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Abstract

In this note we develop tests for checking the hypothesis whether a regression function, which is identified via

instrumental variables, belongs to some parametric family of functions. We show that this testing problem can essentially

be reduced to testing whether a regression function in an ordinary nonparametric regression model vanishes. The

asymptotic distribution theory of two test statistics is developed, and their power properties are investigated in a simulation

study.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Instrumental variable (IV) techniques are routinely used for estimating the structural parameters in
econometric models. In parametric regression models, there is a variety of

ffiffiffi
n
p

-consistent estimation methods,
including two-stage least-squares (2SLS) estimation (Basmann, 1959; Theil, 1953) and limited information
maximum likelihood (Anderson and Rubin, 1949, 1950).

Recently, there has also been increasing interest for nonparametric methods of estimation in regression
models with IVs, see Blundell et al. (2007), Carrasco et al. (2007), Darolles et al. (2006), Hall and Horowitz
(2005) or Newey and Powell (2003). To be more specific, let us introduce the model. Suppose that ðY k;X k;ZkÞ,
Zk ¼ ðZk;1;Zk;2Þ, k ¼ 1; . . . ;N, are i.i.d. observations from the regression model

Y k ¼ fðX k;Zk;1Þ þUk; EðUkjZkÞ ¼ 0, (1)

cf. Newey and Powell (2003). Here f is the unknown regression function of interest, the Y k are real-valued,
X k 2 Rq, Zk ¼ ðZk;1;Zk;2Þ 2 Rp1þp2 are called the instruments, and the Uk are unobservable real-valued errors.
Note that in this general model we allow for joint components between the covariates ðX k;Zk;1Þ and the
instruments ðZk;1;Zk;2Þ.

Nonparametric estimation in model (1) involves solving an integral equation of the first kind, which leads to
the theory of ill-posed inverse problems (Kress, 1999). In fact, let m1 and m2 denote the distributions of
e front matter r 2007 Elsevier B.V. All rights reserved.
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ðX k;Zk;1Þ and ðZk;1;Zk;2Þ. Introduce the operator

A : L2ðm1Þ ! L2ðm2Þ; ðAcÞðzÞ ¼ EðcðX 1;Z1;1ÞjZ1 ¼ zÞ,

and let EðY 1jZ1 ¼ zÞ¼:rðzÞ. If the operator A is injective, which we will assume from now on, the function f in
model (1) is determined uniquely as the solution of

Af ¼ r. (2)

Thus estimation in (1) typically proceeds by estimating A and r, inserting these estimates into (2) and then
solving this equation by some regularization method. However, as is well known from the general theory of
statistical inverse problems (cf. Mair and Ruymgaart, 1996), such estimates typically have slow convergence
rates.

Therefore it might still be desirable to use a parametric model, after checking its validity via a lack-of-fit
test. More specifically, one should test the hypothesis that the regression function f belongs to a parametric
family of functions of interest,

H : f 2 ðfyÞy2Y; Y � Rl . (3)

Since the operator A is assumed to be injective, one could equivalently test the hypothesis

H0 : ðAfÞ 2 ððAfyÞÞy2Y, (4)

and by further preconditioning with A�,

H00 : ðA�AfÞ 2 ððA�AfyÞÞy2Y, (5)

since A�A is also injective.
A natural approach is to test (3) directly. Typically this involves comparing a parametric with a

nonparametric fit, and therefore requires a sophisticated nonparametric estimation of f. In Holzmann et al.
(2006), for the related statistical inverse problem of deconvolution density estimation, indirect testing
procedures based on H are investigated in detail. However, in the IV regression model, where the operator A

has to be estimated as well, this seems to be rather impractical.
Therefore, in this paper we concentrate on tests based on H0. We show that testing H0 can essentially be

reduced to testing whether a regression function in an ordinary nonparametric regression model vanishes.
Thus, one can apply testing procedures suggested for direct regression models. A variety of methods are
available (see e.g. Härdle and Mammen, 1993; Spokoiny, 1996; Stute, 1997; Dette, 1999; Aı̈t-Sahalia et al.,
2001), which might be adapted to our context. We will focus on the test of Aı̈t-Sahalia et al. (2001), but other
tests might be used as well.

Tests based on H00 must be designed specifically for IV regression. They are motivated by the fact that
preconditioning with A� is often useful when estimating f, since the operator A�A is self-adjoint and therefore
one can apply spectral regularization methods to approximate its inverse. For the purpose of comparison we
will briefly consider one such test based on H00; the test suggested by Horowitz (2006) also appears to fall into
this category. In the scenarios considered in a simulation study, it turned out that the adapted test of Aı̈t-
Sahalia et al. (2001) is at least as powerful as the suggested method based on testing H00.

