of application of these models is
very wide and includes epileptic seizure modeling (Wang and Puterman, 2001), evolutionary
biology (Wang and Puterman, 1998), economics (Quandt and Ramsey, 1978; Kiefer, 1978),
Segregation Analysis (Zhang et al., 2003).
Model selection for switching regression models has been developed in two directions. First,
the appropriate number of components of the latent distribution has to be determined. Sec-
ond, the relevant covariates, possibly distinct sets for the distinct components, have to be
chosen. These two selection problems can be addressed by model selection methods, either
separately as in Khalili and Chen (2007) for a method addressing the first problem and in
Chen and Khalili (2008) for the second, or jointly as in Naik et al. (2007).
Alternatively, one may apply formal hypothesis tests. For tests concerning the coefficients of
the covariates, simple likelihood ratio tests (LRTs) can be applied. However, when testing
for the number of components via the LRT, one encounters the same difficulties as for i.i.d.
mixtures, the LRT is asymptotically distributed as the square of the supremum of a truncated
Gaussian process (cf. Zhu and Zhang, 2004). Following Chen et al. (2001) for i.i.d. mixtures,
Zhu and Zhang (2004) developed asymptotics for a modified LRT in case of testing one against
two states for switching regressions.
Sometimes, when population heterogeneity is evident or has already been established by
appropriate tests, it is further of interest to test whether the latent distribution only has
two states or more than two states. Indeed, two states often correspond to contrasts (e.g.
high and low volatility of a financial market, bull and bear market of an economy, low and
high wind speed etc.), whereas more than two states express a whole range of possibilities.
Therefore, following Chen et al. (2004) for i.i.d. mixtures in this paper we propose a penalized
likelihood ratio test for two against more states in switching regression models.
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If the observations have an additional times series structure in i, this can be incorporated by
a Markov-dependent regime. For such models to be dependent, the underlying Markov chain
has to have at least two states. Thus, it is also a natural problem to test for two against more
states in switching regression models with Markov dependent regime. Following Dannemann
and Holzmann (2008), we shall show that the proposed testing method can also be applied
in this case without change, the asymptotic distribution remains the same.
We apply the test to the dental data set studied in Böhning et al. (1999). These consist
of discrete data with covariates. Böhning et al. (1999) use zero-inflated Poisson regression
to model these data. In Skrondal and Rabe-Hesketh (2004), a variety of Poisson and also
binomial regression models with switching intercept are fitted to the data. It turns out that
the best model in terms of AIC is the switching binomial regression model with three states,
whereas in terms of the BIC it is the switching binomial with two states. Our test for two
against more states allows to clearly reject the two-states model in favor of three states.
The structure of the paper is as follows. In Section 2 we propose the tests for two against
more states, both for independent as well as for Markov dependent regime. Section 3 contains
a simulation study. In Section 4 we apply the test to the dental data set.
Outlines of the proofs are deferred to an appendix.

2 Testing for two components

We shall suppose that l = 1, i.e. the dimension of the switching parameter θ is one. Often, this
will be the intercept. For more than a single switching parameter, the asymptotic distribution
becomes intractable, even for testing one against two states (cf. Zhu and Zhang (2004)), and
bootstrap methods have to be applied.

2.1 Independent regime

Suppose that for different i, the observations (Yi,Xi) are independent. Let G0 be the true
switching distribution. Following Chen et al. (2004) we shall propose a test for

H : G0 ∈ M2 against K : G0 ∈ M \ M2. (2)

Throughout we shall assume H. We indicate the true parameter value with a subindex “0”
and denote the two-component switching distribution G0(θ) = π0 I{θ0

1
≤θ} + (1 − π0)I{θ0

2
≤θ},

where
(

π0, θ
0
1, θ

0
2

)

∈ (0, 1)× Interior(Θ)2 with θ0
1 < θ0

2. Hence the density of the true model is
fi, switch(y,x; β0, G0).

For each G(θ) ∈ Mm, the modified likelihood function as proposed by Chen et al. (2004) is
defined as

L̃(m)
n (β, G) =

n
∑

i=1

log fi, switch

(

Yi,Xi; β, G
)

