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ABSTRACT. We present a new approach to handle dependencies within the general framework of
case–control designs, illustrating our approach by a particular application from the field of genetic
epidemiology. The method is derived for parent–offspring trios, which will later be relaxed to more
general family structures. For applications in genetic epidemiology we consider tests on equality of
allele frequencies among cases and controls utilizing well-known risk measures to test for indepen-
dence of phenotype and genotype at the observed locus. These test statistics are derived as functions
of the entries in the associated contingency table containing the numbers of the alleles under consid-
eration in the case and the control group. We find the joint asymptotic distribution of these entries,
which enables us to derive critical values for any test constructed on this basis. A simulation study
reveals the finite sample behaviour of our test statistics.
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1. Introduction

The aim of this study is to give a new approach to handle data of relatives within a
case–control study. We first introduce our method for the situation of parent–child trios with
no missing observations, and show later in the discussion how to modify the tests for more
general data situations such as more complex pedigrees and missing data. Our approach
is based on commonly used tests to analyse contingency tables, namely the odds ratio, the
attributable risk and the relative risk. We derive the asymptotic distributions of these test
statistics by establishing a general result on the asymptotic normality of the (appropriately
standardized) entries of the contingency table. To illustrate our approach we refer to a
particular application in genetic epidemiology where the null hypothesis of identical cell
probabilities for cases and controls is equivalent to the independence of a specific genotype
from the phenotype.

Most methods to detect association with disease in the literature are either pure popula-
tion based (case–control samples with unrelated individuals only) or pure family based, where
parental (founder) genotypes are used to construct tests of association that are entirely con-
tained within the family and thus robust to population stratification. The transmission dis-
equilibrium test (TDT), for example, which was introduced by Spielman et al. (1993), uses
non-transmitted parental alleles of a case as a control sample, analysing the data by a
McNemar statistic. Case–control studies, however, tend to have a better power than pure
family based procedures (see, e.g. McGinnis et al., 2002). Risch & Teng (1998), Teng &
Risch (1999) and Risch (2000) point out that using pedigrees including many cases will lead
to an increase in power, due to higher expected frequencies of disease-susceptibility alleles
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in pedigrees with multiple cases compared with the frequencies of these alleles in popula-
tion-based cases. Moreover, utilizing all cases in a pedigree rather than just one per pedigree
improves power by increasing the effective sample size. Several authors have therefore derived
methods to combine the benefits of population based and family based approaches.

Let us briefly discuss some recent contributions of this kind. Purcell et al. (2005) iden-
tify the ignorance of parental phenotypes as one possible source for the lower efficiency of
pure family based methods. Fitting a variance component model for nuclear families (both
parents and an arbitrary number of children), they break phenotypic association with geno-
type into two components; a within component, robust to stratification, in which association
is examined within each family, and a between component, where association is examined
across families. In their terminology, the TDT consists of a within-family component only,
whereas a case–control study with unrelated individuals is entirely a between-family test.
Risch & Teng (1998) propose a method, which is applicable to several different designs includ-
ing sibships with parents, sibships without parents and unrelated controls, using DNA pool-
ing. In Slager & Schaid (2001) the test for trend in proportions introduced by Armitage
(1955) is extended to general family data, whereas Böhringer & Steland (2006) provide a very
accurate version of the likelihood for parent–offspring duos. Whittemore & Tu (2000) pre-
sent a class of score statistics accommodating genotypes of both unrelated individuals and
families with arbitrary structures. Epstein et al. (2005) discuss the issue of sampling both
parental and unrelated controls, modifying the approximate analysis approach of Nagelkerke
et al. (2004), who had found under quite restrictive model assumptions that analysing data
from triads and unrelated controls together yields a higher power than separate analyses. The
approach of Epstein et al. (2005) allows for more flexibility of modelling allele effects, and
less restrictive assumptions are needed, without losing power compared with Nagelkerke et al.
(2004). Browning et al. (2005) account for correlations between individuals in a case–control
design by calculating an optimal weight for each individual based on IBD sharing proba-
bilities as in McPeek et al. (2004), who introduced these optimal weights in the context of
finding the best linear unbiased estimator for allele frequencies of data where the relation-
ships among the sampled individuals are specified by a large, complex pedigree such as in
isolated founder populations, which makes the use of maximum likelihood estimation imprac-
tical.

All the methods discussed above are in fact likelihood ratio tests. As likelihood approaches
require a full specification of the genetic model, we propose non-parametric level �-tests to
test for independence of genotype and phenotype. This article is organized as follows. Section
2 deals with a more detailed discussion of the genetic model under consideration. The main
results of our research are then stated in section 3, where the asymptotic distributions of the
test statistics are derived. Section 4 provides various important extensions of our method,
e.g. polygenic disorders, different inheritance models or strategies to deal with population
stratification. To assess the finite sample behaviour of the tests in terms of sample size and
power, we conduct a simulation study under various scenarios of practical interest in section
5. The simulations analyse whether including relatives increases statistical power, and also
provide a comparison with the TDT, which has become a kind of ‘benchmark’ test among the
family based procedures. The simulations demonstrate on the one hand that including rela-
tives in the study always leads to a significant increase in power, and on the other hand that
the non-parametric tests have increased power compared with the TDT for virtually all
scenarios under consideration under the assumption of no population stratification. The dis-
cussion in section 6 provides a more detailed insight into the problem of dealing with
different family structures and the situation of missing data. The proofs of our results,
finally, are deferred to an appendix.
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2. Genetic model and assumptions