The paper is organized as follows. In Section 2 we introduce the relevant test statistics and discuss their
asymptotic distribution theory. Section 3 investigates the performance of competing tests in a small simulation
study. Some technical assumptions and arguments are given in the Appendix.

2. The test statistics

2.1. Simple hypothesis

Let us start by investigating a simple hypothesis

H : f ¼ f0, (6)

for some given function f0. For (6), the hypothesis (4) takes the form H0 : Af0 ¼ r, or equivalently
Please cite this article as: Holzmann, H., Testing parametric models in the presence of instrumental variables. Statist. Probab. Lett.

(2007), doi:10.1016/j.spl.2007.09.025
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Eð ~UkjZk ¼ zÞ ¼ 0; ~Uk ¼ Y k � f0ðX k;Zk;1Þ. (7)

Note that ~Uk ¼ Y k � f0ðX k;Zk;1Þ is completely known. Therefore, all tests for checking whether a given
regression function, namely that of ~Uk on Zk, vanishes, can be applied. Let us describe the test introduced by
Aı̈t-Sahalia et al. (2001), adapted to our setting. Let K be a symmetric kernel on R and denote by KpðxÞ ¼

Pn
k¼1KðxkÞ the p-fold product kernel on Rp, p ¼ p1 þ p2. Further let Kp;hðxÞ ¼ Kpðx=hÞ=hp for the bandwidth

parameter h40. We estimate r and A by the Nadaraya–Watson kernel estimators,

r̂ðzÞ ¼

PN
k¼1 Y kKp;hðz� ZkÞPN

k¼1 Kp;hðz� ZkÞ
; ÂfðzÞ ¼

PN
k¼1 fðX k;Zk;1ÞKp;hðz� ZkÞPN

k¼1 Kp;hðz� ZkÞ
,

where we suppress the dependence on N and h in the notation. This gives rise to the test statistic considered by
Aı̈t-Sahalia et al. (2001) (see also Härdle and Mammen, 1993),

TABS
N ¼

1

N

XN

k¼1

ðr̂ðZkÞ � ðÂf0ÞðZkÞÞ
2aðZkÞ,

where a is a compactly supported weight function. The following theorem can be easily deduced from their
results.

Theorem 1. Under Assumptions 1–4 given in Appendix A, we have under the hypothesis (6) that

Nhp=2TABS
N � h�p=2g!

L
Nð0;s2Þ,

where

g ¼ C1

Z
s2ðzÞaðzÞdz and s2 ¼ 2C2

Z
s4ðzÞa2ðzÞdz,

C1 ¼

Z
K2

pðzÞdz ¼ K ð2Þp ð0Þ; C2 ¼

Z
ðK ð2Þp ðzÞÞ

2 dz ¼ K ð4Þp ð0Þ,

and K ðjÞp is the jth convolution product of Kp with itself, f Z the marginal density of Z1 and s2ðzÞ ¼ EðU2
1jZ1 ¼ zÞ

denotes the conditional variance function.

Remark 1. Note that in order to apply Theorem 1, the constants g and s have to be estimated from the data.
Aı̈t-Sahalia et al. (2001) give suggestions, but a variety of estimators for the conditional variance function are
available, especially in a homoscedastic design (cf. e.g. Hall and Marron, 1990).

Remark 2. Aı̈t-Sahalia et al. (2001) show that their test can detect linear local alternatives at a distance of
N�1=2h�p=4 from the null, and it is easily seen that this fact also extends to our present situation, where the
distance is taken from the function f0. In contrast, Horowitz’ (2006) test can even detect linear alternatives at
a distance of N�1=2. We could also use a N�1=2 consistent test for testing (7), e.g. that introduced by Stute
(1998). However, such tests may have small power against non-linear local alternatives or smooth classes of
alternatives, cf. Spokoiny (1996) and Bachmann and Dette (2005), and thus need not have good power
properties in general.

Now let us briefly consider a statistic for testing the simple hypothesis (6) via H00, i.e. by comparing A�r to
A�Af0. Here we will assume that the covariate is only given by X k, and that the instrument is Zk ¼ Zk;2, so
that the covariate and the instrument do not have a joint component. We estimate the adjoint operator A� by

Â
�
ðcÞðxÞ ¼

PN
k¼1 cðZkÞKq;hðx� X kÞPN

k¼1Kq;hðx� X kÞ
.