+ Cm

m
∑

k=1

log
(

πk

)

, (3)

where Cm > 0 is a constant, a suitable choice of which is discussed in Chen et al. (2004). The
estimate (β̂(m), Ĝ(m)), or more explicitly

(β̂(m), π̂
(m)
1 , . . . , π̂(m)

m , θ̂
(m)
1 , . . . , θ̂(m)

m ),
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resulting from maximization of L̃
(m)
n ( · ), is called modified maximum likelihood estimate. For

a suitably large choice of m, the modified LRT for two components is based on the statistic

Tmod
n = 2

(

L(m)
n (β̂(m), Ĝ(m)) − L(2)

n (β̂(2), Ĝ(2))
)

, (4)

where L
(m)
n is the ordinary likelihood function, i.e.

L(m)
n (β, G) :=

n
∑

i=1

log fi, switch

(

Yi,Xi; β, G
)

. (5)

Theorem 1. Suppose that Assumptions 1 - 5 hold and that m in the definition of Tmod
n in

(4) satisfies
m ≥ m∗ := max

(

[1.5/π0
1], [1.5/π0

2], 4
)

. (6)

Then under H, the modified likelihood ratio test statistic Tmod
n converges in distribution to a

mixture of χ2-distributions,

Tmod

n
L→ (

1

2
− p)χ2

0 +
1

2
χ2

1 + p χ2
2, (7)

where p =
(

cos−1 ρ
)

/(2π) and ρ is the correlation coefficient in the covariance matrix B̃22 as
defined below in (8).

In order to define B̃22, we introduce several quantities which will also be used in the proof of
Theorem 1. Set

∆i(β) =
(

fi(Yi,Xi; β, θ0
1) − fi(Yi,Xi; β, θ0

2)
)

/fi, switch

(

Yi,Xi; β0, G0

)

,

Z1
i (β, θ) =

d

dβ
fi(Yi,Xi; β, θ)/fi, switch

(

Yi,Xi; β0, G0

)

,

Z2
i (β, θ) =

d

dθ
fi(Yi,Xi; β, θ)/fi, switch

(

Yi,Xi; β0, G0

)

,

Z3
i (β, θ) =

d2

dθ2
fi(Yi,Xi; β, θ)/fi, switch

(

Yi,Xi; β0, G0

)

.

Further, let

bi =
(

∆(β0), Z
1
i (β0, G0), Z

2
i (β0, θ

0
1), Z

2
i (β0, θ

0
2), Z

3
i (β0, θ

0
1), Z

3
i (β0, θ

0
2)

)T

and b =
∑

i bi ∈ R
p+5 with bT

i = (bT
1i, b

T
2i), bT = (bT

1 ,bT
2 ) and bi2, b2 ∈ R

2. Let

B = lim
n

1

n

n
∑

i=1

E
[

bib
T
i

]

=

(

B11 B12

B21 B22

)

, B22 ∈ R
2×2.

Finally, set
B̃22 = B22 − B21 (B11)

−1 B12, (8)

the covariance of
b̃2 = b2 − B21 (B11)

−1
b1. (9)
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2.2 Testing in case of a Markov dependent regime

An interesting extension of the model is to allow some dependence structure in the underlying
latent variables. We shall consider the case of a Markov-dependent regime. Since in this case,
a longitudinal set-up is no longer natural, we only consider the non-longitudinal case in the
following.
More precisely, let the regime U1, . . . , Un be a stationary, ergodic Markov chain on a finite
set {θ1, . . . , θm} ⊂ Θ with transition matrix P and stationary distribution G. Suppose that
conditioned on the Ui the observations (Xi,Yi) are independent for different i, the distribution
of (Xi,Yi) depends on (Uj)j through Ui only and given Ui = θk ∈ {θ1, . . . , θm} the (Xi,Yi)
have density f(yi,xi; β, θk) · g(xi). The marginal density of the (Xi,Yi) is of the form (1)
(but does not depend on i), where the weights π1, . . . , πm are given by G, the stationary
distribution of the Markov chain (Ui)i. If the initial distribution of (Ui)i coincides with G
then (Xi, Yi) is a stationary process. We shall call this model Markov-switching regression
model. It can be seen both as an extension of the independent switching regression model as
well as of the hidden Markov model (Markov-switching model without covariates).
The testing problem (2) simply translates to testing whether the number of states m equals
two,