We assume that there are two biallelic loci L1 and L2, with L1 being the candidate locus
where data are observed, whereas L2 denotes the true but unknown causal locus. The aim
of this study was to ascertain if there is significant evidence for linkage disequilibrium (LD)
between L1 and L2 by comparing the allele frequencies of a marker allele at L1 in the case
and the control group respectively. We denote the possible alleles at both L1 and L2 by A
and Ā, where the causative allele for the disease at L2 will be termed A in what follows,
whereas A at L1 stands for that allele at the marker locus which is suspected to be associ-
ated with the disease. Using the same notation for the alleles at L1 and L2 does not imply
that the alleles at the different loci would consist of the same sequence of nucleotides, but
is merely for notational convenience. For simplicity of motivation and derivation of results,
we further suppose that the underlying inheritance model is dominant, i.e. for any individual
the probability of being affected given there is at least one allele A present at locus L2 is
equal to the penetrance f with 0 < f ≤1, whereas individuals without any allele A at L2 are
affected with probability zero. At first glance, it seems that our assumptions concerning the
number of candidate and disease loci and the mode of inheritance imposed at this stage are
quite restrictive, but we show in section 4 how to apply our approach to an arbitrary number
of markers and predisposing loci as well as different modes of inheritance.

We consider the following study setup. A sample of n1 affected children (cases) is randomly
collected. Similarly, a random sample of n2 unaffected children forms the basis of the control
group. Denote by n=n1 +n2 the total number of children at stage 1. There are no degrees
of relationship allowed among these children to avoid dependencies within the data at this
stage of the experiment. To each child from this basic sample we assign a random variable
Ci , i =1, . . ., n, which counts the number of occurrences of allele A at the candidate locus
L1, i.e. Ci =2, 1 or 0, accordingly. In what follows, we will consider the case that data from
family trios, i.e. from the children and their parents are available, bringing the total number
of individuals taking part in the study to 3n. The random variables corresponding to paren-
tal observations are defined equivalently to the offspring data and denoted by Ai and Bi for
the first and second parent of the ith trio respectively. From the above study setup, it follows
that there are dependencies among the data and, as a further complication, the number of
parents belonging to either group is also random.

In what follows, we suppose that the following standard assumptions on the various
processes involved in inheritance are satisfied.

(A1) The random processes yielding the phenotype given the genotype are independent for
different individuals.

(A2) Gamete formation is independent of phenotype.
(A3) Hardy–Weinberg equilibrium holds for each locus.
(A4) Offspring data are randomly sampled from the two groups in the population, and the

children in the basic sample are unrelated.

Our interest is on testing whether there is an influence of the observed genotype at locus
L1 on the phenotype. We therefore test the null hypothesis H0 that there is no LD between
the observed locus L1 and the disease locus L2 against the alternative H1 of the existence
of LD between these two loci. Note that the LD coefficient � describing the LD between
alleles at the two loci L1 and L2 within the population is given by �=�AA =hAA − p1Ap2A,
where hAA denotes the haplotype frequency of alleles A, A at the loci L1 and L2, and p1A, p2A

stand for the allele frequencies of A at L1 and L2 respectively. In terms of the LD coefficient
�, the testing problem is thus given by testing the null hypothesis H0 :�=0 against H1 :�> 0
or H1 : � /=0, depending on the experimenter’s preference for either a one- or a two-sided
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alternative. In order to construct tests for these hypotheses, we reformulate the hypotheses
in terms of the allele frequencies of A at L1 in the two respective groups. Let pv denote the
frequency of A at L1 among the affected individuals in the population, and pw the corres-
ponding term among the unaffected individuals. Then pv and pw can be expressed in terms
of the model parameters �, f , p1A and p2A by

pv =p1A +�
1−p2A

p2A(2−p2A)
, pw =p1A −�

f (1−p2A)
1− fp2A(2−p2A)

, (1)

where a derivation of formula (1) can be found in the appendix. The hypotheses can thus be
reformulated equivalently by H0 : pv =pw =p1A against H1 : pv > pw or H1 : pv /=pw.

3. The test statistics and their asymptotic distributions

The null hypothesis H0 implies that the allele frequency of A at locus L1 is the same among
affected and unaffected individuals in the population. It is therefore reasonable to consider
test statistics based on differences or ratios of estimators for the allele frequencies pv and pw

to detect deviations from H0. We choose as estimators p̂v and p̂w the empirical counterparts
of pv and pw in the two respective groups, which can be obtained from the corresponding
contingency table with entries N1, N2, N3 and N4, where N1 denotes the number of alleles A
at L1 among the affected individuals, N2 is the number of A at L1 among the unaffected
individuals, and N3, N4 are the corresponding numbers of alleles Ā at L1. Substituting p̂v

and p̂w in the formulae for the risk measures yields the following test statistics

attributable risk Tn1 = p̂v − p̂w = N1

N1 +N3
− N2

N2 +N4
,

odds ratio Tn2 = p̂v(1− p̂w)
p̂w(1− p̂v)

= N1N4

N2N3
,

relative risk Tn3 = p̂v

p̂w

= N1(N2 +N4)
N2(N1 +N3)

.