Denote by f̂ h;X ðxÞ, f̂ h;ZðZkÞ and f̂ h;XZðx;ZkÞ kernel density estimates of the densities f X , f Z and f XZ,
respectively, i.e. f̂ h;X ðxÞ ¼ N�1

PN
k¼1 Kq;hðx� X kÞ, and similarly for the other density estimates. Then we

obtain estimates of A�r and of A�Af0 as follows:
Please cite this article as: Holzmann, H., Testing parametric models in the presence of instrumental variables. Statist. Probab. Lett.
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Â
�
r̂ðxÞ ¼

1

N

XN

k¼1

Y k

f̂ h;XZðx;ZkÞ

f̂ h;X ðxÞf̂ h;ZðZkÞ
; Â

�
Âf0ðxÞ ¼

1

N

XN

k¼1

f0ðX kÞ
f̂ h;XZðx;ZkÞ

f̂ h;X ðxÞf̂ h;ZðZkÞ
,

using a straightforward computation. Assume that the model is homoscedastic, i.e. that EðU2
1jZ1Þ ¼ s2 is

constant. Darolles et al. (2006) show that under the regularity conditions listed in their Appendix B, under the
hypothesis (6) one has thatffiffiffiffiffi

N
p
ðÂ
�
r̂� Â

�
Âf0Þ!

L
Nð0;s2A�AÞ, (8)

where convergence is in the sense of functional convergence in distribution in the Hilbert space L2ðm1Þ (cf. van
der Vaart and Wellner, 1996), and Nð0;s2A�AÞ is the normal distribution on L2ðm1Þ with mean vector 0 and
covariance operator s2A�A. Since the squared norm is a continuous function on L2ðm1Þ, (8) immediately
implies that

NkÂ
�
r̂� Â

�
Âf0k

2
L2ðm1Þ
!
L

s2
X
kX1

lkw2k;1, (9)

where the lk are the eigenvalues of the operator A�A and w2k;1 are independent chi-squared random variables
with one degree of freedom. The statistic in (9) is not yet practically feasible, since the norm depends on the
unknown density f X . However, it can be replaced by a kernel estimate to obtain

SN ;1 ¼

Z
ðÂ
�
r̂ðxÞ � Â

�
Âf0ðxÞÞ

2f̂ h;X ðxÞdx,

or simply by an average

SN ;2 ¼
1

N2

XN

j¼1

XN

k¼1

ðY k � f0ðX kÞÞ
f̂ h;XZðX j ;ZkÞ

f̂ h;X ðX jÞf̂ h;ZðZkÞ

 !2

.

Under sufficient regularity (in particular uniform convergence of the kernel estimator f̂ h;X to f X ), the
asymptotics in (9) still hold true for SN ;1 and SN ;2. However, it is not easy to estimate the critical value on this
basis, and bootstrapping may become necessary. We do not pursue this further here, since we only use SN;2 for
illustration purposes in the simulations section.
UNCORRE
2.2. Composite hypothesis

In this section we briefly discuss testing a composite hypothesis by using a modification of the statistics

TABS
N .

Suppose that (3) holds for some f0 ¼ fy0 . In this case, typically y0 can be estimated
ffiffiffiffiffi
N
p

-consistently, e.g. by

a 2SLS estimator ŷ (cf. Basmann, 1959). In order to test the composite hypothesis (3), in the statistic TABS
N we

replace the unknown f0 by the estimated fŷ, i.e. we use

TABS

N ;ŷ
¼

1

N

XN

k¼1

ðr̂ðZkÞ � ðÂfŷÞðZkÞÞ
2aðZkÞ,

The following theorem shows that if the parameter y0 can be estimated sufficiently fast, the statistic TABS

N ;ŷ

asymptotically behaves as in case of a simple hypothesis.

Theorem 2. Under Assumptions 1–6 given in Appendix A, we have under the hypothesis (3) that

Nhp=2
ðTABS

N ;ŷ
� TABS

N Þ ¼ oPð1Þ,

and consequently, the conclusions of Theorem 1 remain valid for the statistic TABS

N ;ŷ
.

Please cite this article as: Holzmann, H., Testing parametric models in the presence of instrumental variables. Statist. Probab. Lett.
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This result cannot be deduced from Aı̈t-Sahalia et al. (2001) since instead of the covariate Zk the dependent
variable Y k � fŷðX k;Zk;1Þ is influenced by the estimated parameter ŷ. We give the proof of Theorem 2 in the
Appendix.