H : G0 ∈ M2 against K : G0 ∈ M \ M2, (10)

where G0 is the stationary distribution of the Markov chain.The likelihood functions (3) and
(5) neglect the introduced dependence structure, but they can still be used to estimate the
parameters π, β and θ1, . . . , θm, and to form the test statistic (4) in the present situation.
However, one should expect that the asymptotic distribution (7) in Theorem 1 must be mod-
ified due to the dependence structure of the regime. Surprisingly, the asymptotic distribution
remains the same for the switching regression model with independent regime. A similar
effect was observed for the comparable testing problem for Hidden Markov Models (Danne-
mann and Holzmann, 2008). To see this, we need to examine the asymptotic behavior of b̃2.
One needs to show that the asymptotic covariance of b̃2 (see (9)) remains the same as for
independent switching. First observe

lim
n→∞

Cov
( 1√

n
b̃2

)

= lim
n→∞

1

n
E

[

b̃2b̃
T
2

]

= E
[

b̃21b̃
T
21

]

+
∞

∑

i=2

E
[

b̃21b̃
T
2i + b̃2ib̃

T
21

]

, (11)

with b̃2i = b2i−B21 (B11)
−1 b1i, where the first equality holds, since b and hence b̃2 has mean

zero and the second equality follows by stationarity.

Proposition 1. Suppose that for a Markov-switching regression model Assumptions 1 - 5
hold true. Then, under the hypothesis H of a two-state Markov regime we have

E
[

b̃21b̃
T
2i + b̃2ib̃

T
21

]

= 0 for all i ≥ 2.

Proposition 1 and (11) imply that the asymptotic distribution (7) remains true for Markov-
switching regression models, where the weight p is determined as in Theorem 1 from the
covariance matrix B̃22 given in (8). We state this as a corollary.
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Corollary 2. Suppose that for a Markov-switching regression model Assumptions 1 - 5 hold
and that m in the definition of the test statistic Tmod

n (in (4)) satisfies (6). Then under the
hypothesis H of a two-state Markov regime the asymptotic distribution of Tmod

n is as in (7).

Note that for the more general longitudinal setup Corollary 2 only holds true under additional
assumptions on the sequence (ni)i, e.g. if these are chosen at random according to a bounded,
stationary process.
One may also thinking about relaxing the i.i.d. assumption on the regressors. Our simulations
indicate that the effect of dependent regressors, for example if Xi are univariate and follow an
AR(1) process, on the asymptotic covariance matrices and hence on the asymptotic distribu-
tion of the test statistic under the hypothesis is small. So we may conclude that the described
testing procedure is quite robust against violations of the independence assumptions.

3 Simulations

In this section we examine the finite sample behavior of the testing procedures for both
independent and Markov dependent regime.

3.1 Independent regime

We consider two specific switching Poisson regression models and two switching Binomial
regression models. To apply the testing procedure we use C2 = Cm = 1 and choose m, the
number of components in the alternative, by m∗, where we replace π0

k, k = 1, 2, by their
estimates under the hypothesis.
The switching Poisson regression models are specified by ni = 1, q = 2, l = 1 with covariates
Xi = (1, Xi)

T , Xi independent r.v.s uniformly distributed on the unit interval. For the first
model P1 we choose Wi = 1 which leads to the Poisson regression model with switching
intercept:

P
(

Yi = yi|Xi = xi, Ui = θk

)

=
1

yi!
λyi

i;k exp(−λi;k),

with λi;k = exp
(

xiβ + θk

)

. Choosing Wi = Xi leads to the Poisson regression model with
switching regression coefficient (P2) where Poisson intensities is given by λi;k = exp

(

xiθk+β
)

.
The two Binomial regression models with switching intercept (B1, B2) with ni = 1 are given
by

P
(

Yi = yi|Xi = xi, Ui = θk

)