We are now ready to present the main result of this article, which gives the joint asymp-
totic distribution of the empirical allele frequencies p̂v and p̂w under the null hypothesis H0.
As under H0 we have var(C1)=var(A1)=var(B1) and cov(C1, A1)= cov(C1, B1) the results are
given in terms of var(C1) and cov(C1, A1) instead of these five different expressions for brevity
of notations. The proof of theorem 1 is deferred to the appendix.

Theorem 1
Suppose the null hypothesis H0 is valid, assumptions (A1)–(A4) are satisfied and the ratio n1/n
converges to a positive constant c ∈ (0, 1) for n→∞.

Then the joint asymptotic distribution of p̂v and p̂w is given by

√
n(p̂v −p1A, p̂w −p1A)T D−→N (0, �), (2)

where the entries of the covariance matrix � are given by

�1, 1 = var(C1)
12t1

+ cp1cov(C1, A1)
9t2

1

,

�2, 2 = var(C1)
12(1− t1)

+ (1− c)(1−p2)cov(C1, A1)
9(1− t1)2

,

�1, 2 =�2, 1 = cov(C1, A1)(c(1−p1)+ (1− c)p2)
18t1(1− t1)

,
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where p1 and p2 denote the probabilities that a parent is affected given the corresponding child
is affected or unaffected respectively. var(C1)=2p1A(1−p1A), cov(C1, A1)=p1A(1−p1A), and t1

is the asymptotic expected percentage of affected individuals in the study, i.e. t1 = (c +2cp1 +
2(1− c)p2)/3.

Please note that the condition n1/n→ c ∈ (0, 1) ensures that the number of data in one of the
groups is not outbalanced by the corresponding quantity in the other group. The condition
is required in this particular form due to the asymptotic nature of the result of theorem 1. In
a real data application where of course both n and n1 are finite, this means that the experi-
menter should make sure that the ratio n1/n is not too close to either zero or one to avoid
situations where there are almost no cases or no controls in the study.

3.1. Asymptotic distributions of the test statistics

To find asymptotic critical values for the tests under consideration, we utilize the result of
theorem 1 to derive the asymptotic distributions of the test statistics Tn1, log(Tn2) and
log(Tn3). Instead of Tn2 and Tn3, we will use the logarithms of these test statistics in the en-
suing derivations as log(Tn2) and log(Tn3) were found to preserve the nominal significance
level � more precisely in simulations than the original versions of the tests.

Corollary 1
Under the assumptions of theorem 1 the asymptotic distributions of the test statistics Tn1,
log(Tn2) and log(Tn3) under H0 are given by

√
nTn1

D−→N (0, �2
1),

√
n log(Tn2) D−→N (0, �2

2),
√

n log(Tn3) D−→N (0, �2
3),

where the asymptotic variances �2
1, �2

2 and �2
3 are obtained as

�2
1 = var(C1)

12t1(1− t1)
+ cov(C1, A1)(cp1 − (c + cp1 + (1− c)p2)t1 + t2

1)
9t2

1(1− t1)2

= p1A(1−p1A)
18t2

1(1− t1)2
(2cp1 + (3− c)t1 −4t2

1),

�2
2 = var(C1)

12t1(1− t1)p2
1A(1−p1A)2

+ cov(C1, A1)(cp1 − (c + cp1 + (1− c)p2)t1 + t2
1)

9t2
1(1− t1)2p2

1A(1−p1A)2

= 1
18t2

1(1− t1)2p1A(1−p1A)
(2cp1 + (3− c)t1 −4t2

1),

�2
3 = var(C1)

12t1(1− t1)p2
1A

+ cov(C1, A1)(cp1 − (c + cp1 + (1− c)p2)t1 + t2
1)

9t2
1(1− t1)2p2

1A

= (1−p1A)
18t2

1(1− t1)2p1A
(2cp1 + (3− c)t1 −4t2

1).

The assertions of corollary 1 follow from theorem 1 and a straightforward application of the
�-method (see, e.g. Serfling, 1980).

3.2. Estimation of unknown parameters

As the asymptotic variances of the test statistics depend on the unknown parameters p1A, p1

and p2, these parameters have to be estimated in practice. By Slutsky’s theorem, the results
given in corollary 1 still hold if �2

1, �2
2 and �2

3 are replaced by consistent estimators. Under
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the null hypothesis H0, the allele frequency p1A of A at L1 in the two respective groups and
the probabilities p1 and p2 of a parent being affected given the corresponding child is affected
or unaffected, respectively, can be estimated

√
n-consistently by the sample mean values of

the corresponding random variables.
For estimating var(C1) and cov(C1, A1), there are several approaches. First, one could

simply replace p1A by its estimator p̂1A in the relations var(C1)=2p1A(1−p1A) and cov(C1, A1)=
p1A(1 − p1A). Alternatively, one could use the estimators v̂ for var(C1) and côv for
cov(C1, A1) given by

v̂= 1
3n

n∑
i=1

(C2
i +A2

i +B2
i )− 1

9n(n−1)

n∑
i=1

n∑
j �= i

(Ci +Ai +Bi)(Cj +Aj +Bj)

ˆcov= 1
2n

n∑
i=1

(CiAi +CiBi)− 1
9n(n−1)

n∑
i=1

n∑
j �= i

(Ci +Ai +Bi)(Cj +Aj +Bj).