3. Simulation study

In this section we report on the findings of a small simulation study. First we investigate the quality of the

normal approximations of TABS
N and TABS

N ;ŷ
as given in Theorems 1 and 2. Then we compare the powers of the

tests based on testing H0 via the statistic TABS
N and H00 via SN;2.

3.1. Normal approximation

The data are sampled from the model

Y ¼ X 2 þU ; X ¼ Z þ V , (10)

where

U

V

Z

0
B@

1
CAi:i:d:�N 0;

1 0:5 0

0:5 1 0

0 0 1

0
B@

1
CA

0
B@

1
CA,

cf. Newey and Powell (2003) for a similar design. In Fig. 1 the distribution of Nh1=2TABS
N is displayed together

with the asymptotic distributions of Theorem 1 for sample sizes of N ¼ 100 and 500 and bandwidths h ¼ 0:4
and 0.1. The statistic was simulated m ¼ 10000 times, and the weight function aðzÞ ¼ 1½�2;2�ðzÞ and the normal

kernel were used. The approximation is reasonably close, even for the smaller sample size. When varying the
bandwidth it turns out that the quality of the approximation is not very sensitive to bandwidth selection. In

Fig. 2 we see corresponding simulation results for Nh1=2TABS

N ;ŷ
, where the parametric model is given by

Y ¼ y0 þ y1X þ y2X 2, the instruments used in the 2SLS estimation were ð1;Z;Z2Þ. The matrix arising in the
2SLS estimation is rather ill conditioned, therefore for N ¼ 100 in the second step we used a ridge parameter
UNCORREC

0

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7

Fig. 1. Distribution of test statistic TABS
N under the simple hypothesis. Solid line for N ¼ 100 and bandwidth h ¼ 0:4, dashed line the

asymptotic distribution. Thick lines for N ¼ 500 and h ¼ 0:1.

Please cite this article as: Holzmann, H., Testing parametric models in the presence of instrumental variables. Statist. Probab. Lett.
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0

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7

Fig. 2. Distribution of test statistic TABS
N;ŷ

under the hypothesis. Solid line for N ¼ 100 and bandwidth h ¼ 0:4, dashed line the asymptotic

distribution. Thick lines for N ¼ 500 and h ¼ 0:1.

Table 1

Power comparison between TABS
N and SN;2

Alternative N Bandwidth c Power TABS
N

Power SN;2

(A) 100 0.4 0.002 0.13 0.08

0.004 0.30 0.14

0.01 0.75 0.32

200 0.3 0.002 0.17 0.07

0.004 0.43 0.12

0.01 0.92 0.41

500 0.1 0.002 0.27 0.15

0.004 0.71 0.31

0.01 1.00 0.71

(B) 100 0.4 0.001 0.19 0.13

0.003 0.69 0.44

200 0.3 0.001 0.29 0.15

0.003 0.89 0.58

500 0.1 0.001 0.50 0.33

0.003 0.99 0.90

(C) 100 0.4 0.02 0.09 0.10

0.07 0.48 0.49

0.15 0.93 0.93

200 0.3 0.02 0.13 0.11

0.07 0.75 0.73

0.15 1.00 1.00

500 0.1 0.02 0.18 0.31

0.07 0.95 0.98

H. Holzmann / Statistics & Probability Letters ] (]]]]) ]]]–]]]6
of a ¼ 0:01. For the composite hypothesis, the approximation is less good and the use of asymptotic critical
values leads to very conservative tests. Instead a bootstrap variant of the test should be used, e.g. the wild
bootstrap (cf. Härdle and Mammen, 1993).
Please cite this article as: Holzmann, H., Testing parametric models in the presence of instrumental variables. Statist. Probab. Lett.

(2007), doi:10.1016/j.spl.2007.09.025

dx.doi.org/10.1016/j.spl.2007.09.025


ARTICLE IN PRESS

STAPRO : 4757

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

H. Holzmann / Statistics & Probability Letters ] (]]]]) ]]]–]]] 7
ROOF

3.2. Power comparison

In this section we compare the powers of the tests based on TABS
N and on SN ;2 for a simple hypothesis via

simulation. First we simulate both statistics under the simple hypothesis (10), and thus obtain precise estimates
of the critical values for a test with significance level 0.95. These critical values are employed in the test
decisions. As alternative models we consider

ðAÞ Y ¼ X 2 þ cX 5 þU ; c ¼ 0:002; 0:004; 0:01,

ðBÞ Y ¼ X 2 þ cX 6 þU ; c ¼ 0:001; 0:003,

ðCÞ Y ¼ X 2 þ c expðX Þ þU ; c ¼ 0:02; 0:07; 0:15.