=

(

n

yi

)

pyi

i;k

(

1 − pi;k

)

n−yi

with
logit pi;k = xT

i β + θk

For both models we specify n = 8 and for B1 we consider the covariates as in P1, i.e.,
q = 2, l = 1, Xi = (1, Xi)

T , Xi independent r.v.s uniformly distributed on the unit interval
and Wi = 1. For B2 the covariates are categorical variables as in the application we discuss
below, i.e., q = 9, l = 1, Xi = (1, Xi)

T , Xi ∈ {0, 1}8 eight independent copies of Bernoulli r.v.s
with success probability 1/2 and Wi = 1. The specific parameter combinations for models of
P1, P2, B1, B2 under the hypothesis (m = 2) and under the alternative (m = 3) are given in
Table 1. For B2 β is given by (−0.8,−0.5,−0.3,−0.4,−0.2,−0.1, 0.1, 0.2)T .
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Table 1: Parameter values of the switching Poisson regression models and the switching Bi-
nomial regression models under the hypothesis (P1.H, P2.H, B1.H, B2.H) and the alternative
(P1.A, P2.A, B1.A, B2.A). For the model B2 the parameter β is given in the text.

β θ1 θ2 θ3 π1 π2 π3

P1.H 0.5 1 2 0.6 0.4
P1.A 0.5 0 1 2 0.33 0.33 0.33
P2.H 1 1 2 0.6 0.4
P2.A 1 0 1 2 0.33 0.33 0.33
B1.H −2 −2 0 0.6 0.4
B1.A −2 −2 0 1 0.33 0.33 0.33
B2.H −2 0 0.6 0.4
B2.A −2 0 1 0.33 0.33 0.33

Table 2: Simulated rejection rates of the modified LRT for the models under the hypothesis
P1.H, P2.H, B1.H and B2.H in Table 1 for various sample sizes with N = 5000 replications.

P1.H (Poisson)

Level n = 50 100 200 500

0.025 0.017 0.018 0.022 0.027
0.05 0.031 0.038 0.040 0.047
0.1 0.057 0.068 0.073 0.085

P2.H (Poisson)

Level n = 50 100 200 500

0.025 0.011 0.015 0.023 0.027
0.05 0.021 0.030 0.046 0.052
0.1 0.044 0.060 0.083 0.091

B1.H (Binomial)

Level n = 100 200 500 1000

0.025 0.010 0.013 0.020 0.019
0.05 0.018 0.028 0.039 0.039
0.1 0.040 0.060 0.073 0.081

B2.H (Binomial)

Level n = 100 200 500 1000

0.025 0.011 0.014 0.017 0.016
0.05 0.017 0.025 0.034 0.033
0.1 0.031 0.048 0.062 0.066

In general, the simulated rejection rates correspond to the specified levels under the hypothesis
in a satisfactory manner (see Table 2). For small sample size and for the model B2.H, the test
is somewhat conservative. Note, that for small sample sizes the estimation of ρ as correlation
coefficient might fail (if the empirical version of B11 is not invertible), in this case one may
use p = 0.5 leading to a conservative test decision.

3.2 Dependent regime

Next we investigate the behavior of the proposed test when the regime is Markov-dependent.
As discussed in Section 2.2 if the switching process is a Markov chain rather than an i.i.d.
process, the asymptotic behavior of the test statistic remains the same.
In addition, we also investigate the case of dependent covariates. Although we have no formal
theory, our simulation indicates that also in this case there is no a significant change in the
asymptotic behavior of the test statistic.
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Table 3: Simulated rejection rates of the modified LRT for the models under the alternative
P1.A, P2.A, B1.A and B2.A in Table 1 for various sample sizes with N = 5000 replications.