Straightforward calculations show that these estimators are unbiased with variance converg-
ing to 0 at a rate of 1/n.

4. Extensions

We demonstrate our method for the case of a monogenic disease and a single marker locus
for the sake of clearness and brevity of this study. The proposed tests, however, can readily be
extended to genetically more complex models. If a set of k ≥1 candidate loci has been chosen
we can test as follows whether a specific allele combination (genotype), say G = (g1, . . ., gk), at
these k loci contributes to the phenotype expression. We define a virtual biallelic locus L with
alleles G and Ḡ, where Ḡ consists of all allele combinations specified by the k markers except
the candidate genotype G. The proposed tests can then be applied to L where the candidate
allele A from the original test is replaced by G. Some slight changes have to be accounted for
in the calculation of the variances of the test statistics. In this way, all different allele com-
binations can be tested with an appropriately corrected significance level �, which can, e.g.
be found by Bonferroni correction or more sophisticated (more powerful) techniques such as
Holm’s (1979) or Hochberg’s (1988) procedures or modifications of these. This approach will
provide us with p-values for forward and backward selection procedures with respect to
single allele combinations and/or marker loci. If the k markers are closely located on the
same chromosome one could also think of conducting test procedures on haplotypes as clas-
sical genetics has demonstrated that the phenotypic effect of several mutations at different
loci can sensitively depend on whether the mutations occur in cis or in trans position (see,
e.g. Schaid et al., 2002). Again, we can test if a specific haplotype, say H , has an influence
on the phenotype by defining a virtual biallelic locus with alleles H and H̄ and applying our
method. To identify the unknown phase the method of molecular haplotyping can be used
if the DNA sequence containing the markers is not too long; see Michalatos-Beloin et al.
(1996). Otherwise haplotypes can either be determined by pedigree analysis or haplotype
frequencies can be estimated for example by an EM-algorithm (see, e.g. Fallin et al., 2001).
A more detailed exploration of this issue will be the subject of further research.

In the situation of a highly inhomogeneous population some care is needed when collect-
ing the data to avoid possible biases of the tests created by population stratification, which
is a potential worry in case–control studies (see, e.g. Thomas & Witte, 2002). The simplest
ways to cope with this situation would be to include only individuals of homogeneous ethnic
and geographical origin, or to categorize the data into the different subpopulations, which
are then analysed separately. In case of almost equal allele frequencies at the predisposing
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locus (percentages of affected individuals in each subpopulation are about equal), it is also
feasible to ‘match’ the controls from the basic sample to the cases such that the percentages
of different subpopulations are equal in both groups. This will then on average also be true
for the parents in the two groups, so that the percentages of different subpopulations will be
about equal among the affected and the unaffected individuals. A different strategy to robus-
tify the tests against stratification bias would be to modify the test statistics by estimating pv

and pw for all subpopulations separately and defining p̂v, p̂w as the sums (or weighted sums)
of the respective estimates. The tests can then be carried out on these modified estimators
as before, taking into account the changes in the asymptotic variances. All the methods
proposed above, however, rely on knowing the strata, i.e. categorizing individuals into the
wrong ethnic group will lead to biased results. Pritchard et al. (2000) developed a Bayesian
method for the estimation of ethnic origins using genomic information from polymorphic
markers that are not linked with the candidate genes under study. The use of this method
(or another genomic adjustment approach) can be a helpful supplement to our tests. The
issue of population stratification may, however, not be dismissed.

At first glance it seems that the genetic inheritance model plays a crucial role, and the
question arises, whether the proposed tests also work if the assumption of a dominant mode
of inheritance is violated. An inspection of the proof shows that theorem 1 remains valid
even in this general setting. The underlying mode of inheritance influences the asymptotic
null distributions only through the values of the parameters p1 and p2. These parameters,
however, can be consistently estimated from phenotype data, so that the tests can be applied
to data from any type of inheritance model.

5. Simulation study

To assess the finite sample behaviour of our tests, we carried out a simulation study for
various parameter settings. We were, first, interested in investigating whether the inclusion
of parental data yields a substantial gain in power, and, secondly, in comparing our tests
with the TDT as an already established method. Thirdly, we examined the sensitivity of the
real significance level with respect to the dependency structure of the data. For brevity, we
restricted ourselves to simulate the test H0 :�=0 against the one-sided alternative H1 :�> 0,
which corresponds to the scenario that the experimenter’s belief is in positive LD between
A at L1 and A at L2. To simulate random variables with the same distributions as Ci , Ai

and Bi , i =1, . . ., n, four parameters have to be specified in advance. In the study at hand we
fixed the values of the two allele frequencies p1A, p2A, the penetrance f and the LD coeffi-
cient �. Due to the dependency of the LD coefficient � on the haplotype frequency and the
allele frequencies, it is difficult to compare the amount of LD between different pairs of loci
using the respective LD coefficients. We therefore use an appropriately standardized version,
i.e. Lewontin’s D′ = |�|/�max where �max is defined by min{p1A(1 − p2A), (1 − p1A)p2A} if �> 0,
and �max =min{p1Ap2A, (1 − p1A)(1 − p2A)} if �< 0 (see, e.g. Devlin & Risch, 1995). In what
follows, the parameters will be given in terms of D′ instead of � for comparability.