In order to estimate the power, we used m ¼ 10000 repetitions in case of TABS
N , and m ¼ 500 repetitions for

SN;2, which is computationally more demanding than TABS
N . The results are displayed in Table 1.The

bandwidth was chosen to be equal for both statistics, since it turned out that the power of both tests is not
sensitive to bandwidth selection, as long as it is not too small or too large. In the alternative model ðCÞ, both
tests perform very similarly, for alternative models ðAÞ and ðBÞ the test based on TABS

N outperforms the test
based on SN;2.

Financial support of the DFG under grant MU 1230/8-2 is acknowledged.

Appendix A. Technical details
 P

D 

Assumption 1. The data ðY k;X k;ZkÞ, k ¼ 1; . . . ;N, are i.i.d. with density f ðy;x; zÞ.

Assumption 2. We have
 E

1.
P

(2
TThe density f ðy; x; zÞ is rþ 1-times continuously differentiable, rX2. f and its derivatives are bounded and
square-integrable.
2.
 CThe weight function a has compact support.

3.
 EThe marginal density f ZðzÞ is bounded away from 0 on the compact support of a, and f Z1

ðz1Þ is bounded
away from 0 for all z1 with ðz1; z2Þ in the support of a for some z2.
4.
UNCORREU4o1, and

s2ðzÞ ¼ EðU2
1jZ1 ¼ zÞ

is continuous and square-integrable.

Assumption 3. The kernel K is a bounded function on Rp, symmetric around 0, with
R
jKjo1,

R
KðzÞdz ¼ 1

and
R

zjKðzÞ ¼ 0 for 1pjod, d43p=4.

Assumption 4. The bandwidth h satisfies h�N�1=d, where 2podo2rþ p=2.

Assumption 5. For fixed ðx; z1Þ, y! fyðx; z1Þ is continuously differentiable. In the Taylor expansion

fyðx; z1Þ ¼ fy0 ðx; z1Þ þ f0y0ðx; z1Þðy� y0Þ þ Rðy0; y;x; z1Þ,

where f0y0ðx; z1Þ is the gradient (w.r.t. y), we have that f
0
y0ðx; z1Þ is uniformly bounded in both arguments and

that Rðy0; y; x; z1Þ ¼ oðky� y0kÞ, uniformly in ðx; z1Þ.

Assumption 6. Under the hypothesis (3) the parametric estimate ŷ satisfies

kŷ� y0k ¼ oPðN
�1=2h�p=2

Þ.

Proof of Theorem 2. We have
lease cite this article as: Holzmann, H., Testing parametric models in the presence of instrumental variables. Statist. Probab. Lett.
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TABS

N ;ŷ
� TABS

N ¼ 2N�1
XN

j¼1

ðr̂ðZjÞ � ðÂf0ÞðZjÞÞðÂðf0 � fŷÞðZjÞÞaðZjÞ

þN�1
XN

j¼1

ðÂðf0 � fŷÞðZjÞÞ
2aðZjÞ.

From Assumption 5 and uniform convergence of the Nadaraya–Watson estimator on compact sets (cf. Härdle
and Mammen, 1993),

Âðf0 � fŷÞðzÞ ¼

PN
k¼1 ðf

0
0ðX k;Zk;1Þ þ oPð1ÞÞKp;hðz� ZkÞPN

k¼1 Kp;hðz� ZkÞ
ðy0 � ŷÞ

¼ ðcðzÞ þ oPð1ÞÞðy0 � ŷÞ,

where cðzÞ ¼ Eðf00ðX 1;Z1;1ÞjZ1 ¼ zÞ is bounded by Assumptions 2.3 and 5. Therefore,

N�1
XN

j¼1

ðÂðf0 � fŷÞðZjÞÞ
2aðZjÞ ¼ Oðky0 � ŷk2ÞOPð1Þ ¼ oPðN

�1h�p=2
Þ.

Further,

N�1
XN

j¼1

ðr̂ðZjÞ � ðÂf0ÞðZjÞÞðÂðf0 � fŷÞðZjÞÞaðzÞdz

¼ N�1
XN

j¼1

PN
k¼1 UkKp;hðZj � ZkÞPN

k¼1 Kp;hðZj � ZkÞ
ðcðZjÞ þ oPð1ÞÞaðZjÞðy0 � ŷÞ

¼ OPðN
�1=2ÞOðkŷ� y0kÞ ¼ oPðN

�1h�p=2
Þ,

where the last equality is obtained by straightforward computations. &
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