P1.A (Poisson)

Level n = 50 100 200 500

0.025 0.113 0.248 0.502 0.909
0.05 0.180 0.356 0.622 0.947
0.1 0.281 0.485 0.743 0.976

P2.A (Poisson)

Level n = 50 100 200 500

0.025 0.085 0.220 0.450 0.864
0.05 0.144 0.320 0.564 0.917
0.1 0.233 0.440 0.686 0.956

B1.A (Binomial)

Level n = 100 200 500 1000

0.025 0.097 0.208 0.507 0.813
0.05 0.161 0.292 0.630 0.883
0.1 0.256 0.419 0.749 0.937

B2.A (Binomial)

Level n = 100 200 500 1000

0.025 0.058 0.137 0.394 0.763
0.05 0.094 0.202 0.510 0.838
0.1 0.141 0.301 0.636 0.908

For our simulations we consider the models P1.H and B1.H (see Table 1) and choose the
switching process as a Markov chain with transition matrix and P and stationary distribution
π specified as

P =

(

0.8 0.2
0.3 0.7

)

and π =

(

0.6
0.4

)

.

In addition we construct the covariate Xi = (1, Xi)
T based on an autoregressive process

X̃i = ρ0X̃i−1 + εi

with εi ∼ N(0, σ2) i.i.d., with σ2 = 1. Based on X̃i we construct a process with uniform
marginals by

Xi = φ−1

(

X̃i/
√

σ2/(1 − ρ2
0)

)

.

The regression models with Markov-switching and independent covariates are denoted by
P1.MC.H and B1.MC.H, whereas the models with Markov-switching and dependent covariates
(with ρ0 = 0.5) are denoted by P1.MCAR.H and B1.MCAR.H. The results displayed in Table
4 confirm the small effect of the dependency structure on the asymptotic distribution of the
test statistic.

4 Application to dental health trial

We discuss an application of the switching regression model to the dental data set analyzed
by Böhning et al. (1999). In a dental health trail 797 children were exposed to different
treatments for the improvement of their dental health. This was measured by the number of
decayed, missing or filled teeth (DMFT - Index). The index provides counting data, which
cannot exceed 8 in our case, since only eight molars were under examination in the trail. As
covariates there are the six different treatment groups, sex and three ethnic groups.
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Table 4: Simulated rejection rates of the modified LRT for the models with dependency
structure over time P1.MC.H, P1.MCAR.H, B1.MC.H and B1.MCAR.H under the hypothesis
for various sample sizes with N = 5000 replications.

P1.MC.H

Level n = 100 200 500

0.025 0.018 0.024 0.024
0.05 0.032 0.041 0.046
0.1 0.064 0.074 0.081

P1.MCAR.H

Level n = 100 200 500

0.025 0.023 0.025 0.027
0.05 0.043 0.047 0.045
0.1 0.071 0.085 0.079

B1.MC.H

Level n = 200 500 1000

0.025 0.014 0.018 0.019
0.05 0.026 0.037 0.040
0.1 0.059 0.078 0.085

B1.MCAR.H

Level n = 200 500 1000

0.025 0.013 0.018 0.027
0.05 0.027 0.036 0.049
0.1 0.060 0.070 0.086

Skrondal and Rabe-Hesketh (2004, p. 349) fit several latent Poisson and binomial regression
models to the data. They consider zero-inflation, two - and three component switching
regression models with switching intercept as well as models with a normally-distributed
intercept (normal intercept models).
In the notation of the introduction, we have n = 797, q = 9 , l = 1 and ni = 1 for i = 1, . . . , n
with covariate Xi = (1, Xi)

T , Xi ∈ {0, 1}8 and Wi = 1. The zero-inflated models are defined
by two switching components, where one component is a point mass at zero. Further, in
the normal intercept models, the latent variable Ui is distributed N(µ, σ2). Specifically, the
density of Yi|Xi = xi, Ui = θk is, in the Poisson case,

f(yi,xi, β, θk) = exp
(

− exp (xT
i β + θk)

)exp
(

yi (x
T
i β + θk)

)

y!

and in the binomial case with n = 8,

f(yi,xi, β, θk) =

(

8

yi

)

(

logit−1(xT
i β + θk)

)yi
(

1 − logit−1(xT
i β + θk)

)8−yi .