Using a nominal type I error of �=0.05 we report the empirical rejection rate based on
10,000 runs. Unkown parameters are estimated as explained in subsection 3.2. We used the
sample sizes n=60, n=100 and n=200 for the basic sample, respectively, and the value of
n1 was chosen according to the ‘expected equal allocation rule’, i.e. the expected number
of affected individuals in the entire sample is equal to the expected number of unaffected
individuals. For some parameter combinations, this choice was not admissible due to the
restriction that n1 < n. In these situations, we simulated the tests for several choices of n1

with 0.75n ≤ n1 ≤ 0.95n, and found that the tests are not very sensitive with respect to the
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Table 1. Columns 2–4: p1A =0.2, p2A =0.015, D′ =0, f =0.5; columns 5–7: p1A =0.2, p2A =0.1, D′ =0,
f =0.3

Test n=60 n=100 n=200 n=60 n=100 n=200

Attributable risk (∗∗) 5.59 5.56 5.53 5.52 5.18 5.04
Log odds ratio (∗∗) 4.73 4.74 4.88 5.12 4.86 4.78
Log relative risk (∗∗) 4.91 5.01 5.04 5.13 4.95 4.86

Values are given in percentage.

particular choice of n1 within this range. Table 1 provides results under H0 : D′ =0 to assess
the accuracy of the type I error. Since in what follows we will compare the performance
of our tests with the performance of the corresponding tests including either data from
unrelated subjects only or data from children with one parent each, we label by (∗∗) the
tests including data from both parents for each child.

It can be seen that our tests preserve the �-level quite well, even for the small sample size
of n=60. Only in the situation of a very small (< 0.05) allele frequency p1A, the tests do not
preserve the �-level when the sample size is small. In this scenario, the test based on the
attributable risk appears to be most robust among the three tests under consideration. Our
theoretical results provide an explanation for this fact. Indeed, noting that the variances have
the form �2

1 =p1A(1 − p1A) × f (p1, p2) (attributable risk) and �2
2 =1/{p1A(1 − p1A)} × f (p1, p2)

(odds ratio), where f (p1, p2) is a term depending on p1 and p2 only, we see that �2
2 is more

sensitive for such p1A. Increasing the sample size, however, leads to reliable results for all
three tests.

Tables 2, 3 and 4 show the simulated powers of the tests on trios under the alternative
hypothesis H1. For comparison, we also display the corresponding values when only data
of unrelated subjects are included in the test statistics. In this case, the number of affected
individuals n1 was chosen according to the equal allocation rule n1 =n/2. The tests including
offspring data only, thus having a total sample size of n individuals, are not given any label.
The tests labelled by (∗) denote the tests including the data from the basic sample plus the
data from one randomly chosen parent for each child, bringing the total sample size in this

Table 2. p1A =0.05, p2A =0.001, D′ =0.2, f =0.6

Test n=60 n=100 n=200

Attributable risk 58.44 76.65 95.95
Attributable risk (∗) 69.46 86.61 98.71
Attributable risk (∗∗) 80.53 94.19 99.79
Log odds ratio 58.68 77.72 95.85
Log odds ratio (∗) 69.76 86.21 98.65
Log odds ratio (∗∗) 76.75 92.29 99.73
Log relative risk 60.82 78.11 95.97
Log relative risk (∗) 70.70 86.72 98.70
Log relative risk (∗∗) 79.05 93.38 99.76

Two-sided tests
Attributable risk 44.20 64.58 79.51
Attributable risk (∗∗) 71.07 89.41 99.52
Log odds ratio 48.82 63.81 85.54
Log odds ratio (∗∗) 65.95 86.42 99.19
Log relative risk 51.37 66.00 87.07
Log relative risk (∗∗) 67.53 87.16 99.35

Values are given in percentage.
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Table 3. p1A =0.2, p2A =0.1, D′ =0.2, f =0.5

Test n=60 n=100 n=200

Attributable risk 30.08 40.67 64.36
Attributable risk (∗) 36.42 51.80 76.94
Attributable risk (∗∗) 46.45 63.84 86.52
Log odds ratio 30.30 41.10 63.29
Log odds ratio (∗) 36.50 51.29 76.47
Log odds ratio (∗∗) 42.43 60.02 84.51
Log relative risk 30.82 41.41 64.21
Log relative risk (∗) 36.99 51.82 76.68
Log relative risk (∗∗) 44.56 62.33 85.54

Values are given in percentage.

Table 4. p1A =0.4, p2A =0.2, D′ =0.4, f =0.2

Test n=60 n=100 n=200

Attributable risk 36.51 50.62 75.41
Attributable risk (∗) 40.07 57.96 81.76
Attributable risk (∗∗) 55.72 74.72 94.18
Log odds ratio 35.28 49.06 73.88
Log odds ratio (∗) 38.90 56.10 80.45
Log odds ratio (∗∗) 51.05 71.16 93.01
Log relative risk 38.99 49.97 74.04
Log relative risk (∗) 40.47 57.51 81.54
Log relative risk (∗∗) 51.47 71.87 93.25

Values are given in percentage.

situation to 2n. For these tests, the expected equal allocation rule was used to determine n1.
In Table 2, we chose relatively small allele frequencies of A at the two loci L1 and L2, a
small amount of LD measured by D′ =0.2 and a high penetrance of f =0.6.