A point mass at zero arises as a limiting case for θ1 = −∞, thus, the zero-inflated model can
be thought of as a sub-model of the two-component switching model (with one parameter
less).
Table 5 contains the results of the model selection criteria AIC and BIC for the above men-
tioned latent regression models (we omit the simple Poisson and binomial regression model
without latent variable). We note that except for the zero-inflated variant, the models based
on the binomial distribution perform better than the corresponding model based on the Pois-
son distribution. Further, the overall best model in terms of AIC is the two-state binomial
model, and in terms of BIC the three-state binomial model. Thus, in this problem model
selection criteria give a clear indication of population heterogeneity, but do not allow to decide
between a two- and a three component model. Therefore, we test for two against three states
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Poisson Binomial
ZI m=2 m=3 NI ZI m=2 m=3 NI

Log-like −1410 −1406 −1406 −1433 −1431 −1400 −1397 −1409
AIC 2841 2834 2838 2886 2882 2822 2821 2838
BIC 2887 2886 2899 2932 2929 2874 2882 2885

Table 5: Log-Likelihood, AIC and BIC for the latent regression models. ZI: zero-inflated
model, NI: normal intercept model

by using the above methodology. Note that since m∗ is at least 4, the test will be asymp-
totically conservative. Table 6 provides the penalized maximum likelihood estimators for the
two- and three-component binomial switching regression model. When fitting a model with
four potential components, two components (i.e. parameters of the binomial components)
were equal, thus, it reduced to the three-component model.
We use C2 = C4 = 1 and obtain Tmod

n = 5.71, which yields a P-value of 1.4%. Thus, the test
clearly rejects two components in favor of three components. Finally, in Table 7 we display the
observed and expected frequencies under the fitted models (estimated without penalization).
We also see here that the three component model provides quite a good fit to the data.

π1 π2 π3 θ1 θ2 θ3 Log-like

m=2 0.49 0.51 −2.30 −0.28 −1400.19
m=3 0.23 0.44 0.33 −3.47 −1.27 −0.01 −1397.33

β1 β2 β3 β4 β5 β6 β7 β8

m=2 −0.42 −0.17 −0.46 −0.28 −0.74 0.17 0.13 −0.14
m=3 −0.41 −0.16 −0.50 −0.38 −0.81 0.16 0.13 −0.18

Table 6: Penalized ML-estimators for the two- and three-component model.

obs m=1 ZI m=2 m=3

1 231 107.21 227.88 221.72 226.84
2 163 230.81 120.50 180.94 171.36
3 140 233.84 174.21 130.26 141.90
4 116 145.04 150.21 113.99 109.83
5 70 59.90 84.21 85.11 77.62
6 55 16.76 31.33 45.26 45.10
7 22 3.08 7.53 16.00 18.86
8 0 0.34 1.06 3.40 4.90
9 0 0.02 0.07 0.33 0.59

Table 7: Observed and expected frequencies under the fitted binomial models.
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5 Conclusions

When fitting regression models with regime switches, apart from the relevant covariates one
needs to choose the appropriate number of states of the underlying regime. Here, one is
particularly interested in identifying a single state (i.e. homogeneity) and two states (cor-
responding to contrasts as opposed to a whole range of possibilities in case of more than
two states). However, distinct model selection criteria such as AIC or BIC often yield dis-
tinct optimal models. Therefore, formal hypothesis are also useful since they allow to reject
homogeneity or the hypothesis of two states with a specified significance level.
Using penalized likelihood ratio test statistics, one may develop tests with a feasible asymp-
totic distribution if (as we assume here) a single parameter is allowed to switch. In more
general cases, however, these asymptotic distributions quickly become intractable. There-
fore, it would be of interest to study in more detail bootstrap methods and their asymptotic
properties for such testing problems.
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Appendix

Assumption 1. The modified maximum likelihood estimators β̂(m) and Ĝ(m) are consistent,
i.e. β̂(m) = β0 + op(1) and |Ĝk − Gk| = supθ |Ĝk(θ) − Gk(θ)| = op(1).

Indeed, for the i.i.d. model the standard Wald’s integrability conditions ensure consistency
(see Chen et al., 2004). In general, Zhu and Zhang (2003) illustrate that consistency basically

follows from uniform laws of large numbers on L
(m)
n .