We observe that the inclusion of parental data increases the powers of the tests consider-
ably. We further added the powers of the two-sided tests (H1 : � /=0) to Table 2 [scenarios:
children only (no label) and both parents included (∗∗)] to show that also in this testing
problem the inclusion of parental data significantly increases the capability to detect devia-
tion from H0. The same holds true for medium scale values of the allele frequencies p1A and
p2A as can be seen from Table 3.

Table 4, finally, displays the values of the simulated powers when the value for the
penetrance f is chosen relatively small.

To further assess the practical relevance of a newly developed method it is of great impor-
tance to compare its performance with an already established procedure. We chose the TDT
as the competing method in this simulation study as it has become the benchmark method
for surveys on trios. Table 5 shows the simulated powers of the TDT for the parameter com-
binations used above so that they can readily be compared with the powers of the tests (with
trios) proposed in this work given in Tables 2, 3 and 4. For convenience, the corresponding
results for the test based on the attributable risk are given again in Table 5. The number n
in this table refers to the number of trios, on which we carried out the tests. Furthermore,
we simulated a scenario where the penetrance f is small (f =0.1) to assess the power of our
tests if the number of affected parents is likely to be small.

We observe from Table 5 that for all four scenarios our tests perform between ‘slightly’
better to ‘significantly’ better than the TDT. In particular, the test based on the attributable
risk has a considerably higher capability to detect deviations from the null hypothesis H0. In
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Table 5. Simulated power of the tests based on the risk measures compared with the TDT

Test n=60 n=100 n=200

p1A =0.05, p2A =0.001, D′ =0.2, f =0.6
Attributable risk (∗∗) 80.53 94.19 99.79
TDT 76.08 92.41 99.78

p1A =0.2, p2A =0.1, D′ =0.2, f =0.5
Attributable risk (∗∗) 46.45 63.84 86.52
TDT 31.17 45.04 74.75

p1A =0.4, p2A =0.2, D′ =0.4, f =0.2
Attributable risk (∗∗) 55.72 74.72 94.18
TDT 41.07 60.62 88.31

p1A =0.05, p2A =0.1, D′ =0.1, f =0.1
Attributable risk (∗∗) 18.55 22.79 34.39
Log odds ratio (∗∗) 11.24 16.04 27.39
Log relative risk (∗∗) 12.22 17.27 28.53
TDT 12.68 17.69 26.97

Values are given in percentage.

Table 6. Simulated power of the tests based on the risk measures compared with the TDT for a recessive
inheritance model and parameters p1A =0.2, p2A =0.2, D′ =0.1, f =0.5

Test n=60 n=100 n=200

Attributable risk (∗∗) 41.14 56.67 81.87
Log odds ratio (∗∗) 36.03 52.53 79.47
Log relative risk (∗∗) 36.79 53.04 80.05
TDT 33.84 50.13 77.58

Values are given in percentage.

the last scenario where p1A is small, we found that the tests based on the relative risk and
the odds ratio are less stable than the test based on the attributable risk, which is again due
to the form of the asymptotic variances of these tests. In this situation, these two tests are
comparable with the TDT.

To provide an example for another mode of inheritance than the dominant, we also simu-
lated a recessive inheritance model, and again compared our tests with the TDT. The results,
which are very similar to those for the dominant model, are given in Table 6.

The three tests proposed in this study are asymptotically equivalent, but considering all
the tables in this study, we observe that for some scenarios the test based on the attributable
risk has a higher power than the other two tests in a finite sample. For many scenarios, how-
ever, there is virtually no difference in performance between the three tests. This simulation
study therefore indicates that in practice one would best use the test based on the attribut-
able risk, which is also hinted at by further simulation results that are not presented here
for brevity.

6. Discussion

The simulation study reveals that our tests preserve the nominal significance level very well
and are quite robust with respect to the genetic parameters. The statistical power to detect
LD, i.e. to detect predisposing genes, is substantially increased by including parental informa-
tion. Moreover, a comparative power simulation study with respect to the TDT, which has
become a benchmark procedure in practical applications, reveals a superiority of our tests
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(in terms of power) for many scenarios, demonstrating the practical relevance of our approach.
These findings are in line with the theoretical results of McGinnis et al. (2002) (for unrelated
cases and controls), who found that in general fewer case–control samples are required to
achieve the same power as the TDT, suggesting greater genotyping efficiency with the case–
control design. However, the TDT was invented as a test robust to population stratification,
which is a potential problem in case–control studies. We have provided some robustification
strategies for our tests, which are described in section 4, but there is no complete solution for
this problem. It therefore mainly depends on the structure of the population, which test (our
tests or the TDT) might be more appropriate for a particular problem. The reason why our
method is more powerful than the TDT seems to be as follows. In contrast to the TDT or
other methods based on transmission of marker alleles, we use all available data, i.e. parental
phenotypes as well as all parental genotypes, whereas the TDT discards both parental pheno-
types and the genotype data of those parents that are homozygote at the observed locus.