Assumption 2. The support of each function fi(yi,xi; β, θ) does not depend on β, θ, and
the derivatives

di1+i2

dθi1dβi2
fi(yi,xi; β, θ)

with i1 = 1, 2, 3, i2 = 1, 2 exist and are jointly continuous in (x, y) and (β, θ).

Assumption 3. For each i the family {fi(yi,xi; β, θ)} is strong identifiable, in the sense that
for θ1 6= θ2

2
∑

j=1

ajfi(yi,xi; β, θj)+

p
∑

l=1

bjl
d

dβl
fi(yi,xi; β, θj)+cj

d

dθ
fi(yi,xi; β, θj)+dj

d2

dθ2
fi(yi,xi; β, θj) = 0

for all (yi,xi) implies aj = bj1 = . . . = bjp = cj = dj = 0 for j = 1, 2.

This assumption implies that the asymptotic covariance matrix B is positive definite.
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Assumption 4. There exists an ε > 0 such that for j = 1, 2

E
(

sup
β∈B,θ∈Θ

∣

∣

(

fi(Yi,Xi; β, θ) − fi(Yi,Xi; β0, θ
0
j )

)

/fi, switch

(

Yi,Xi; β0, G0

)
∣

∣

4+ε
)

< ∞,

and for i1 = 1, 2, 3, i2 = 1, 2

E

(

sup
β∈B,θ∈Θ

∣

∣

∣

∣

di1+i2

dθi1dβi2
fi(Yi,Xi; β, θ)

fi, switch

(

Yi,Xi; β0, G0

)

∣

∣

∣

∣

3)

< ∞.

Assumption 5. The processes

n−1/2
n

∑

i=1

fi(Yi,Xi; β, θ) − fi(Yi,Xi; β0, θ
0
j )

fi, switch

(

Yi,Xi; β0, G0

)

for j = 1, 2 and

n−1/2
n

∑

i=1

di1+i2

dθi1dβi2
fi(Yi,Xi; β, θ)

fi, switch

(

Yi,Xi; β0, G0

)

and for i1 = 1, 2, 3, i2 = 1, 2 are tight.

Proof of Theorem 1. We shall use the notation introduced below Theorem 1. As in Chen
et al. (2004) we decompose

Tmod
n = Tmod

1n −Tmod
0n = 2

(

L(m)
n (β̂(m), Ĝ(m))−L(2)

n (β0, G0)
)

−2
(

L(2)
n (β̂(2), Ĝ(2))−L(2)

n (β0, G0)
)

and observe that Tmod
1n = 2

∑

i log(1 + δi) with

δi =
(

fi, switch

(

Yi,Xi; β̂
(m), Ĝ(m)

)

− fi, switch

(

Yi,Xi; β0, G0

))

/fi, switch

(

Yi,Xi; β0, G0

)

.

For the further analysis of Tmod
1n we omit the index m, i.e. β̂ := β̂(m) and Ĝ := Ĝ(m). Following

Chen et al. (2004) we define π̂ = Ĝ(θ0) for θ0 := (θ0
1 + θ0

2)/2 and Ĝk for k = 1, 2 such that
Ĝ(θ) = π̂Ĝ1(θ) + (1 − π̂)Ĝ2(θ) and observe

δi = (π̂ − π0)∆i(β̂)

+
(

fi, switch

(

Yi,Xi; β̂, G0

)

− fi, switch

(

Yi,Xi; β0, G0

))

/fi, switch

(

Yi,Xi; β0, G0

)

+ π̂
(

fi, switch

(

Yi,Xi; β̂, Ĝ1

)

− fi, switch

(

Yi,Xi; β̂, θ0
1

))

/fi, switch

(

Yi,Xi; β0, G0

)

(12)

+ (1 − π̂)
(

fi, switch

(

Yi,Xi; β̂, Ĝ2

)

− fi, switch

(

Yi,Xi; β̂, θ0
2

))

/fi, switch

(

Yi,Xi; β0, G0

)

.