The results presented in section 3 cover the important case that data from parent–offspring
trios are available. However, the methodology established in the appendix can be extended
to cope with more general family data and the situation of missing data. For example, from
a practical viewpoint the generalization to more general types of relatives as the additional
inclusion of sibs’ data may be a concern. As an example to get the ideas, we first consider the
case where for each child from the basic sample the required phenotype and genotype data
of both parents and one sib are available. In this scenario, the number of participants in the
study is still fixed. From the proof of theorem 1 in the appendix, we conclude that it is suffi-
cient to extend the random vectors Xi , i =1, . . ., n1, and Yj , j =1, . . ., n2, each corresponding to
a child from the two respective groups, by three additional entries giving the phenotype and
genotype status of the sib as well as a combination of both exactly analogous to the entries
corresponding to the parents. An asymptotic result similar to lemma 1 can then be proven
immediately, from which then the asymptotic null distributions of the test statistics can be
derived. Other types of relatives can be added to the study analogously, further increasing
the sample size and hence the power to detect deviations from the null hypothesis.

Another strategy to increase power would be to sample on the one hand families with many
cases and on the other hand unrelated controls, as, under the alternative hypothesis, this
will increase the allele frequency difference between the two groups (see, e.g. Risch & Teng,
1998; Teng & Risch, 1999; Risch, 2000). It is even possible to allow for missing data under
a missing at random assumption. The problem of missing data can be addressed adequately
by introducing a random variable indicating if a particular relative takes part in the study
or not. Again, the random vectors Xi , i =1, . . ., n1, and Yj , j =1, . . ., n2, are extended by these
indicators as well as combinations of the indicator variables with random variables giving the
genotype and phenotype status of the respective relative. If the study is designed for data from
related cases and unrelated controls it is only necessary to modify the vectors Xi , i =1, . . ., n1,
corresponding to affected children by the indicators. The vectors Yj , j =1, . . ., n2, will then be
one-dimensional consisting of the offspring genotype data Ci , i =n1 +1, . . ., n. Note that in
these scenarios the number of individuals taking part in the study is random. We therefore
have to include the entry N4 when we calculate the joint asymptotic distribution of the entries
of the contingency table as the distribution of N4 is no longer given by the joint distribution
of the other entries N1, N2 and N3.

Note that in models extended in such a way additional nuisance parameters describing
the dependence structure and the missing data mechanism, respectively, shall appear,
and for a practical implementation of the tests the number of parameters to be estimated
(complexity of the model), and the increase of data have to be balanced carefully, since
estimating too many parameters compared with the increase in available data can lead to
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poor results. Therefore, more detailed investigations of these issues should be a subject of
future research.
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Appendix: proofs

Derivation of formula (1). Without loss of generality, we consider the ‘first’ allele l1 at locus
L1. Then pv =P(l1 =A |aff), and we obtain (with l2 denoting the ‘first’ allele at L2 so that l1

and l2 form a haplotype, and pre standing for the prevalence):

pv =P(l1 =A |aff, l2 =A)P(l2 =A |aff)+P(l1 =A |aff, l2 = Ā)P(l2 = Ā |aff)

=
(

�
p2A

+p1A

)(
fp2A

pre

)
+
(

p1A − �
1−p2A

)(
1− fp2A

pre

)
=p1A +�

f −pre
pre(1−p2A)

.

This formula holds as given l2, l1 does no longer depend on the phenotype. Analogously,

pw = p1A −�(f −pre)
{(1−pre)(1−p2A)} .

With pre= fp2A(2−p2A), we obtain (1).

Proof of theorem 1. The main difficulty in the proof is that N1 and N2 contain sums with a
random number of random variables Ai and Bi . However, these can be reconstructed as sums
with a deterministic number of random variables as follows. To each affected child, we assign
a seven-dimensional random vector Xi = (X (1)

i , X (2)
i , X (3)

i , X (4)
i , X (5)

i , X (6)
i , X (7)

i )T , i =1, . . ., n1,
where X (1)

i =Ci , X (2)
i = I{first parent of child i is affected}, X (3)

i =Ai , X (4)
i =X (2)

i X (3)
i , X (5)

i = I
{second parent of child i is affected}, X (6)

i =Bi and X (7)
i =X (5)

i X (6)
i . Analogously, we define

the vectors Yj , j =1, . . ., n2, for each child from the control group. As we did not allow for
any degree of relationship among the children, the random vectors Xi , i =1, . . ., n1, as well as
Yj , j =1, . . ., n2, are independent and identically distributed (i.i.d.). Lemma 1 gives the joint
asymptotic distribution of the sums of the vectors under the null hypothesis H0. For brevity
of notation, we denote the expectation of Ci , Ai and Bi by pA, i.e. pA =2p1A.

Lemma 1
Let n1/n converge to some constant c∈ (0, 1) for n→∞. Denote by mx and my the means of X1

and Y1, respectively, and by Kx, Ky the corresponding covariance matrices. Then

√
n

(
1
n

n1∑
i =1

Xi − n1

n
mx,

1
n

n2∑
i =1

Yi − n2

n
my

)T
D−→N (0, �K ),

where the covariance matrix �K is a non-degenerate block matrix with blocks cKx and (1−c)Ky.
Explicitly, we have that mx = (pA, p1, pA, p1pA, p1, pA, p1pA)T, my =(pA, p2, pA, p2pA, p2, pA, p2pA)T,
and Kx is
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var(C1) 0 cov(C1, A1) p1cov(C1, A1) 0 cov(C1, B1) p1cov(C1, B1)
0 p1(1−p1) 0 pAp1(1−p1) p3 0 p3pA

cov(C1, A1) 0 var(C1) p1var(C1) 0 0 0

p1cov(C1, A1) pAp1(1−p1) p1var(C1) p1pA(1+ (0.5−p1)pA) p3pA 0 p3p2
A

0 p3 0 p3pA p1(1−p1) 0 pAp1(1−p1)
cov(C1, B1) 0 0 0 0 var(C1) p1var(C1)

p1cov(C1, B1) p3pA 0 p3p2
A pAp1(1−p1) p1var(C1) p1pA(1+ (0.5−p1)pA)




.