As in Chen et al. (2004) we define m̂jk =
∫

(θ − θ0
k)

jdĜk(θ) and using the same expansion
argument one gets

δi = (π̂ − π0)∆i(β0) + (β̂ − β0)Z
1
i (β0, G0) + π̂m̂11Z

2
i (β0, θ

0
1) + (1 − π̂)m̂12Z

2
i (β0, θ

0
2)

+π̂m̂21/2 Z3
i (β0, θ

0
1) + (1 − π̂)m̂22/2 Z3

i (β0, θ
0
2) + εin,

Chen et al. (2004) and Chen, Li and Fu (2008) show that the tightness condition (see As-
sumption 5) ensures that

εn :=
n

∑

i=1

εin = op(1).

13



Using log(1 + δi) ≤ δi − δ2
i /2 + δ3

i /3 and the fact that the remainder of the square and cubic
part is at least of the same order as the linear part (cf. Chen et al., 2008), we obtain in terms
of the notation introduced after Theorem 1

Tmod
1n = 2bT t̂ − t̂TBt̂ + op(1)

where
t̂T =

(

π̂ − π0, β̂ − β0, π̂m̂11, (1 − π̂)m̂12, π̂m̂21/2, (1 − π̂)m̂22/2
)T

.

Setting

tT = t(β, G)T

=
(

π(G) − π0, β − β0, π(G)m11(G), (1 − π(G))m12, π(G)m21(G)/2, (1 − π(G))m22(G)/2
)T

one lets t̃1 = t1 + (B11)
−1 B12t2 with tT = (tT

1 , tT
2 ), t2 ∈ R

2 and decomposes

2bT t − tTBt = 2bT
1 t̃1 − t̃T

1 B11t̃1 + 2b̃T
2 t2 − tT

2 B̃22t2.

Since there exist (β, G) such that t̃1(β, G) = B−1
11 b1 and since t2 ≥ 0 for all (β, G) we see

that
Tmod

1n ≤ bT
1 B−1

11 b1 + sup
t2∈R

2
≥0

(2b̃T
2 t2 − tT

2 B̃22t2) + op(1)

serves as an upper bound for Tmod
1n . Following the arguments in Chen et al. (2004, Lemma 2)

one concludes that this upper bound can be attained as long as m ≥ m∗. For the expansion
of Tmod

0n we again follow Chen et al. (2004) and observe

Tmod
0n = bT

1 B−1
11 b1 + op(1),

since under the hypothesis m = 2, Ĝk are single point distributions leading to mk2 = m2
k1 for

k = 1, 2.
Now the expansions of Tmod

1n and Tmod
0n give

Tmod
n = sup

t2

(2b̃T
2 t2 − tT

2 B̃22t2) + op(1)

with t2 ∈ R
2
≥0. This leads to the mixture of χ2-distributions as described in Chen et al.

(2004).

Proof of Proposition 1. We define for i ≥ 1

Bi = E
[

b1b
T
i

]

=

(

Bi
11 Bi

12

Bi
21 Bi

22

)

, Bi
22 ∈ R

2×2.

We follow the calculations by Dannemann and Holzmann (2008) and observe firstly that
λ1 = −Cλ2 with C > 0 for λk = E [b1|U1 = k] , k = 1, 2 , since E [b1] = 0.
Secondly,

B 1̄ = B1 1̄ = λ1 − λ2 = (1 + C)λ1 (13)

where 1̄ = (1, 0, . . . , 0)T ∈ R
p+5, since

E [∆1(β0)b1] = E [b1|U1 = 1] − E [b1|U1 = 2] = λ1 − λ2 = (1 + C)λ1
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Using the conditional independence of (Xi,Yi)i given (Ui)i one shows

Bi = Ciλ1λ
T
1 (14)

with constants Ci depending on the transition matrix P . Similar calculations as in Danne-
mann and Holzmann (2008) show that for i ≥ 2

E[b̃21b̃
T
2i] = Bi

22 − Bi
21

(

B1
11

)−1
B1

12 − B1
21

(

B1
11

)−1
Bi

12 + B1
21

(

B1
11

)−1
Bi

11

(

B1
11

)−1
B1

12 = 0,

since all four summands are equal, which follows from (13) and (14).
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