Ky is of the same form as Kx with p1 replaced by p2, and the parameter p3 describing the
covariance structure between parental phenotypes given the offspring is affected, replaced by
a parameter, say p4, for the respective covariance given the child is unaffected.

Proof of lemma 1. The expectations and covariance matrices of X1 and Y1 under H0 are
obtained by straightforward calculations. Note that under the null hypothesis the random
variables X (2)

i , X (5)
i and Y (2)

j , Y (5)
j corresponding to phenotype data are independent of the

random variables X (1)
i , X (3)

i , X (6)
i and Y (1)

j , Y (3)
j , Y (6)

j describing genotype features of the indi-
viduals. Asymptotic normality follows by applying the multivariate central limit theorem for
i.i.d. vectors to both sequences separately, and exploiting that the sequences Xi , i =1, . . ., n1,
and Yj , j =1, . . ., n2, are independent.

To prove that the covariance matrix Kx is non-degenerate we calculate its determinant
|Kx|=0.5p2

1(1−p1)2var(C1)5(p2
1(1−p1)2 −p2

3), where we used that var(C1)=2p1A(1−p1A) and
cov(C1, A1)=p1A(1 − p1A). As p1A, p1 and p2 are assumed to lie in (0, 1) it remains to show
that p2

3 < p2
1(1−p1)2. Recall that p2

1(1−p1)2 −p2
3 =var(X (2)

1 )var(X (5)
1 )− [cov(X (2)

1 , X (5)
1 )]2 ≥0 by

Hölder’s inequality. As X (2)
1 and X (5)

1 are not linearly dependent (the four possible outcome
combinations for X (2)

1 and X (5)
1 each occur with positive probability) even the strict inequal-

ity holds and thus the determinant of Kx is positive. Analogously, |Ky|> 0 with p1 and p3

replaced by p2 and p4 respectively.

Lemma 2
For limn→∞ n1/n= c ∈ (0, 1), we obtain under H0:

√
n
(

N1

n
− E[N1]

n
,

N2

n
− E[N2]

n
,

N3

n
− E[N3]

n

)T
D−→N (0, �N ),

with expectations E[N1]= (n1 +2n1p1 +2n2p2)pA, E[N2]= (3n−n1 −2n1p1 −2n2p2)pA, E[N3]=
(n1 +2n1p1 +2n2p2)(2−pA), and the entries �N , i, j , i, j =1, 2, 3, of the covariance matrix �N are
given by

�N , 1, 1 =var(C1){c +2cp1 +2(1− c)p2}+4cov(C1, A1)cp1

+2p2
A{cp1(1−p1)+ (1− c)p2(1−p2)+ cp3 + (1− c)p4}

�N , 1, 2 =2cov(C1, A1){c(1−p1)+ (1− c)p2}
−2p2

A{cp1(1−p1)+ (1− c)p2(1−p2)+ cp3 + (1− c)p4}
�N , 1, 3 =−var(C1){c +2cp1 +2(1− c)p2}−4cov(C1, A1)cp1

+2pA(2−pA){cp1(1−p1)+ (1− c)p2(1−p2)+ cp3 + (1− c)p4}
�N , 2, 2 =var(C1){3− c −2cp1 −2(1− c)p2}+4cov(C1, A1)(1− c)(1−p2)

+2p2
A{cp1(1−p1)+ (1− c)p2(1−p2)+ cp3 + (1− c)p4}

�N , 2, 3 =−2cov(C1, A1){c(1−p1)+ (1− c)p2}
−2pA(2−pA){cp1(1−p1)+ (1− c)p2(1−p2)+ cp3 + (1− c)p4}

�N , 3, 3 =var(C1){c +2cp1 +2(1− c)p2}+4cov(C1, A1)cp1

+2(2−pA)2{cp1(1−p1)+ (1− c)p2(1−p2)+ cp3 + (1− c)p4}.
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Proof of lemma 2. We can express N1, N2 and N3 as functions of the sums of the entries of
the vectors Xi , i =1, . . ., n1, Yj , j =1, . . ., n2, i.e.

N1 =
n1∑

i =1

X (1)
i +

n1∑
i =1

X (4)
i +

n2∑
j =1

Y (4)
j +

n1∑
i =1

X (7)
i +

n2∑
j =1

Y (7)
j

and analogously for N2 and N3. Interpreting the vector (N1, N2, N3)T as a (measurable and
differentiable) function from R14 to R3, we obtain the statement of lemma 2 by applying the
�-method and exploiting that cov(C1, A1)= cov(C1, B1).

Applying the �-method to the function (p̂v, p̂w)T, where p̂v =N1/(N1 +N3) and p̂w =
N2/(6n−N1 −N3) then yields (2). The formulae for var(C1), cov(C1, A1) and t1 are obtained
by straightforward calculations.
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